
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

National Center for Digital Government Research Centers and Institutes

2-1-2007

Identifying Success and Tragedy of FLOSS
Commons: A Preliminary Classification of
Sourceforge.net Projects
Robert English
University of Massachusetts Amherst

Charles M. Schweik
University of Massachusetts Amherst

Follow this and additional works at: http://scholarworks.umass.edu/ncdg
Part of the Computer Sciences Commons, Political Science Commons, and the Science and

Technology Studies Commons

This Research, creative, or professional activities is brought to you for free and open access by the Research Centers and Institutes at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in National Center for Digital Government by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

English, Robert and Schweik, Charles M., "Identifying Success and Tragedy of FLOSS Commons: A Preliminary Classification of
Sourceforge.net Projects" (2007). National Center for Digital Government. Paper 29.
http://scholarworks.umass.edu/ncdg/29

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/centers?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/386?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg/29?utm_source=scholarworks.umass.edu%2Fncdg%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Identifying Success and Tragedy of FLOSS Commons:
A Preliminary Classification of Sourceforge.net Projects

Robert English
Center for Public Policy and Administration,

University of Massachusetts,
Amherst, MA USA

bobengl@gmail.com

Charles M. Schweik
Department of Natural Resources Conservation

and Center for Public Policy and
Administration, University of Massachusetts,

Amherst, MA USA
cschweik@pubpol.umass.edu

NCDG Working Paper No. 07-002

Submitted February 2, 2007
Updated November 1, 2007

Note: The original published paper was presented at the First International Workshop on Emerging Trends in FLOSS
Research and Development that is part of the 29th Int. Conference on Software Engineering, in Minneapolis, MN, on May
21st, 2007. It can be cited as:

English, R. and Schweik, C.M. "Identifying Success and Tragedy of Free/Libre and Open Source (FLOSS) Commons: A
Preliminary Classification of Sourceforge.net projects." Proceedings of the First International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS'07: ICSE Workshops 2007), 20-26 May, Minneapolis, Minnesota.

This version is essentially the same paper as the above, but we have made some slight improvements/adjustments to
Tables 1 and 3 in this paper based on feedback and some continued work we have done with the database used in this
project.

Support for this study was provided by a grant from the U.S. National Science Foundation (NSFIIS 0447623). The National
Center for Digital Government working paper series is supported by the National Science Foundation under grant number
0131923. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation.

Identifying Success and Tragedy of FLOSS Commons:
A Preliminary Classification of Sourceforge.net Projects

(November 1, 2007 Version)

Abstract

Free/Libre and Open Source Software (FLOSS) projects are a form of commons where individuals
work collectively to produce software that is a public, rather than a private, good. The famous phrase
“Tragedy of the Commons” describes a situation where a natural resource commons, such as a
pasture, or a water supply, gets depleted because of overuse. The tragedy in FLOSS commons is
distinctly different -- it occurs when collective action ceases before a software product is produced or
reaches its full potential. This paper builds on previous work about defining success in FLOSS
projects by taking a collective action perspective. We first report the results of interviews with FLOSS
developers regarding our ideas about success and failure in FLOSS projects. Building on those
interviews and previous work, we then describe our criteria for defining success/tragedy in FLOSS
commons. Finally, we discuss the results of a preliminary classification of nearly all projects hosted
on Sourceforge.net as of August 2006.

1. Introduction

Free/Libre and Open Source Software projects
(FLOSS) are recognized as Internet-based commons
[1,13,15]. Since 1968, when the famous article “Tragedy
of the Commons” by Garrett Hardin was published in the
journal Science, there has been significant interest in
understanding how to manage commons appropriately.
Hardin's work, and much of the work that followed,
focused on commons management in the natural
environment. And in these commons, the “tragedy”
Hardin described was over-harvesting and destruction of
the resource, whether it be water, fish stock, forests, or
our atmosphere. In FLOSS commons the “tragedy” is
different; what developers hope to avoid is project
abandonment and a “dead” project. In order for FLOSS
projects to avoid tragedy and be successful, the collective
action involved (or attempts at collective action in the
case of projects with one participant) must be sustained at
least until a software product has been produced.
Discovering how FLOSS projects sustain collective
action to produce useful software may have important
implications for improving our understanding of FLOSS
software development as well as computer-mediated
collective action more generally [14,15].

In recent years, scholars have investigated different
approaches to measuring the success and failure of
FLOSS projects. For example, studies [2,3,7,11,16]
measured FLOSS project “life” or “death” by monitoring
project activity measures such as: (1) the release
trajectory (e.g., movement from alpha to beta to stable
release); (2) changes in version number; (3) changes in
lines of code; (4) the number of “commits” or check-ins
to a central storage repository, and (5) activity or vitality
scores measured on collaborative platforms such as SF
and Freshmeat.net. Weiss assessed project popularity
using web search engines [17]. And most recently,
Crowston, Howison and Annabi reviewed traditional
models used to measure information systems success and
then adapted them to FLOSS [4]. They collected data
from Sourceforge.net (SF) and measured community size,
bug-fixing time and the popularity of projects.

In this paper, we are trying to build on these studies by
defining success and tragedy of FLOSS commons from
the perspective of successful collective action. The
section that follows this one describes interviews we
conducted with FLOSS developers to get feedback on our
ideas about defining success. Next, in the “Success and
Tragedy Classification System” section, we define a 6-
stage classification system of success and tragedy of

FLOSS commons based on information gained from these
interviews, as well as previous literature and our own
earlier work studying FLOSS. In the “Operationalizing
the Classification System” section, we describe our
efforts in building a dataset which combines much of the
August 2006 data available from the FLOSSmole project
(described below) and data we gathered ourselves
through automated data mining of the SF website. This
section then describes how we operationalized our
proposed success/tragedy classes using this dataset. The
“Results” section discusses our preliminary classification
of nearly all projects hosted on SF as of August 2006. We
conclude the paper with some next steps.

2. FLOSS Developer Opinions on Success
and Failure

We conducted eight interviews [18] with FLOSS
developers between January and May of 2006 to get
opinions about the independent variables we thought
important to FLOSS project success and to get their
thoughts about our definitions of success and tragedy.
Because we wanted input from a diversity of projects, we
stratified our sampling by the number of developers in the
project. We created categories of projects with <5, 5-10,
11-25 and >25 developers and interviewed developers
from two projects in each category. Interviews were
conducted over the phone, digitally recorded, transcribed
and analyzed using Transana 2 (http://www.transana.org).

Interviews consisted of about sixty questions and took
approximately one hour. Among other things, we asked
interviewees how they would define success in a FLOSS
project. Interviewees responded with five distinct views.
One defined success in terms of the vibrancy of the
project’s developer community. Three defined FLOSS
success as widely used software. Two others defined
success as creating value for users. One developer cited
achieving personal goals, and the last interviewee felt his
project was successful because it created technology that
percolated through other projects even though his project
never produced a useful standalone product.

Immediately after asking interviewees about success,
we asked how they would define failure in a FLOSS
project. Interestingly, all eight developers said that failure
had to do with a lack of users and two indicated that a
lack of users leads to project abandonment. In a probing
question that followed, we asked if defining a failed
project as one that was abandoned before producing a
release seemed reasonable. Four interviewees flatly
agreed, three agreed with reservations and one disagreed.
Two of those with reservations raised concerns about the
quality of the release. For example, one project might not
make its first release until it had a very stable, well
functioning application while another project might

release something that was nearly useless. Another
interviewee had concerns about how much time could
pass before a project was declared abandoned. One
developer argued that a project that was abandoned
before producing a release could be successful from the
developer’s point of view if he had improved his
programming skills by participating. The dissenting
developer felt that project source code would often be
incorporated into other FLOSS projects and would not be
a failure even if no release had been made.

So, how do these responses inform working definitions
of success and tragedy? Because we view FLOSS
projects as efforts in collective action with the goal of
producing public good software, defining success in
terms of producing a useful software product makes
sense, and our interviewees seem to agree. Six of the
eight interviewees suggested that success involves
producing something useful for users. Since the real
tragedy for a FLOSS project involves a failure to sustain
collective action to produce, maintain or improve the
software, defining failure in terms of project
abandonment makes sense, and generally, our
interviewees agreed. Treating the first release as a
milestone or transition point between what we refer to as
the “Initiation Stage” and the project “Growth Stage” [13,
18] emerges logically from this line of thinking. All in all,
these interviews supported our initial thinking about
project success and tragedy.

3. A Success/Tragedy Classification System
for FLOSS Commons

After conducting the interviews and considering the
results, we developed a six-class system for describing
success and tragedy of FLOSS projects across two
longitudinal stages of Initiation and Growth (Table 1). In
previous work [13, 18] we defined “Initiation” as the start
of the project to its first public release, and “Growth” as
the period after this release [13, 18].

Therefore, a project is classified as (1) Success in the
Initiation Stage (SI) when it has produced “a first public
release.” This can be easily measured for projects hosted
at SF because SF lists all a project’s releases. A project
that is successful in the initiation phase automatically
becomes an indeterminate project in the growth phase.

Projects are classified as (2) Tragedy in the Initiation
Stage (TI) when the project is abandoned before
producing a first public release. We define abandonment
as few forum posts, few emails to email lists, no code
commits or few other signs of project activity over a one-
year period. Preliminary data we have analyzed from SF
indicates that projects in Initiation that have not had a
release for a year are generally abandoned (see the
discussion of the “test sample” below)

A project is considered a (3) Success in the Growth
Stage (SG) when it exhibits “three releases of a software
product that performs a useful computing task for at least
a few users (it has to be downloaded and used).” We
decided that the time between the first release and the last
release must be at least six months because a “growth
stage” implies a meaningful time span. As mentioned
above, we can easily measure the number of releases and
the time between them since SF tracks this information.
Measuring “a useful computing task” is harder and clearly
more subjective. Acquiring the number of downloads
recorded on project websites is probably the easiest
measure, with the assumption that many downloads
captures the concept of utility.

A project is considered a (4) Tragedy in the Growth
Stage (TG) when it appears to be abandoned without
having produced three releases or when it produced three
releases but failed to produce a useful software product.

We classify a project as (5) Indeterminate in the
Initiation Stage (II) when it has yet to reveal a first public
release but shows significant developer activity.

Finally, projects are assigned (6) Indeterminate in the
Growth Stage (IG) when they have not produced three
releases but show development activity or when they have
produced three releases over less than six months.

4. Operationalizing the Classification System

As a first step in operationalizing our definitions for
FLOSS success and tragedy, we conducted a random test
sample of sixty projects hosted on SF using April 2005
FLOSSmole data [5]. The FLOSSmole project is itself an
open source-like project where researchers and others
collaborate to collect and analyze data about FLOSS. The
data is collected by automated “crawling” or “spidering”
of SF and other open source hosting sites. We decided to
conduct this test sample from the FLOSSmole database to
look for problems with our classification scheme and to
get some idea about the number of projects likely to fall
within each of the classes. Following the logic used in our
FLOSS developer interviews and knowing we wanted to
study projects with larger numbers of developers because
of their more interesting collective action issues, we
stratified by number of developers into categories of <10,
10-25 and >25 developers. We randomly sampled twenty
projects from each category for a total of sixty projects.
We chose 20 projects because it was a reasonable
undertaking given time constraints and because twenty
projects per category provided a standard error of plus or
minus 22% with 95% probability for a binomial
distribution. (Note: Because a project is either successful
or failed, and is either in the Initiation or Growth stage,
the sample is a binomial distribution for these categories.)
For these sixty sampled projects, we manually compiled
data on project registration, last release date, number of

downloads, project website URL and forum/email/
postings among other data. From this data, we made a
judgment about whether the software was “useful” and
whether the project was abandoned. We classified the
projects as SI, TI, SG or TG (see code definitions in the
previous section) based on this information. We found no
indeterminate cases in this sample.

Perhaps the most important information we acquired
from the test sample is that the vast majority of projects
that have not had a release for a year are abandoned. All
27 projects in the sample that (1) had not provided a
release in over a year and (2) had less than three releases
were abandoned. This finding suggested that we could
produce a relatively simple but approximately accurate
classification by using a project’s failure to release within
a year as a proxy for abandonment.

Table 1: Six FLOSS success/tragedy classes and

their methods of operationalization
Class/

Abbreviation
Definition(D)/Operationalization(O)

Success,
Initiation (SI)

D: Developers have produced a first
release.
O: At least 1 release (Note: all projects in
the growth stage are SI)

Tragedy,
Initiation (TI)

D: Developers have not produced a first
release and the project is abandoned
O: 0 releases AND >=1 year since SF
project registration

Success,
Growth (SG)

D: Project has achieved three meaningful
releases of the software and the software
is deemed useful for at least a few users.
O: 3 releases AND >= 6 months between
releases AND does not meet the download
criteria for tragedy detailed in the TG
description below.

Tragedy,
Growth (TG)

D: Project appears to be abandoned before
producing 3 releases of a useful product
or has produced three or more releases in
less than 6 months and is abandoned.
O: 1 or 2 releases and >=1 year since the
last release at the time of data collection
OR < 11 downloads during a time period
greater than 6 months starting from the
date of the first release and ending at the
data collection date OR 3 or more releases
in less than 6 months and >= 1 year since
the last release.

Indeterminate
Initiation (II)

D: Project has no public release but has
significant developer activity
O: 0 releases and < 1 year since project
registration

Indeterminate
Growth (IG)

D: Project has not yet produced three
releases but shows development activity

Class/
Abbreviation

Definition(D)/Operationalization(O)

or has produced 3 releases or more in less
than 6 months and it has been less than 1
year since the last release.
O: 1 or 2 releases and < 1 year since the
last release OR 3 releases and < 6 months
between releases and < 1 year since the
last release

Naturally, operationalizing the definitions for success
and tragedy measures had much to do with the
availability of data. We chose to use the August 2006 data
spidered from SF because it was the latest data available
at the time we did our classification. This data has a total
of 119,590 projects, but 235 of these projects are missing
essential data leaving 119,355 projects. Although
FLOSSmole had much of the data we needed for
operationalizing our classification scheme, the data on the
number of releases and the dates of the first and last
release were not available. Consequently, we spidered
that data ourselves between September 24, 2006 and
October 16, 2006. Of the 119,355 projects, 8,422 projects
had missing data or had been deleted from SF (SF
occasionally purges defunct projects) between the August
2006 and the time we collected our data. The result: we
have valid data for 110,933 projects. Based on our
definitions described earlier, and the added information
we gained from the test sample, we undertook a
preliminary classification of SF projects as described in
Table 1.

5. Results

Table 2 provides the number of SF projects classified
by the two longitudinal stages: Initation and Growth. It
also reports projects that could not be classified. Table 3
summarizes our results of our preliminary success and
tragedy classification of all projects on SF and potential
sources of error in our classifications.

We believe that the classification above is informative
despite the possibility of classification errors (listed in the
third column of Table 3). Potential classification errors
stem primarily from two sources:

Source 1 Error- using one year without a release as a
proxy for abandonment.

Source 2 Error - using the number of downloads per
month as a proxy for the software being useful.

Regarding Source 1 Error, our test sampling indicated
with 95% probability that at most 22% of projects with
less than 3 releases will turn out not to have had a release
within a year and yet not be abandoned thus suggesting
an upper bound for many abandonment errors.

As for Source 2 Error, some projects classified as TG
may be useful and have met the download criteria for
tragedy or, on the other hand, some projects classified as

SG may be useless and have not met download criteria for
tragedy. Because our definition of SG is broad (the
software performs a useful computing task for some
number of users), we don’t expect this error to be large.
In other words, we expect that the vast majority of SG
projects have produced something useful. Only 62
projects were classified as TG because they met the
download criteria for Growth Stage tragedy in Table 1.

In terms of improving our classification, abandonment
could be more precisely measured by (1) no code
“commits” or changes in lines of code in the concurrent
versioning system (CVS) or other repository over the
course of a year, or (2) little or no activity on developer e-
mail lists and forums over the course of a year. Measures
to improve our estimation of whether the software is
useful could include: (1) a content analysis on utility of
the software on data collected from user forums, e-mail
archives or even web searches; (2) more carefully
constructed download criteria that takes the life of the
project and the availability of download data for different
time periods into consideration. In addition, some
projects make more than one release on a single day, thus
bringing the criteria for three releases into question. We
have data that will allow us to examine the time between
each release and possibly refine the definition of the three
release criteria, but this is yet to be done. Moreover,
projects with websites not hosted on SF and no file
releases or downloads on SF are currently not classified.
We hope to address these issues in future work.

Table 2: Sourceforge.net projects organized by

longitudinal stage (as of August 2006)
Stage # of Projects (% of Total classified)

Initiation Stage 50,662 (47)

Growth Stage 57,085 (53)

Not classified 3,186*

Total classified 107,747

* These are valid projects, but could not be classified
because they have 0 releases & downloads on SF but

have other websites that may be used for these functions.

Table 3: Preliminary classification of all FLOSS
projects on Sourceforge.net (as of August 2006)
Class # of Projects

(%of Total)
Possible Classification Errors

(other than errors in the SF data)
TI 37,320 (35) The project is not abandoned but

> 1 year old

SG 15,782 (15) The software is not used in spite
of not meeting the download
criteria for tragedy

Class # of Projects
(%of Total)

Possible Classification Errors
(other than errors in the SF data)

TG 30,592 (28) The project is not abandoned;
OR The project produced useful
software even though it met the
download critera for tragedy

II 13,342 (12) No classification errors (by
definition)

IG 10,711 (10) No classification errors (by
definition)

Total 107,747

Note: SI is not listed because these successes are Growth
Stage projects. Including SI would double count.

6. Conclusion

Our most immediate task now is to validate the
classification described above. We plan to sample a large
enough number of projects to empirically establish the
accuracy of our classification within a few percent. Our
long-term goal is to use this classification as a dependent
variable for quantitative models that investigate factors
that lead to success and tragedy in FLOSS in the two
stages of Initiation and Growth. We expect influential
factors to be different in these two stages [13, 18].

Despite the shortcomings of this classification system
described in Section 5, we chose to publish preliminary
results of our efforts in the spirit of “release early and
often” and because defining and classifying success in
FLOSS projects is so important to many FLOSS research
projects. In the near future, we plan to release the data we
collected and our classifications on the FLOSSmole site.
We hope that in the tradition of open source collaboration
other researchers will build on this work by correcting
any perceived “bugs” in our approach and collecting
additional data to improve classification accuracy.

7. Acknowledgments

Support for this study was provided by a grant from
the U.S. National Science Foundation (NSFIIS 0447623).
However, the findings, recommendations, and opinions
expressed are those of the authors and do not necessarily
reflect the views of the funding agency. Thanks go to
Megan Conklin, Kevin Crowston and the FLOSSmole
project team (http://ossmole .sourceforge.net/) for making
their Sourceforge data available, and for their assistance.
We are also grateful to Thomas Folz-Donahue for
programming work building our FLOSS project database.

8. References

[1] Bollier, D., Silent Theft: The Private Plunder of Our
Common Wealth, Routledge, London, 2002.

[2] A Capiluppi, P. Lago, and M Morisio,. “Evidences in the
Evolution of OS projects through Changelog Analyses,” In J.
Feller, B. Fitzgerald, S. Hissam, and K. Lakhani (eds.) Taking
Stock of the Bazaar: Proceedings of the 3rd Workshop on Open
Source Software Engineering, 12 Dec. 2006;
http://opensource.ucc.ie/ icse2003.

[3] K. Crowston, H. Annabi, and J. Howison, “Defining Open
Source Project Success,” In Proceedings of the 24th Int.l
Conference on Information Systems, ICIS, Seattle, 2003.

[4] K. Crowston, J. Howison, H. Annabi, “Information Systems
Success In Free And Open Source Software Development:
Theory And Measures,” Software Process Improvement and
Practice, v 11, n 2, March/April, 2006, pp. 123-148.

 [5] FLOSSmole, “sfProjectInfo06-Apr-2005,” 16 June 2005;
http://sourceforge.net/project/showfiles.php?group_id=119453
&package_id=132043/.

[7] S. Hissam, C. B. Weinstock, D. Plaksoh, and J. Asundi,.
Perspectives on Open Source Software. Technical report
CMU/SEI-2001-TR-019, Carnegie Mellon University. 10 Jan.
2007,
http://www.sei.cmu.edu/publications/documents/01.reports/
01tr019.html.

[11] M. Robles, G. Gonzalez,- J.M. Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino,
“Studying the Evolution of Libre Software Projects Using
Publically Available Data,” In J. Feller, B. Fitzgerald, S.
Hissam, and K. Lakhani (eds.) Taking Stock of the Bazaar:
Proceedings of the 3rd Workshop on Open Source Software
Engineering, 12 Dec. 2006. http://opensource.ucc.ie/icse2003.

[13] C. Schweik, “An Institutional Analysis Approach to
Studying Libre Software ‘Commons’”, Upgrade: The European
Journal for the Informatics Professional, 10 Jan. 2007,
http://www.upgrade-cepis.org/issues/2005/3/up6-3Schweik.pdf.

[14] C. Schweik, T. Evans and J. Grove, “Open Source and
Open Content: A Framework for Global Collaboration,” in
Social-Ecological Research. Ecology and Society 10 (1): 33. 10
Jan. 2007, http://www.ecologyandsociety.org/vol10/iss1/ art33/.

[15]C. Schweik, “Free / Open Source Software as a Framework
for Scientific Collaboration,” In Hess, Charlotte, and Elinor
Ostrom, eds. Understanding Knowledge as a Commons: From
Theory to Practice, MIT Press, Cambridge, Mass, 2007.

[16] K. J. Stewart, and T. Ammeter, “An Exploratory Study of
Factors Influencing the Level of Vitality and Popularity of Open
Source Projects,” In L. Applegate, R. Galliers, and J.I. DeGross
(eds.) Proceedings of the 23rd International Conference on
Information Systems, Barcelona, 2002, pp. 853-57.

[17] D. Weiss, “Measuring Success of Open Source Projects
Using Web Search Engines,” Proceedings of the First
International Conference on Open Source Systems, Genova,
11th-15th July 2005. Marco Scotto and Giancarlo Succi (Eds.),
Genoa, 2005, pp. 93-99

[18] C. Schweik and R. English, “"Tragedy of the FOSS
Commons? Investigating the Institutional Designs of Free/Libre
and Open Source Software Projects," FirstMonday. 28 Feb.
2007, http://www.firstmonday.org/issues/issue12_2/schweik/.

http://www.firstmonday.org/issues/issue12_2/schweik/

	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	2-1-2007

	Identifying Success and Tragedy of FLOSS Commons: A Preliminary Classification of Sourceforge.net Projects
	Robert English
	Charles M. Schweik

