Publication Date

2016

Journal or Book Title

Ecosphere

Abstract

Florivory, or the consumption of flowers, is a ubiquitous interaction that can reduce plant reproduction directly by damaging reproductive tissues and indirectly by deterring pollinators. However, we know surprisingly little about how florivory alters plant traits or the larger community of species interactions. Although leaf damage is known to affect floral traits and interactions in many systems, the consequences of floral damage for leaf traits and interactions are unknown. We manipulated floral damage in Impatiens capensisand measured effects on floral attractive traits and secondary chemicals, leaf secondary chemicals, floral interactions, leaf herbivory, and plant reproduction. We also examined relationships between early season floral traits and floral interactions, to explore which traits structure floral interactions. Moderate but not high florivory significantly increased relative selfed reproduction, leading to a shift in mating system away from outcrossing. Florivory increased leaf secondary compounds and decreased leaf herbivory, although mechanisms other than leaf chemistry may be responsible for some of the reduced leaf damage. Florivory altered four of seven measured interactions, including increased subsequent florivory and reduced flower spiders, although only leaf damage effects were significant after correcting for multiple tests. Pretreatment concentrations of floral anthocyanins and condensed tannins were associated with reduced levels of many floral antagonisms, including florivory, nectar larceny, and flower spider abundance, suggesting these traits play a role in floral resistance. Overall, our results indicate a broad range of community and potential evolutionary consequences of florivory through structuring subsequent floral interactions, altering leaf secondary chemicals, and shaping leaf herbivory.

DOI

10.1002/ecs2.1326

Volume

7

Issue

6

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Funder

UMass SOAR Fund, University of Massachusetts Gilgut Fellowship in Plant Biology, National Science Foundation Doctoral Dissertation Improvement Grant. Grant Number: DEB-1011236

Share

COinS