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ABSTRACT 

An investigation of a f lu id  brake device designed t o  convert 

wind energy t o  neat i s  reported for  small t o  moderate s i r e  wind 

turbine applications. Fluid devices of three d i f ferent  geometries 

with vaned rotors were examined for power capacity and operating range. 

Converter s i ze  and geometry was related t o  rotational speed through 

a parametric study of the wind turbine and f lu id  energy converters. 

Wind tunnel t e s t s ,  laboratory experimen-is, and analytic techniques 

lead t o  the development of three candidate hydraulic converters for 

matching the 10 m diameter Wind Furnace Model Four. 
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INTRODUCTION 

Man has always used energy resources with more regard for  r*esul t than 

efficiency. The a t t i tude  stems partly from ignorance, b u t  i s  primarily linked 

to t radi t ion and lack of foresight. Imprudent planning saw the depletion of 

wood, charcoal, coal and more recently the short supply of natural gas and 

urani urn. Insufficient supply of these natural resources and the subsequent 

social and economic hardships can only be a1 leviated by conservation, equi tab1 e 

distribution of conventional fuel s and the use of renewable energy resources. 

Careful energy use w i  11 slow the growing energy demand, b u t  the increasing 

population of the industrial ized world requires new energy sources. Concerned 

planners will develop renewable energy resources that  will sa t i s fy  world 

needs fo r  a l l  future generations. 

Renewable energy resources must be used judiciously. Traditional energy 

use shows 1 i t t l e  regard for  environmental qua1 i ty .  Fossil fuels  pollute a i r  

with waste products of combustion. All energy processes which convert 

matter into energy including combustion, f i ss ion ,  and fussion re jec t  heat 

to the envi ronment causi ng thermal poi 1 uti on .  A 1  so, serious doubts concerning 

the long time safety of the nuclear energy process a n d  radioactive waste pro- 

ducts make carefuly energy planning imperative for  our generation and generations 

to come. Proper use of renewable energy means tha t  environmental dangers l ike  

those associated with traditional energy resources can be avoided. 

Solar energy i s  the most prevalent renewable energy resource. Solar 

energy i s  avai 1 able everywhere on the gl obe in periodic quan t i  t i  es depending 

upon location, weather, day, and hour. An estimated 1.05 x 1018 Kwh of solar 
1 radiation reaches the Earth's surface each year. Much of the energy is  



2 ref1 ected, b u t  the remainder causes ocean cur:-ents, atmospheric circulation , 

and heating. 

The solar  influx i s  a nearly inexaustible resource. Any portion of 

the resource directed towards World energy demand can re1 ieve environmental 

a n d  economic burdens of conventional energy sources. 

Exploitation of the solar  resource i s  in i t s  infancy. Today hydroelectric 

power i s  the only solar  derived energy source used on a large scale providing 
3 approximately 4% of the United States energy supply . Direct solar  insolation 

provides energy and b o t h  passive solar a r c h j t x t u r e  and greenhouses employ 

solar  energy. Ocean currents and ocean thermal differences remain essential  ly 

untapped energy resources only t o  be exploited through large scale economic 

a n d  material comi tments. Wind energy presents an excel lent  opportunity 

fo r  immediate energy development and great s t r ides  towards realizing the 

wind energy potential a re  now underway. In  f a c t  wind energy i s  easily accessible 

a t  any scale and i t  can provide renewable energy with l i t t l e  continuing environ- 

4 mental impact . 
The wind energy resource i s  dispersed, b u t  in many regions the availabil  i  ty 

7 i s  good. The World Meteorological Organization estimates 2 x 10 !~~~ wind 

5 power potential i s  available a t  suitable s i t e s  . With appropriate technology 

exploitation of th i s  energy resource can a1 1 eviate dependence on t radi t ional  

fuels .  Careful use of wind energy may diminish the waste and inefficiency 

associated with traditional fuels  and build a sound energy s tructure fueled 

by solar insolation and the rotation of the earth.  

The penetration of wind mach$nes into the energy market will deoend largely 

on the economics of energy conversion. Because renewable energy sources have 



smal l  c o n t i n u i n g  cos t s  t h e  i n i t i a l  cos ts ,  p r o d u c t i v i t y ,  and l o n g  term f u e l  

sav ings6 wi 11 determine t h e  economics of  wind power. F r a c t i c a l  energy con- 

v e r s i g n  systems w i l l  c o n v e r t  s i g n i f i c a n t  q u a n t i t i e s  of  energy t o  a u s e f u l  

t a s k  and perform s imp ly  and e f f i c i e n t l y  a t  low cos t .  

Wind energy promises t o  p r o v i d e  s u b s t a n t i a l  f u e l  sav ings and e n v i  ronmental 

b e n e f i t s .  The cho i ce  o f  a s imp le  wind machine o f  low l i f e  c y c l e  c o s t  and 

h i g h  p r o d u c t i v i t y  i s  very a t t r a c t i v e .  One such machine i s  t h e  Wind Furnace 

Model Four. 

The Wind Furnace Model Four conver ts  w ind  energy t o  heat .  The dev ice  

employs a h y d r a u l i c  energy c o n v e r t e r  d r i v e n  by a wind r o t o r  t o  hea t  a f l u i d  

by v iscous f r i c t i o n .  Heat from t h e  machine can be used f o r  space heat ing ,  

h o t  water ,  a g r i c u l t u r a l  , i n d u s t r i a l ,  and comrnercial hea t i ng .  The Y ind  

Furnace Model 4 i s  a very  simple, low cos t ,  h i g h  p r o d u c t i v i t y  machine t h a t  

conver ts  energy t o  s a t i s f y  a common need f o r  hea t .  

Th is  paper w i  11 d iscuss  t he  Wind Furnace Model 4 concept. Performance 

matching o f  wind t u r b i n e s  and hydrau l  i c  dev ices t o  c o n v e r t  wind energy t o  hea t  

w i l l  be o u t l i n e d  toge the r  w i t h  i m p o r t a n t  system design parameters.  De- 

velopment of  t h e  Wind Furnace Model 4 i s  d i r e c t e d  towards i d e n t i f y i n g  an 

a1 t e r n a t i  ve means o f  p r o v i d i n g  hea t  w i  t h  no adverse env i  ronmental  impact .  
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C H A P T E Z  1 

ENERGY DEMAND A N D  WIND ENERGY RESOURCE 

The wind energy resource and the task for which the energy i s  

harnessed will define the wind turbine design. Productivity of the 

wind  energy conversion system depends upon the wind character is t ics  

of speed, frequency, and duration. Size of the wind rotor and  other 

components depends upon the magnitude and regularity of the energy 

demand. Often times shcrt  tern energy storage can bridge the variable 

avai labi l i ty  and the demand. 

The available power in the wind i s  given by the following 

equation developed from momentum theory. 

where Pmax i s  instantaneous power in the wind, 

p i s  the density of a i r ,  and 

V i s  thewindve loc i ty .  

Knowledge of the wind regime will allow an estimate of the 

yearly wind energy resource. Wind speed data from the National 

Climatic Center, meteorogical sources, and other agencies may provide 

adequate information. Often wind speed data reduced t o  s t a t i s t i c a l  

distributions simp1 ' f i e s  the wind resource estimate . Here the 

estimate becomes a calculstor operation. 

Perhaps the most s t ra ight  forward approach t o  estimating the 

energy resource involves published wind data and an assumed Neibull 
1 probabil i t y  dis tr ibut ion . In regions where 1:~i nd velocity i s  reported 

by mean and standard deviation, the conversion t o  Meibull probability 

3 distribution can be made by the means described by sexton2 and Justus . 



Data reduced on a  month ly  bas i s  by meteora iog ica:  o r g a n i z a t i o n s  

i s  p r e f e r e d  f o r  t h e  wind energy es t ima te .  Pub l i shed  We ibu l l  shape 

parameters a r e  employed t o  determine t h e  d u r a t i o n  o f  windspeed d u r i n g  

t h e  month. The power i n  t h e  wind i s  c a l c u l a t e d  f o r  a  u n i t  area by means 

of Equat ion  1.1 . The p roduc t  o f  t h e  power a v a i l a b l e  a t  one wind speed 

i n t e r v a l  and i t s  r e s p e c t i v e  d u r a t i o n  i n  hours y i e l d s  t h e  month ly  

p r o d u c t i v i t y  f o r  t h a t  i n t e r v a l  . Summation o f  energy p r o d u c t i v i t y  

f o r  t h e  whole spect rum o f  windspeeds r e s u l t s  i n  t h e  month 's  w ind  

energy resource .  Repeat ing t h e  c a l c u l a t i o n s  f o r  each month produces 

an e s t i m a t e  o f  t h e  annual wind energy resource  as shown i n  F ig .  1  .I 

Month t o  month v a r i a t i o n  of  t h e  wind energy resource  i s  o f  g r e a t  

impor tance.  P r a c t i c a l  w ind  energy conve rs i on  systems d i r e c t  a l l  energy 

t o  pe r f o rm  a  t ask .  The Wind Furnace Model Four,  f o r  i ns tance ,  can 

t ake  advantage o f  t h e  seasonal winds t o  p r o v i d e  space and h o t  wa te r  

h e a t i n g  d u r i n g  c o l d  and windy months i n  temperate c l i m a t e s .  F i g .  1 .2  

shows t h e  s i m i l a r i t y  o f  e x t r a c t e d  wind energy and h e a t i n g  demand. 

Note t h a t  t h e  system p rov ides  o n l y  a  p o r t i o n  of  w i n t e r  h e a t i n g  and a  

s u r p l u s  o f  hea t  f o r  t h e  rema in ing  months. Here, t h e  system i s  

o p t i m i z e d  t o  p r o v i d e  a  l a r g e  p o r t i o n  o f  t h e  h e a t i n g  demand f o r  a  

minimal c a p i t a l  i nves tment .  

Wind t u r b i n e  performance and o p e r a t i n g  c h a r a c t e r i s t i c s  determine 

t h e  q u a n t i t y  of energy e x t r a c t e d  from t h e  wind. Both system e f f i c i e n c y  

and o p e r a t i n g  range a f f e c t  t h e  f r a c t i o n  o f  w ind  energy conver ted  t o  

a  use fu l  t a s k .  
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C H A P T E R  2 

NIND TURBINE PERFORMANCE 

The wind energy resource introduced in Chapter 1 must be modified 

to describe wind turbine performance and productivity. A general 

understanding of wind machine performance and operation can lead 

t o  a  good estimate of wind turbine productivity. Also, careful design 

can optimize wind turbine costs without sacr i f ice  of annual productivity. 

Several mechanical character is t ics  af fec t  the productivity of the 

wind energy conversion system. Rotor geometry, rotational speed, 

cut - i n  speed, cut - o u t  speed, and time response of the wind 
1 

turbine can a l l  be optimized to produce an ef f ic ient  energy conversion \ 

sys tern. 

Equation 1 . 1  shows that  the power in the wind varies direct ly 

with the swept area of the wind turbine. Larger wind rotors in genera? 

extract  more energy than smaller wind  rotors ,  b u t  efficiency of the 

device must also be considered i n  an estimate of machine productivity. 

Performance of several different  wind rotors i s  shown in F i g .  2 . 1 .  

The power coefficient represents the fraction of power extracted from 

the wind  to the power available i n  the wind as shown by the following 

equation. 

where P i s  the power of the w i n d  turbine rotor ,  and 
C i s  the power coefficient.  

P 

Rotationai speed of the wind turbine i s  represented by the t i p  - 
speed ra t io :  a  ra t io  of the speed of the rotor blade t i p  t o  the free 

stream wind speed. The t i p  - speed ra t io  i s  given by the following 



equat ion.  

R o.. 
X = - 

v 

where, x i s  the  t i p  - speed r a t i o ,  

R i s  t he  r o t o r  rad ius ,  and 

U _  i s  the  r o t a t i o n a l  speed. - 

High e f f i c i e n c y  wdnd tu rb ines  main ta in  a  constant  t i p  - speed r a t i o  

fo r  a l l  wind speeds w i t h i n  t h e  opera t i ng  range. Hor izonta l  ax i s  

p r o p e l l e r  type wind tu rb ines  are  capable o f  h igher  e f f i c i e n c y  than 

most o the r  wind tu rb ines .  

T i p  speed to le rance o r  off  - design performance i s  very impor tant  

because wind t u r b i n e s  e x t r a c t  energy from the v a r i a b l e  wind and seldom 

operate a t  the  designed t i p  - speed r a t i o .  The American Fan M i l l  

wind tu rb ine ,  f o r  instance,  performs w i t h  .23 power c o e f f i e i e n t  a t  .6  

t i p  - speed r a t i o ,  bu t  change the  t i p  - speed r a t i o  t o  1.0 and the  

device produces no usable power. Broad and gen t le  curves '  i n  F i g .  2.1 

are i n d i c a t i v e  o f  t i p  speed t o l e r a n t  r o t o r s :  r o t o r s  t h a t  per form 

w i t h  h igh  e f f i c j e n c y  over a  range o f  t i p  speed r a t i o s .  

Wind tu rb ines  generaly begin r o t a t i n g  a t  low wind speed, 

operate near constant  t i p  - speed r a t i o  i n  moderate winds, and shut 

down i n  h igh  w'nds. The lowest  wind speed where power i s  ex t rac ted  

i s  termed the  c u t  - i n  v e l o c i t y .  Cut -out  v e l o c i t y  i s  t h e  wind speed 

a t  which the  machine i s  shut  down. 

Proper ly  designed wind t u r b i n e s  do n o t  s a c r i f i c e  a  s i g n i f i c a n t  

p o r t i o n  o f  t he  a v a i l a b l e  wind energy. The annual energy a v a i l a b l e  below 

c u t  - i n  and above c u t  - o u t  wind speed should be i n s i g n i f i c a n t .  

However, i n  re ference t o  es t ima t ing  the  p r o d u c t i v i t y  o f  wind energy 

conversion systems, the  procedure must be a l t e r e d  t o  i nc lude  the  



af fec t  of cut - i n  and cut - o u t  velocity. 

The revised procedure i s  tabulated in Table 2 . 1  for  a  hypothetical 

situation involving one month's data. The power i s  calculated assuming 

a  constant power coefficient.  Power duration i s  calculated by means 

of the !Jeibull cumuiative probabi 1 i  ty distribution. Only wind speeds 

within the operating region are included in th i s  estimate. Also, 

calculations are performed on the basis of a unit area. The swept 

area of the device can be sized t o  provide a  specified portion of the 

energy demand according to monthly trends. 

Performance of wind energy conversion systems depend largely 

upon the speed regulation provided by the energy converter. To 

maintain a high power coefficient the machine t i p  - speed ra t io  should 

be invariable in the operating region. The perfect energy converter 

should control the rotor speed by providtng proper resis t ing torque 

for a l l  wind  speeds. The power of the wind turbine varies with cube 

of the wind speed according t o  Eq. 1.1. 

Constant t i p  - speed ra t io  implies that  the wind turbine 

power and speed should vary according to the cubic relationship shown 

below. 

P = K w  3 

where X js a proportionality constant, and 

u i s  the rotational speed. 

An empirical performance curve of a high efficiency, C = .47, wind 
P 

turbine i s  shown in Fig. 2 . 2  with the cubic power relationship. 

Mechanical and electr ical  control devices are often used t o  regulate 

w i n d  turbine rotational speed. Mass produced wind machines typically 



sacr i f ice  efficiency for  design simplicity causing the power curves 
1 to  deviate sharply from the cubic speed - power relationship. These 

machines f a i l  to  extract  from the wind a l l  the energy tha t  i s  

available to the wind rotor.  

Careful rotor design, including aerodynamic performance 

evaluation of the rotor blades, can provide a rotor with high t i p  - 
speed tolerance, b u t  a t  a sacr i f ice  i n  efficiency. Perhaps the most 

a t t rac t ive  wind energy conversion design incorporates a h i g h  efficiency 

wind rotor and energy converter w i t h  a cubic speed - power curve. 

Fluid energy converters l ike  centrifugal pumps and turbines 

follow the cubic speed - power relationship. As early as 1973 Heronemus 

suggested the use of a f luid device as a se l f  regulating energy 
2 converter for wind turbines. Gunkel and  Fury and Esbensen and Strabo 3 

demonstrated tha t  a f luid churn device much l ike  an  imersed paddle 

wheel could be d i rec t ly  coupled to wind turbines so t h a t  wind energy 

could be converted to  heat. However, the two demonstrations 

employed small 2 Kw wind rotors and crude energy conversion devices. 

The energy converter designs are large and  b u l k y  and appear unsuitable 

for  matching with moderate and  large scale wind turbines. 
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TABLE 2. 1 CALCLILATION OF WIND ENERGY CONVERSION 
B I RM INGHAM , ALABAMA 

Wind C h a r a c t e r i s t i c s  a t  19.8 m E l e v a t i o n  

Mean V e l o c i t y  , 0 J/F k c 

3.71 rns-I 2.25 .605 9.15 1.71 
Wind T u r b i n e  C h a r a c t e r i s t i c s  

V C u t - i n  V Cu t -ou t  E l e v a t i o n  Swept Area Cp 

VELOCITY POWER H r .  EXCEEDED HOURS c P ENERGY 

TOTAL 2  1 .6 kl.lh/rnz 

Per Month 
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C H A P T E R  3 

HYDRAULIC ENERGY CONVERTERS 

Hydraulic energy converters t radi t ional ly turn mechanical energy 

to waste heat. Rotating machines known as  water brakes, water churns, 

and f lu id  dynamometers are most often used t o  load or a r r e s t  prime movers 

and  reject  heat t o  the environment by means of a f lu id  c i rcu i t .  Because 

the devices are  largely employed in t e s t  equipment they tend t o  be very 

costly.  They are a1 so buil t t o  perform a t  high speeds common to most 

prime movers. 

Other applications of hydraulic energy absorbers employ the device 

a s  a speed dependent brake. Cranes, trucks, oil r igs ,  gl ider tethers ,  

and emergency airplane ar res ters  u t i l  ize the device as  a brake for  inter-  

mittent service. The braking torque provided by the hydraulic energy 

absorber i s  self-governing and does not fade or change with extended use. 

Rudimentary theory of hydraul ic  energy absorbers was documented by 

~roude '  in 1877. Froude had pioneered ship theory and designed ship hul I s  

for  reduced drag. In  an e f fo r t  t o  measure the power delivered to the 

screws of large ships Froude designed a hydraul ic  energy absorber to be 

placed on the sh ip ' spropel ler  shaft  while the ship was docked. The ship ' s  

engines could then be f i red  and the propeller shaft  turned against the 

resis t ing torque of tne energy absorber. Measurement of speed and torque 

for  varying engine speeds could then be made while the ship remained a t  

dock. From the gathered information ftiture vessels would have a bet ter  

match between ship drag and propulsion creating fas te r  ships with greater 

cruising range. 

18 



Froude's experiments identified a novel braking device which others 

have improved. The overall power absorption fo r  a given energy absorber 

increases with the complexity of the device's internal geometry. Figure 

3.1 shows a simple hydraulic dynamometer and Figure 3.2 shows the cross- 

section of several hydraulic energy absorbers. The internal geometry 

i s  identified by the shape of the vanes. Note the energy absorber consists 

of a central rotating vaned impeller c r ro tor  and fixed vane s ta tor  housing. 

The cavity between rotor and s ta tor  i s  f i l l e d  w i t h  a f l  uid that  provides 

resistance t o  shaft  rotation. The f lu id  motion i s  restrained by the vanes 

i n  such a way as  t o  provide retarding torque by means of viscous shear, 

shock, and momentum transfer.  The magnitude of retarding torque i s  direct iy : 

related t o  the f lu id  motion within the energy absorber. Rounded internal 

geometry in the c i rcu la r ,  e l l ip i t ca l  , and Froude design enhances the f l u i d  

velocity a n d  the mechanism for  energy absorption. 

Vanes i n  the el 1 ipt ical  and Froude dynamometers are incl ined approximatelj 

45" t o  the plane of rotation to  take advantage of secondary flow. Figure 

3.3 i l l  ustrates the incl ined vanes of an el 1 i p t i c  geometry dynamometer. 

The cornpl ex geometry make these devices provide high torque a t  low rotational 

speeds. Machines of t h i s  type can be more compact than a rectangular 

or circular  geometry device of the same s2eea and capacity. 

3.1 Historical Examination 

Froude identified the internal energy dissipating mechanism of his  

device in 1877. Froude's work was largely qua1 i t a t ive  b u t  s t i l l  remains 

the rudiment of vaned dynamometer design. In f a c t , t o  date perhaps only 

one machine performs bet ter  than the device described by Froude. 



The cavity between rotor and s ta tor  i s  i n  the shape of a torus. The 

torus i s  divided in plane a t  the center a s  shown in section in Figure 

3.4 a n d  half oval vanes are fixed inclined to the plane of rotation within 

the half torus troughs. The inclined vanes form pockets in both the 

rotor and s ta tor  as  shown in Figure 3.4 and circulation of f lu id  within 

the pockets provides the resis t ing torque. 

Froude chose t o  design two torus back to  back counter balance the 

axial thrust  created by the exchange of f l u i d  from rotor to  s ta tor  during 

operation. For t h i s  reason most dyna~nometers have vanes on both sides 

of the rotor and s ta tor  housing to  provide two toroidal cavi t ies .  

When the cavity i s  f i l l e d  and the rotor s e t  in motion toroidal flow 

develops with rotational and radial directional components. F l  u i d  on 

the rotor i s  accelerated radially outward within the rotor pocket and 

then directed to the s ta tor  pocket where the momentum of the f1 u i d  i s  

exchanged and the vel oci ty of the f  1 u i  d reversed as the f  1 ui d f  1 ows inward 

and back to  the rotor.  Of course the f iu i  d flow i s  continuous and the 

momentum exchange takes place continual1y across the dividing plane between 

the rotor and s ta tor .  

Froude found tha t  he could interrupt the flow from s ta tor  to rotor 

by means of shutters and reduce the power absorption of the device. Reduction 

to  seven percent of the maximum was reported. This phenomena shows the 

extent to which the toroidal flow contributes t o  the power absorption. 

Froude suggested the flow from rotor to  s ta tor  was similar to  f lu id  je ts :  

one j e t  of axial and circumferencial velocity impinging upon the outer 

portion of the fixed s t a t o r ,  and one j e t  of axial velocity impinging upon 

the moving rotor. Each j e t  augments the flow which i s  slowed only by 



viscous f r ic t ion  and eddy losses. Figure 3.5 shows a diagram of Froude's 

concept. 

The pathline of a f lu id  part icle  in the Froude device i s  a toroidal 

he1 ix 1 ike a he1 ical spring wrapped in a c i rc le  with b o t h  ends connected. 

The f lu id  passes from one pocket to the next exchanging momentum from 

rotor to s ta tor  a s  i t  c irculates  and dissipates energy by f r ic t ion  and 

shock. 

Froude further  identified the f l  aid movement between rotor and s ta tor  

as a vortex. The f lu id  velocity in Figure 3.5 could be imagined as many 

concentric stream tubes where the velocity varies from zero a t  the vortex 

center to a f i n i t e  velocity near the outer edge of the vortex. The vortex 

speed bears a d i rec t  relation to the rok t iona l  speed of the turbine 

and the res is t ive  torque varies as  the time change of momentum with the 

square of the rotational speed. 

From detailed analysis of the f lu id  kinematics Froude deduced the 

cubic speed-power relationship of the dynamometer device. He also proved 

a hypothesis that  the power absorbed by the dynamometer i s  related to 

the f i f t h  power of the rotor diameter. He attempted with some success 

t o  determine analytical ly the speed-power characteris t ics  of his device. 

Unfortunately the mathematics and f lu id  dynamics of the time did not permit 

a solution to the problem of defining shock fronts  in f lu id  flow. With 

some simplifications, dubious assumptions a n d  graphical techniques the 

energy absorption of the device coul d be est'mated; however, Froude cautioned 

that  "careful experiment i s  s t i l l  needed. " 

Professor Osborne Reynolds modified Froude' s design and placed vent 

2 holes a t  the center of each vane as shown in Figure 3 . 3 .  The vents assured 

that  the pressure a t  the center of the f lu id  vortices would remain constant 



insuring no change in the working f lu id  over a wide range of operating 

speeds. Reynolds' modification increased the operating range and s tab i l i ty  

of the device. Also cavitation may be reduced by t h i s  means because venting 

increases the pressure a t  the vortex center where without venting the 

pressure coul d decrease be1 ow vapor pressure. Reynol ds' device has sl  i g h  t ly  

higher power absorption than the Froude device. 

E. P .  Cul ver reported on several hydraul ic dynamometers of the rectangular 

geometry in 1937. He experimented with 23 rnodif ications of the device. 

Vane dimensions, number, angle, a n d  side clearance effects  were investigated 

by Culver who concluded the rectangular device, in Figure 3.2, was best 

for engine testing. Culver's device i s  simple and easy to fabricate,  

b u t  i t  does n o t  have the low speed-torque characteris t ics  found in the 

more compl ex devices. 

Culver's data can provide insight into the rudiments of the rectangular 

design, b u t  the investigation i s  n o t  thorough. Some contradictions ex i s t  

and some t e s t s  are not well documented. No s t a t i s t i c a l  evaluation i s  

provided and effects  of vane side clearance, termed negl igibl e, can actual ly 

a1 t e r  the performance. 

Culver shows the cubic speed 2ower relationship of the device and 

the f i f t h  power relationship of power t o  diameter. He attempts to identify 

a l inear  relationship of several parameters that  determine the power absorption. 

His final equation shown below can be ~ s e d  only fo r  a f i r s t  approximation. 

.92 11-08 N2.92 D4.4 H = K  p 

where H i s  horsepower 

K i s  a proportionality constant 



1 i s  the f lu id  viscosity 

N i s  rotational speed, rpm, and 

0 i s  diameter of rotor.  

3 .2  Limitations of Hydraul ic  Energy Converters 

Time response and cavitation l imi t  the applications of vaned hydraulic 

energy converters. The devices provide torque by momentum exchange and 

f lu id  f r i c t ion :  both velocity dependent mechanisms. Should the rotational 

speed change suddenly the internal flow changes gradual ly until the moment 

of momentum within the device obtains equilibrium. High speeds can lead 

t o  cavitation and departure from the cubic speed-power re1 ationship because : 
5 

the overall f l  uid density decreases. 
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C H A P T E R  4 
ANALYTICAL PERFORMANCE EVALUATION O F  HYDRAULIC ENERGY CONVERTERS 

Hydraulic energy converters can be described in terms of s i ze ,  

geometry, and c a ~ a c i t y .  These three characteris t ics  are interelated 

and  serve as the basis for comparison. Dimensional analysis simp1 i f i e s  

the comparison by relating different  s ize  devices. Fluid kinematics 

and empirical data help t o  t e s t  the relationship of the three character- 

i s t i c s  and explain the analytic resul ts .  Results of the performance 

estimate are quite good; however, 1 imitations due t o  numerical 

precision, effec2s of sca le ,  and changing f luid properties must be 

considered. 

1 Froude described the cubic speed - power relationship and the 

f i f t h  power relationship of diameter and power for hydraulic dynamometers. 

Clearly th i s  relationship i s  valuable in describing the interdependence 

of s i ze ,  speed, and capacity. 

In the comparison of energy converter performance,the size of the 

device i s  the rotor size. Speed i s  the rotor rotational speed and 

capacity i s  the power absorption capabi 1 i ty .  The comparison requires 

a consistent s e t  of units.  

4.1 DIMENSIONAL ANALYSIS 

Dimensional analysis methods lead to a non-dimensional formulatioq 

t h a t  relates  several independent variables. The method identif ies  

the relationship of variables and serves an an engineering model. 

Dynamic similari ty of f luid flow i s  the underlying principle in 

dimensional analysis and  deviation of machine performance from the 

analytic performance estimate i s  largely due to a difference in 

f luid kinematics. Off design performance i s  detailed l a t e r  in th is  
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chapter, b u t  f i r s t ,  the basic parametric relationship i s  presented. 

For the hydraul i c energy converter' a power coefficient or power 

number2, n, , can be derived tha t  re1 ates the machine parameters. 

where TI i s  the power number, 
P i s  the shaft  power, 
E i s  the f luid density,  

i s  the rotationai speed, and 
D i s  the rotor diameter. 

Test resul ts  from ~ r o u d e ~  , Culver4, and th i s  author affirm the 

val i di ty of th is  model . The power number i s  near constant for  a1 1 

operating speeds a n d  re1 ates s ize  , speed, geometry, and f lu id  density 

to the power capacity of the hydraulic energy absorber. All 

devices of simi 1 a r  internal geometry, working f lu id ,  and re1 a t ive  internal 

surface roughness will have similar power numbers independent 

of s ize  and speed. 

Figure 4.1 shows power numbers for  several devices of different  

geometry. Hi gh power numbers indi cate hi gh energy conversi on capacity. 

The power number i s  also indicative of the speed and diameter of the 

device. High power number devices are compact and operate a t  siow 

rotational speed. 

Froude and Reynolds type dynamometers have higher power numbers 

than the Culver type device and the viscous disk dynamometer. Figure 

4.1 and Tabl e 4.1 are he1 pful in the choice of a hydraulic energy 

converter. Also,manipulation of Eq. 4.1 and insertion of speed and 

f lu id  data can provide 'the designer w i t h  several choices of mach:ine 



size and  geometry t o  f u f i l l  a particular appl ication. However, 

some of the devices may prove unacceptable due t o  speed limitations 

of  the device. 

4 . 2  LIMITATIONS OF THE DEVICE 

Figure 4 . 2  shows a typical power performance curve for  the 

hydraulic energy converter. Note the cubic profi le  where the power 

number describes the machine performance. This i s  the normal 

operating range of the device. Above the operating range the 

performance deviates from the cubic curve due t o  a change i n  

fl ui d properties. Hydraul i c energy converters operated above 

the operating region experience hiqh wear due t o  cavitation. 

Careful1 design and the proper f luid choice will insure that  the 

device remains in the operating range for a l l  anticipated speeds. 

Determination of the fa l l  off point shown on Fig. 4.2 can be 

obtained from empirical data or by calculating the speed 

where the vortex pressure approaches the f luid vapor pressure. 



4.3 OPERATING RANGE AND WORKING FLUID 

Cons is tent  performance o f  the h y d r a u l i c  energy conver ter  depends 

upon the  work ing f l u i d  p roper t i es .  F l  d i d  dens i t y  and v i s c o s i t y  

normal ly  vary w i t h  f l u i d  temperature. Water dens i t y  a t  atmospheric 

pressure changes 22% between room temperature and the  b o i l i n g  p o i n t .  

The h y d r a u l i c  energy conver ter  i s  a  momentum exchange device so 

f l u i d  dens i t y  should be high. A lso  the abso lu te  f l u i d  v i s c o s i t y  should 

be low so as n o t  t o  impede f l u i d  flow. Consequently the k i n e m a t i c  

v i s c o s i t y ,  a  r a t i o  o f  t he  abso lu te  v i s c o s i t y  t o  the dens i ty ,  should 

be low. Change of the  k i n e m t i c  v i s c o s i t y  and t i le  dencjt- 

should be low t o  i nsu re  u n i f o r m i t y  i n  the  machine performance. F igu re  

4.3 shows the  water and e t h y l  a lcohol  possess these des i rab le  

c h a r a c t e r i s t i c s .  

The temperature and pressure must a l s o  be considered f o r  the  

hyd rau l i c  energy conver ter .  The f a l l  o f f  p o i n t  i s  l a r g e l y  dependent 

on the  f l u i d  vapor pressure. Pressur ized devices o r  f l u i d s  o f  h igh  

vapor pressure can achieve h igh  temperatures. Of ten the  opera t i ng  

range can be extended by change of f l u i d  o r  increase i n  f l u i d  pressure. 

The power number remains as a  good i n d i c a t i o n  of performance. 

However, v a r i a t i o n s  i n  f l u i d  dens i t y ,  v i s c o s i t y ,  and pressure caq 

change the  performance and l i m i t  the opera t i ng  range. A t r u l y  ob- 

j e c t i v e  cornpari son of h y d r a u l i c  energy conver ters  demands t h a t  the  

power number be c a l c u l a t e d  f o r  devices opera t ing  a t  steady s t a t e  under 

f u l l  l oad  a t  i d e n t i c a l  temperature w i t h  i d e n t i c a l  f l u i d .  



4.4  OFF DESIGN PERFORMNCE 

Often prototype hydraulic energy absorbers perform different ly 

from similar models and published data. Discrepancies are due 

largely to d iss imi lar i t ies  in f luid flow. All too often available 

data does not include the character is t ics  necessary t o  build a machine 

and maintain s imilar i ty.  

Effects of scale can be an important consideration. Relative 

rou~hness of internal cav i t i e s ,  the ra t io  of surface i rregulari ty t o  

rotor diameter, must be identical i f  two machines of identical geometry 

are to have similar power numbers. All internal angles must also be 

identical and internal dimensions should be proportional t o  the diameter 

of the machine. 

If the above c r i t e r i a  fo r  dynamic s imilar i ty are sa t i s f i ed ,  the 

machine performance may s t i l l  d i f fer  from available data. Entrained 

a i r  in the f lu id  may effectively reduce the f lu id  density a n d  reduce 

the power number. An a i r  scoop or expansion tank can be placed on the 

i n l e t  of the hydraulic energy converter to reduce the q u a n t i t y  of 

entrained a i r .  

Proper design, fabrication and  instal l a t i  on of the prototype cannot 

guarantee identical power numbers fo r  prototype and the model, b u t  the 

correlation i s  very good. Published data and manipulation of the 

power number equations can provide adequate data fo r  performance matching 

of hydraul i c  energy converters a n d  wind t u r b i  nes ; however the precision 

of the calculations should be inspected fo r  proper matching. 



4.5  NUMERICAL PRECISION 

The power number a t tempts  t o  r e l a t e  t h e  p h y s i c a l  dimensions 

and f l u i d  c h a r a c t e r i s t i c s  t o  performance, b u t  t h e  power number equa t i on  

can be mis lead ing .  Computat ion of t h e  power number and t h e  r e l a t i v e  

e r r o r  i l l u s t r a t e  t h e  p r e c i s i o n  o f  t h e  power number. Table 4.2 i l l u s -  

t r a t e s  t h e  e r r o r  o f  each parameter and t h e  cumu la t i ve  e r r o r  i n  power 

n m b e r  f o r  a  h y d r a u l i c  energy conve r te r .  

The 15% e r r o r  i s  common f o r  power numbers c a l c u l a t e d  f rom tex tbook  

data.  If raw da ta  i s  p rov ided  o r  t h e  e r r o r  o f  each parameter i s  

r e p o r t e d  t h e  e r r o r  can be c a l c u l a t e d .  C a r e f u l  measurement o f  a l l  

parameters and t a b u l a t i o n  of t h e  r e l a t i v e  e r r o r  i s  necessary f o r  p r o t o -  

t ype  and model t e s t i n g .  The r e l a t i v e  e r r o r  i s  ve ry  i m p o r t a n t  because 

i t  i s  a  measure of the  o p e r a t i n g  t o l e r a n c e  o f  t h e  h y d r a u l i c  energy 

absorber .  Represen ta t ion  o f  t h e  power number and t h e  t o l e r a n c e  can 

be used t o  p r e d i c t  an i n t e r v a l  where t h e  power number o f  s i m i l a r  

machines .may 1  i e .  

P rec i se ,  weql documented data a r e  t h e  key t o  a c c u r a t e  p e r f o r m a n c ~  

es t imates  o f  h y d r a u l i c  energy conve r te r s .  S t i l l  even w i t h  good pre-  

c i s i o n  and c o n t r o l l e d  c o n d i t i o n s  v a r i a t i o n  f rom t h e  p r e d i c t e d  per -  

formance niay e x i s t .  Only  f i n e  t u n i n g  by means of  ba f f l es ,  gates, 

s h u t t e r s  o r  a d j u s t a b l e  s i d e  c l  earance can p r o v i d e  u n i f o r m i t y  o f  severa l  

machines. 



4.6 TIME RESPONSE AND INERTIA 

T h i s  a n a l y s i s  i s  presented as a s i m p l i f i e d  d e s c r i p t i o n  o f  dynamic 

i n t e r a c t i o n  between a prime mover and the hydraul  i c  energy conver te r .  

An equ iva len t  moment o f  i n e r t i a  i s  developed t o  f a c i l i t a t e  c a l c u l a t i o n  

o f  the  c r i t i c a l  speed f o r  the wind energy convers ion system. Th i s  

a n a l y s i s  i s  in tended o n l y  as a f i r s t  approximat ion t o  p rov ide  i n s i g h t  

t o  the parameters t h a t  c o n t r o l  system dynamic behav ior  and response. 

Consider t he  system o f  F igu re  4.6 where Ti i s  the  d r i v i n g  torque, 

K i s  the  t o r s i o n a l  s p r i n g  constant ,  0 i s  angu lar  p o s i t i o n ,  I i s  the  

system moment o f  i n e r t i a ,  and B i s  t h e  damping t e r n .  By analogy t o  

the  wind energy convers ion system Ti i s  the  r o t o r  torque, Kiis the 

d r i v e  t r a i n  s t i f f n e s s ,  and I and B represent  t he  moment o f  i n e r t i a  

and damping o f  the  h y d r a u l i c  energy conver te r .  

The equat ion o f  mot ion f o r  t he  system i s  shown below w i t h  boundary 

cond i t i ons .  

The equat ion  can be solved by c l a s s i c a l  s o l u t i o n  methods once the  

c o e f f i c i e n t s  a r e  determined. However, the l i n e a r  o r d i n a r y  d i f f e r e n t i a l  

equat ion cannot adequately descr ibe  the  h y d r a u l i c  energy conve r te r  

response because, f o r  the conver te r ,  t h e  damping v a r i e s  as 

t h e  square o f  the  r o t a t i o n a l  speed. 

Two simple s o l u t i o n  techniques e x i s t .  A t a y l o r  s e r i e s  expansion 

technique5 can s i m p l i f y  the problem and a l l o w  use o f  a p iecewise 



l ' i n e a r i z a t i o n  f o r  t he  non- l i nea r  term. As an a l t e r n a t i v e ,  the non- 

l i n e a r  d i f f e r e n t i a l  equat ion can be solved by numerical techniques. 

Both s o l u t i o n  techniques lend  themselves t o  computer formulat ion.  

For the  l i n e a r  approximation, the damping r a t i o  shown below can 

prov ide considerable i n s i g h t  i n t o  the  t ime response of a wind t u r b i n e  

hydraul i c  energy conversion system. 

where s i s  the damping r a t i o .  

The damping r a t i o  i s  always p o s i t i v e  f o r  the  energy conver ter .  For 

s between 0.0 and 1.0 response i s  o s c i l l a t o r y  and damped, b u t  f o r  

equal t o  o r  g rea te r  than 1.0, the  system i s  over damped. Power e x t r a c t i o n  

from gusty winds may be s i g n i f i c a n t l y  reduced by too h igh  a dampjng 

r a t i o .  High o s c i l l a t o r y  s t resses may occur w i t h  very low damping r a t i o s .  

6 Damping r a t i o s  c l o s e  t o  .65 a r e  suggested . 
Should t h e  damping r a t i o  exceed 10.0 t h e  system w i l l  respond very 

much l i k e  a f i r s t  o rder  system because the  damping term has a s i g n i f i c a n t l y  

g reater  e f f e c t  than the  i n e r t i a l  term. I n  t h i s  case t h e  t ime response 

t o  a step i n p u t  i s  given by the  f o l l o w i n g :  

where r i s  t h e  t ime  constant .  

Approximations of the  damping term and the  moment o f  i n e r t i a  f o r  

the  hydraul i c  energy conver ter  a r e  necessary f o r  the previous a n a l y s i  s. 

Both terms can be determined a n a y t i c a l l y .  The damping term i s  de r i ved  

from the  power number and i s  g iven by the  f o l l o w i n g  equation. 



Formulation for the moment of inertia is somewhat more complex 

due to the moving fluid entrained within the rotor. No universal technique 

exists to evaluate the contribution of internal flow to the angular 

momentum. As an approximation the moment of inertia of the dry rotor disk 

can be used. This approximation is satisfactory for analysis of small 

oscillations and critical speeds; however, the approximation may not be 

adequate to describe machine response due to abrupt changes of speed and 

torque. 

Angular momentum of fluid within the device can augment the moment 

of inertia for the rotor. Run on or continued rotation in absense of external 

torque and evidence of a lead - lag phenomenon for speed and torque suggest 
that analysis of the fluid angular momentum be included in the study 

of time response. Unfortunately, empirical data is generally not 

available. 

The fluid nature of the device dampens oscillations. However, 

devices driven by long el astic shafts may experience large torque excursions. 

Solutions of the equation of motion by linearization or computer technique 

can provide insight to these problems. 

Thus, the basic elements for a first approximation of the 

dynamic behavior of the wind turbine and 3ydraulic energy absorber 

can be derived analytically. The analysis should be tabulated for a 

spectrum of operating speeds for easy evaluation of the damping ratio 

and the time response. Computer programming can greatly facilitate 

the design process by performing repetitive computations with speed 

and accuracy. 
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Table 4.1 Power C h a r a c t e r i s t i c s  O f  Several  Hyd rau l i c  

Dynamometers 

NAME 

Model 14 

Model 12 

Reynolds 

Froude 

Unknown 

Unknown 

Pro t o  t ype  

Pro to type 

CHL1153 

TYPE 

Rectangular  

Rectangular  

E l1  i p t i c a l  

E l  i p t i c a l  

C i r c u l a r  

Rectangular  

Rectangul a r  

Rectangular  

Viscous 

MANUFACTURE REFERENCE 

A l l  American Author 
Engineer ing Co Author 
Wilmington DE 

Mather- Gibson 
Reynol ds 
Heenan-Froude Rao 
Worcester 
Unknown Rao 

Unknown Rao 

Author  Author 

Cul v e r  Cul ver  

Unknown Knudsen 



Table 4.2 Calculation Of Power Number And Relative Errror 

PARAMETER VALUE + ERROR 

CHARACTERISTICS P .010 + .001 

RESULT 
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C H A P T E R  5 

MATCHING OF WIND TURBINES AND HYDRAULIC ENERGY CONVERTERS 

Wind tu rb ines  and hyd rau l i c  energy conver ters  can be matched by 

i d e n t i f y i n g  the  power c h a r a c t e r i s t i c s  o f  each machine. For matching 

purposes the  power number can be very  usefu l ,  b u t  i t  becomes cumber- 

some when eva lua t ing  many design candidates. The d i f f i c u l t y  a r i s e s  

because the power number c a l c u l a t i o n s  must be performed f o r  each wind 

t u r b i n e  and hyd rau l i c  energy conver ter  con f igu ra t i on .  To s i m p l i f y  the  

design process, a  u n i f i e d  dimensional ana lys i s  i s  presented t h a t  pro- 

v ides i n s i g h t  i n t o  the  parametr ic  r e l a t i o n s h i p  o f  wind tu rb ines  and 

hydraul i c  energy converters.  

The r e s u l t  o f  the  a n a l y s i s  i s  shown below; 

where n, i s  the  power number o r  systems power c o e f f i c i e n t ,  

C i s  the  wind t u r b i n e  power c o e f f i c i e n t ,  
P 

p t  i s  the  f l u i d  ( a i r )  dens i t y  a t  t he  wind tu rb ine ,  

p i s  t he  d e n s i t y  o f  the  energy conver ter  f l u i d ,  

Dt i s  t he  diameter of t h e  wind r o t o r ,  

D i s  the diameter o f  the energy conver ter ,  

x i s  t he  wind t u r b i n e  t i p  speed r a t i o ,  and 

N i s  the  r a t i o  o f  the  conver ter  speed t o  t u r b i n e  spe.ed. 

Note t h a t  t he  dimensional terms are  re ta ined  f o r  c l a r i t y .  



The system power coefficient i s  identical t o  the power number 

of the hydraulic energy converter. Also the system power coefficient 

i s  unique because i t  defines an explici t  relationshi p of system para- 

meters. 

Model and prototype relationships of scale can be determined by 

the formulation. Also, this  equation can be employed t o  match and 

compare system components. For exan~ple, the formulation can be used 

t o  estimate the necessary gear ratio t o  match a specific wind turbine 

and hydraul i c  energy converter. Simi lar ly ,  the proper power number and 

diameter of a  hydraulic energy converter for a direct drive wind turbine 

energy conversion system may be estimated. 

The system power coefficient simplifies the parametric analysis. 

Physically the density rat io and the diameter rat io are limited and the 

speed rat io should be low t o  minimize transmission losses. I n  th is  

l ight ,  high t ip  speed rat io wind turbines coupled t o  high power number 

energy converters can be compact and generally inexpensive. 

Figure 5.1 shows the parametric relationship of wind turbines 

and hydraulic energy converters. The range of power numbers for each 

geometry i s  superimposed upon the graph as a guide t o  the designer. 

5.1 Design Scheme 

The wind turbine and hydraulic energy converter system will s t a r t  

easily and operate with constant t ip  speed ratio. The self regulating 

feature continues as the wind speed increasesand the power remains a 



function of the w i n d  speed cubed u p  t o  the shut down speed. Should 

the machine be subjected to such high wind speeds tha t  the energy 

converter exceeds the operating rangeathe rotor will overspeed. The 

overspeed and  accompanying increase in t i p  speed ra t io  i s  indicative 

of cavatation within the converter device. 

Clearly some means of turbine shut down i s  necessary. Driving the 

energy converter above the operating region in an e f fo r t  t o  lower 

rotor performance and reduce power has been suggested. Tests of th i s  

concept were unsuccessful. The idea bears merit ,  b u t  i t  necessitates 

high converter wear and  increased centrifugal blade loading. 

Perhaps some means of dynamic braking i s  necessary. Conceivably, 

the energy converter could be oversized with some provision for  adjust- 

ment of the device for  run and brake modes. Essentially the brake mode 

would reduce the rotor t i p  speed ra t io  and the rotor performance t o  

slow the device in high winds. Alternately, a means of blade or blade 

t i p  pitch control could be used to reduce rotor speed. 

Care i s  necessary i n  evaluating the slow down scheme because the 

converter i s  not a brake. The converter i s  a speed dependent damper 

and must rotate  to exert torque. Changing the converter or the wind 

rotor essent ial ly changes the system power coefficient:  tha t  i s ,  the 

system seeks equilibrium a t  a different  rotational speed. Tests show 

that  the rotor can be s ta l led  i n  winds 10 52 t o  30 ms-I and maintained 

a t  slow rotational speed by a hydraul i c  energy converter of twice the 

system power coeff icient .  Only when the wind rotor torque becomes 

zero will the system come t o  rest .  





C H A P T E R  6 

PERFORMANCE EVALUATION OF A SCALE MODEL 

Tests performed a t  the University of Massachusetts Wind Rotor Test 

Facility proved that a wind rotor could drive a hydraulic energy converter. 

This wind energy conversion system s ta r t s  easily a t  low wind speeds, 

perfoms w i t h  speed regulation for  h i g h  efficiency operation, and maintains 

s tabi l i ty  i n  changing winds. 

The ease of starting can be predicted from analytic study of the 

energy converter. Retarding torque i s  due t o  fr ict ion of seals and bearings,, 

viscous shear, and momentum transfer w i t h i n  the f luid a1 1 directly related 

t o  rotatianal speed. The retarding torque a t  s t a r t  up i s  very low and 

increases as  toroidal flow and associated h i g h  f luid velocity enhance 

the mechanism for energy dissipation. 

Automatic speed regulation control s the rotor speed t o  operate a t  

a constant t i p  speed rat io w i t h i n  the operating region. In the operating 

region retarding torque varies as the square of the wind speed so that 

the energy converter loads the rotating wind rotor according to the available 

power, T i p  speed rat io may vary due t o  both f luid density changes within 

the working fluid and non-steady s ta te  operation. 

Mechanical s tabi l i ty  of the system varies with the system parameters. 

Inertia, s t iffness,  and damping of the rotor, energy converter and inter- 

mediate drive train must be considered. The hydraul ic energy converter 

in general provides a soft dynamic coupling with some damping that  makes 

the drive system tend towards stabil i ty.  Stabil i ty of a prototype system 

i s  investigated as part of the tes t  procedure. 



Different internal cl earances between rotor and s t a to r  of the hydraul i c  

energy absorber should a1 low f ine  tuning of the system so tha t  the rotor 

t i p  speed r a t i o  can be optiniized. Tests of several side clearances prove 

the val id i ty  of t h i s  tuning scheme. 

6.1 TEST PROCEDURE 

A hydraulic energy absorber was designed by method of Chapter 5 

to match a 1 . I 2  m diamemter wind rotor which t e s t s  the performance of 

the Wind Furnace Model Four concept. The energy absorber has a torrus 

diameter of .I27 and a power number of .001 necessary to match the design , 
point of 185 w a t  90 r f o r  the three blade rotor described in Figure 6.1. 

The rectangular geometry i s  chosen f o r  the absorber f o r  t h i s  application 

because of material constraints and the necessary power character is t ics .  

Figure 6.2 shows the detail  s of the energy absorber. Note however tha t  

the hydraulic energy absorber shown i n  the drawing i s  designed fo r  a 

2.0 kW rated wind assis ted domestic hot water system and required a1 teration 

to be used with the 185 w rotor a t  the Wind Rotor Test Faci i i t y .  For 

the t e s t s  the blade depth, d , shown in Figure 6.3 was reduced to 4.5 

mm and the calculated power number was estimated to be .001. 

A t e s t  stand was modified t o  accommodate the wind rotor  and permit 

direct  drive through a f lex ib le  coupling to the hydraul i c  energy converter. 

The hydraulic energy converter was placed in trunion bearings and restrained 

in torsion by a force transducer. Rotational speed could be measured 

by means of an optical interupt  and digi tal  count/divide c i r c u i t  detailed 

in Appendix I. Details of the t e s t  device are  shown in Figure 6.4. 



The t e s t  s t a n d  was placed in the t e s t  area of the wind tunnel a t  the 

Wind Rotor Test Facili ty.  Details of the wind tunnel are  shown in Table 

6.5. A p i t o t  tube and slant  tube manometer were used t o  determine the 

a i r  velocity a t  the t e s t  region. Test equipment, origin, and precision 

are tabulated in Table 6.6. 

To randomize experimental error  the wind speed controlled by the 

wind tunnel in le t  vane damper was positioned on a scale according to a 

tab1 e of random numbers. Data including a i r  temperature, barometric pressure, 

manometer height, rotational speed, torque,and variation of each parameter 

for  each damper position were recorded. 

The energy converter dimensions were changed fo r  each t ~ t .  Vane 

depth, and the clearance between rotor and s ta tor  were a1 tered in an ef for t  

t o  maximize the energy conversion of the wind rotor. Theoretical work 

suggests a maximum power coeff icient ,  Cp, of .41 ar. t i p  speed, X, of 5.0 

fo r  the device. 

Losses due to bearing f r ic t ion  and windage are  shown in Figure 6.7 

and working f lu id  density change were considered very small because of 

the small temperature variation of the working f lu id .  In the t e s t s  performed 

the energy absorption i s  given by equation 

where W i s  the work done on the f lu id ,  

rn i s  f lu id  mass, 

C p  i s  f lu id  specific heat a t  constant pressure,and 

dT i s  the change of f l  uid temperature . 
For ma1 1 temperature changes or constant specific heat the equation can 

be written 



where T i s  the change between i n i t i a l  and f inal  temperature . 
Upon substituting values f o r  the energy converter, working f l u i d ,  a n d  

typical work input f o r  an hour of testing the temperature r i s e  within 

the working f lu id  i s  given by 

4 . 5 O C  AT = - hour 

Thus the small temperature change alleviated the need f o r  a cool ing c i r c u i t  , 

to keep the working f lu id  a t  constant density. 

6.2 Results 

Data f o r  t e s t  6-4-79 i s  shown in Table 6.8. The hydraulic energy 

absorber maintains the wind rotor t i p  speed ra t io  a t  4.2 +- . I  over the 

wind velocity range 4. ms-' to 17.ms-' the power coeff icient  i s  approximately 

-29 + .04 over the wind velocity range as  shown by Figure 6 .9 .  Thus the - 
device exhibits automatic speed regulation f o r  constant t i p  speed rat'o 

and reasonable power coefficient.  

Analytic evaluation of the wind rotor predicts optimum performance 

a t  a t i p  speed ra t io  of 5.0 a n d  a power coeff icient  of .41. Unfortunately 

the t e s t s  performed on the rotor were 1 imited t o  a t i p  speed of 4.3 because 

the energy absorber i s  oversized. To achieve the t i p  speed ra t io  of 5.0 

the vane depth must be reduced. A reduction of vane depth was deemed 

inappropriate because the vanes were already sna11ow and further  curting 

might obscure the view of internal flow within the prototy9e energy absorber. 



The inabil i ty to achieve the t i p  speed ra t io  of 5.0 can be at t r ibuted 

to the inaccuracy of the analytical rotor performance, the design procedure 

employed for  the hydraul ic  energy absorber, and inefficiency of the wind  

rotor. The hydraulic energy absorber was designed by means of dynamic 

similarity w i t h  the analytic performance of the w i n d  rotor. The actual 

performance of the system differed from the anticipated performance. However, 

the prototype performance i s  quite close to the predicted performance, 

as shown i n  F i g .  6.9, and i l l u s t r a t e s  the capabil i t ies  and 1 imitations 

of the design procedure. 

The energy converter permitted s t a r t  u p  for a1 1 tested wind speeds 
! 

and quick acceleration to the operating point and a t  no time did the device 

f a i l  to reach the operating speed in less  than 40. seconds. 

Also while changing velocity no overshoot of the t i p  speed ra t io  was evident 

indicating tha t  the system response i s  c r i t i c a l l y  damped. 

I t  i s  possible to f ine  tune the energy converter to constrain the 

wind rotor to a particular t i p  speed ra t io  by adjusting the rotor side 

cl earance. 

6.3 Conclusions and Remarks 

The design procedure that  employs analytic and empirical performance 

of hydraulic energy absorbers and wind rotors may be used to design a 

wind furnace model four prototype. The w i n d  energy conversion system 

w i t h  the hydraulic energy converter s t a r t s  eas i ly ,  maintains speed regujation, 

and is dynarnical ly stab1 e. Manufacturing to1 erances and surface qua1 i t y  

may a l t e r  the design characteris t ics  of the system and a means of t u n i n g  

the system such as  a l ter ing  wind rotor diameter, pitch, or changing the 

energy absorber internal side clearance i s  necessary. 



R O T O R  D E T A I L S  

Diame tt r 

NACA 

T a p e r  

T a p e r  

Blades  

None 





Figure 6.3 VAYE 3ET-iiL 



Figure  6.4 T e s t  3e t a i l  



Table 6 . 5  DETAILS OF TSZ W I N D  ROTC2 TEST FACILITY 

Tunne 1 Open env i ronnen t  t e s t  s e c t i o n  
C o n s t r u c t  i o n  S o n - r e c i r c u l z  t i n g  h o r i s o n 2 a l  f l ow 

Fan 

Motors 

Axial f l o w  Sul ' falo Forge v a r i a b l e  
vane 9itzn 
2 56 Kw 3phase Synchronous 

T e s t  S e c t i o n  Open t h r o a t  i .22m x 1.223 
i .49 $ zrea  

A e r o d ~ p a n i c  Xind v e l o c i t y  o f  t e s t  s e c t l o g  
Data 1-30.5 m s - L  

Turbulence 2nd ax;azsion unknown 
Measurement Fluid manone:zr, g i t o ?  zukes, 
Equipment S t r a i n  :;23e t o rque  t r z n s d u c e r  , 

Opto- in t e rup t  d i g i t a l  c0ur.t d i v i 2 e  
Tachome -cer 



Table  5 ,6  3ETAILS CF TEST 32UIFhiENT 
r I 

I ! 

~STRiiXEi 'Y'? I O R I G I N  i FRECIS ION I 
i 

Manometer 1 2. Vernon  ill / 2 .005m 
I ! 
! / knomete r  I i Gilmont Micro I 2 13 urn 

i Pitat Tube 1 i.zkn?wn 
I i 
1 .15n 4mmp ; 

i 
I I P i t a t  TuSe i i lni ted Sensor  1 

I ?~CbiCl i I 
I 

I 
Bridge Xetsr ; Ellison 

I 

' +  as \ 
! - i n d i c a t a d  
I ! 

I 
I I Tachometer ! sass ,wall7 - -r 1% Max. I 

i I U.Mass ' 7 9  I 1 I 



Fig. 6.7 'Nindage for t e s t  apparatus 
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C H A P T E R  7 

PERFORMANCE EVALUATION OF THE WIND FURNACE MODEL FOUR 

The University of Massachusetts Wind Furnace wind turbine i s  

designed t o  accept a variety of energy conversion schemes. One version, 

1 the Wi nd Furnace Mode1 Four concept, employs a hydraul i c  energy converter 

to convert wind energy t o  heat. The f o l  lowing chapter wi 11 o u t 1  ine a 

general design procedure and present several candidate designs for 

the Wind Furnace Model Four .  

Figure 7.1 i l lus t ra tes  a logical design sequence for  the Wind Furnace 

Model Four Project. Several crossroads exis t  in the sequence because 

parallel research changed the project direction. 

A t  inception the project proposed coupling of a hydraulic energy 

converter or centrifugal pump and manifold t o  convert wind energy t o  

heat for  space heating a n d  domestic h o t  water. The system promised 

automatic speed control and the direct  conversion of wind energy to 

heat. Simplicity and low cost seemed the primary advantages of the 

system while power transmission losses brought about serious questions 

concerning overall efficiency . 
Three design concepts were identified as possible design con- 

figurations for attachment t o  the Wind Furnace. Version A ,  shown i n  

Fig. 7.2, employs ' the Wind Furnace right angle %;seed up drive to  

drive a rotating vertical shaft  attached t o  an energy converter sub- 

mersed in a subterranian heat storage tank. Version 6, shown in 

Fig. 7 .3 ,  placed the energy converter a lo f t  affixed t o  the tower and 

driven by the right angle speed u p  drive. Figure 7.4 shows version 

C w i t h  an a lo f t  energy converter driven directly or by a speed u p  



transrnissi o n ,  from the wind rotor. Version A transmi t s  mechanical 

kinetic energy to the storage medium and versions B and C transport 

thermal energy in heated fluid through coaxial insulated pipe to the 

energy storage tank. 

Candidate designs are eval uated according t o  cost ,  simpl ic i  ty , 

integri ty,  efficiency, special requirements, and safety features. 

Version A costs are presented in Appendix 11. This scheme requires 

a vertical line shaft t o  run the height of a tower that must provide 

access t o  the rotating shaft. A yaw drive or damper i s  a1 so necessary.. 

Low maintenance, high efficiency and use of standard components are 

important advantages of this  device. Susceptibil i  ty to torsional vibra- 

tions are a disadvantage. 

Machine B i s  essentially a hybrid of versions A and C. I t  

incorporates the right angle drive and the yaw driver as well as the 

coaxial piping. Thermal losses and the necessity for yaw drive are 

primary disadvantages of thi s system, cost of main components i  s 

ou t1  ined i n  Appendix D. 

Version C offers the greatest simpl ici ty.  A cost smmary for  

this  device i s  shown i n  Appendixn. Disadvantages of th is  scheme 

include thermal losses and necessity of a swivel f luid union between 

the fixed coaxial tube and the yawing wind turbine. 

Version C i s  chosen because of low cost and simplicity. This 

machine could operate with only 2 moving parts i f  the wind rotor and 

energy converter are direct  drive. Unfortunately thermal losses 

may make cold and calm days unproductive. 
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7.1 The Water Twister 

r@ A Water Twiste dynamometer device of the culver2 design manu- 

factured by All American Engineering Company, Wilmington, Delaware was 

tested to determine i f  the device could be matched t o  the Wind Furnace. 

Results of the t e s t  are shown in Figure 7. j. The data suggest a 

P power number of .026 fo r  the Water Twi s t e  Model 12. A transmission 

speed ra t io  of 4.1 i s  required to match the device with the wind 

turbine rotor. 

Figure 7.5 shows the speed performance of larater Twister @ 
devices. 

7 . 2  The Wind Furnace Model Four 

Careful analysis suggests that  a d i rec t  drive wind turbine and 

hydraulic energy converter device can be a very simple system. An 

energy converter of the Froude or Reynolds geometry of ,457 in (18 inch) 

diameter can match the performance gf the Wind Furnace wind rotor. 

Figure 7.6 depicts the primary system components. 
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RECOMMEW DATIONS AND COKCLUSIONS 

The Wind Furnace Model Four can readily convert the kinetic energy 

of the w i n d  to  heat. The device i s  self-contained and self-regulated 

and allows a s ignif icant  materials savings above wind e l ec t r i c  systems. 

The design process outlined here required accurate data for  b o t h  

wind  rotor and energy absorber. S t i l l ,  some means of f ine  tuning the 

wind energy conversion device should be incorporated to achieve maximm 

perf omance. 

In general hydraul i c  energy absorbers should be coup1 ed w i t h  

h i g h  t i p  speed r a t i o  wind rotors with broad t i p  speed power curves. 

This t i p  speed tolerant  combination will insure h i g h  system efficiency 

despite changes i n  the working f lu id  and power character is t ics .  

Future studies on dynamic behavior of the Wind Furnace Model Four 

m i g h t  investigate the dynamics of mechanical elements and the detailed 

themal efficiency of the system. More data from circular  and e l l i p t i c  

geometry energy converters may be necessary to complete the study. 

A1 t h o u g h  no detailed economic study i s  availab70,the overall 

simp1 ic i  t y  of the blind Furnace Model Four may provide s ignif icant  

cost savings above the wind e l ec t r i c  systems. Through system 

model i n g ,  careful cost estimates, and wind rescwce data,  a 

thorough e~~momics analysis can be performed. O f  course, the 

true economics can o n l y  be ascertained through construction and 

operation of the Mind Furnace Model Four. 
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A P P E N D I X  I I 

WIND FURNACE IV CANDIDATES 

A .  Version A 

1. Costs 

2. Diagram 

B. Version 0 

1. Costs 

C. Version C 

1. Costs 

2 .  Water Twister with Planetary Transmission 

3. Diagram, Proposed Wind Assisted Electric Hot Water System 

4. Tower Costs 

5. Tower Assembly 
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APPENDIX I 1 1  

WATER TWISTER 0 

A. Comparison of Tes t  Data For Two Devices of I d e n t i c a l  I n t e r n a l  

Dimensions. 
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B. Thermal L o s s  In Coaxial Tubing hiodeled As .A 
Coun te r  Flow Xeat Zxchanger 
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