The Environmental Condition of Tan Brook and Campus Pond, A Community and University Concern

Marita Clay
University of Massachusetts - Amherst

Robert F. Smith
Department of Environmental Conservation, rfsmith@eco.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/tanbrook_research

Part of the Landscape Architecture Commons, and the Terrestrial and Aquatic Ecology Commons

http://scholarworks.umass.edu/tanbrook_research/3

This Article is brought to you for free and open access by the Tan Brook Project at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Research by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
The Environmental Condition of Tan Brook and Campus Pond: A Community and University Concern
Marita Clay1 and Robert Smith1
1Massachusetts Fish and Wildlife Cooperative Research Unit & Department of Environmental Conservation, University of Massachusetts

Introduction:
This study is part of a larger overall student focused outreach effort to understand the potential for conservation and restoration of the Tan Brook. Tan Brook is a headwater of the Mill River watershed and originates below Wildwood cemetery at Strong Pond. 69.6% of the stream runs underground. Streams and rivers are highly impacted by land developed for human use(1). Urbanization can result in elevated nutrient concentrations, altered channel morphology, reduced biotic richness, and increased dominance of tolerant species(1, 2). Major chemical impacts to the stream include non-point sources (e.g., run off from urban roadways) and periodic point source inputs. We measured a suite of chemical and biological characteristics along the Tan Brook to assess water quality within the Tan Brook.

Objectives:
To understand how water chemistry, metal concentrations, change over the length of the brook.
To visually compare data from sampling ~10 years ago, and qualitatively observe any increase or decrease in water chemistry and metal concentrations.

Predictions:
1) Metals and nutrients will increase longitudinally, due to the urbanization and decrease in pollutant-abating characteristics of a healthy stream.
2) Metals and nutrients will have increased temporally due to recent construction and changes in timing of sampling.

Methods:
Sample locations
Five sites along the Tan Brook were sampled in 2014.
Sampling sites were chosen to correspond with day-lighted areas and pond environments.
Data for 2003 was provided by the Water Resources Research Center (WRRC) and was collected at three of the sites included in this study using different methodology.
(Figure 1) illustrates sampling at Lincoln Apartments.

Analytes
Temperature (C) dissolved oxygen (DO), pH, and conductivity using a YSI Sonde (Figure 3).
Chlorophyll A and B (2014)

Sample Watersheds
Sampling Site Watersheds

Figure 2: (above) Map of sampling site watersheds from upstream sites-downstream (Strong Street-Lot 12).

Table 1: (above) Calculated % impervious of each sampling watershed, the % impervious increases for each nested watershed. The %impervious for the point in lot 12 is slightly higher than that of the entire watershed.

Results:

Figure 3: A-D: YSI Sonde data. A: temperature increases slightly downstream. B: specific conductivity increases downstream. C: pH increases (more basic) downstream. D: DO mg/L decreases below the pond. E: Nitrogen increases longitudinally. F: Total P and CHA decrease. G: Lead starts high, decreases, then rises. H: Zinc appears higher than the previous sampling.

Conclusion:
The effects of urbanization within the Tan Brook are apparent. Nutrients such as nitrogen increase along the length of the stream, this is an indication of poor nutrient absorption, a symptom of an urbanized stream(2). The health of the brook is directly related to the town of Amherst and the University of Massachusetts, as these urban centers grow and develop the University should take into consideration these important watersheds and the effects that impermeable surfaces have on the stream quality. Without a comprehensive study we cannot make any solid inferences as to the state of the Brook but we can understand and see that the stream is impacted and that a more comprehensive study would be beneficial to understanding the causes of impairment.
The Environmental Condition of Tan Brook and Campus Pond: A Community and University Concern
Marita Clay1 and Robert Smith1
1Massachusetts Fish and Wildlife Cooperative Research Unit & Department of Environmental Conservation, University of Massachusetts

Abstract:
Small streams have the unfortunate ability to be greatly impacted by human intervention. Civilizations for centuries have attempted to alter the natural state of their environment, and Amherst’s own Tan Brook is a local example of the consequences of human alterations on a stream. The brook flows over and under what many local citizens call home, and where many UMass students go to learn. A healthier Tan Brook would be expected to provide for improvement of ecosystem services such as flood control and nutrient processing, resulting in a cleaner campus pond and a better connection between the stream and the local community. The purpose of this study is to examine and compare previously recorded biochemical characteristics with current conditions in the Tan Brook and campus pond to determine if the health of this system has changed. Additional parameters related to the geomorphology and biology of the Tan Brook will also be characterized. Community concern in concurrence with the fact that the majority of the stream is piped underground through culverts indicates that the Tan Brook is currently impacted. The data collected can provide clues about levels of ecological impairment in Tan Brook and the source of these impairments. With interpretation, the information gathered could eventually lead to the development of infrastructure to remediate the sources of impairment, consequently leading to a cleaner Tan Brook. This is an optimistic transformation that would aid both the town of Amherst and the University.

Figure 5: Pictures from sampling

Figure 6: Metals Cu, and Cr, are higher than recorded previously, Cd was not detected, and Zn was higher than the prior sampling

Acknowledgements
We would like to thank Paula Rees for providing data from previous years. Beckie Finn & the EAL Lab for helping with TP and Chla, and Alison Tenhulzen for providing the watershed delineation. This work was supported by the National Science Foundation –Science, Engineering, and Education for Sustainability Fellowship, Award#: GEO-1215896

References:

Figure 4: A: Chlorophyll analysis 2014. B: Chlorophyll analysis 2014 without skewed Strong Street Site. C: 2003-2014 comparison

Figure 5: Chlorophyll Analysis 2014

Figure 5: Chlorophyll Analysis 2014