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ABSTRACT 

BIORETENTION SYSTEMS FOR CONTROL OF NON-POINT SOURCES OF 
NITROGEN 

 
JUNE 2008 

 
RYAN L. SIEGEL, B.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 
M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 
 

Directed by: Dr. Sarina J. Ergas 
 
 

Environmental protection programs have successfully improved water quality over the 

past few decades through the control of point sources of nitrogen.  However, control of 

non-point sources of nitrogen, such as atmospheric deposition, leaking septic systems, 

runoff and agricultural runoff, has lagged.  There is unanimous agreement that arresting 

nitrogen influxes into aquatic ecosystems is essential to control eutrophication.  

Protecting drinking water sources from elevated levels of nitrate and nitrite nitrogen 

from non-point sources is also necessary to protect public health.  Elevated levels of 

nitrate and nitrite in drinking water are known to cause methemoglobinemia (blue-baby 

syndrome) in infants.   

 

The overall objective of this research project was to develop a robust and efficient 

bioretention system to control non-point sources of nitrogen.  Two pilot-scale 

denitrifying bioretention systems were investigated, one was configured for autotrophic 

denitrification (S:OS unit) and the other was configured for heterotrophic denitrification 

(Denyte unit).  The experimental program tested the performance of the bioretention 
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units under both laboratory and field conditions.  A synthetic stormwater, intended to 

mimic nitrogen levels in runoff from agricultural croplands, was utilized as the influent 

during laboratory testing.  Water from a waste treatment lagoon located at a dairy farm 

in Northeastern CT was used as the  influent during field testing. 

 

Laboratory testing resulted in an average of 63% (S:OS) and 93% (Denyte) TP removal, 

92% and 88% TN removal, 80% and 88% NH4
+ removal and >95% (S:OS and Denyte) 

NO3
- removal.  Typical field results showed an average of 68% (S:OS) and 62% 

(Denyte) TP removal, 55% and 42% TN removal, , 88% and 73% TSS removal, 89% 

and 75% VSS removal, 43% and 35% COD removal, and 65% and 34% BOD5 removal.  

Breakdown of particulate organic N and ammonification appeared to limit the extent to 

which TN removal could be achieved during the field testing of the bioretention units.   

 

The results of this research project demonstrate that bioretention units can be used to 

achieve nitrogen removal from stormwater runoff.  However, the characteristics of the 

stormwater runoff will dictate the performance of the bioretention units.  Laboratory 

results showed that bioretention units can achieve excellent TN removal from runoff that 

is characteristic of agricultural croplands.  Field results showed that the treatment of high 

strength runoff from dairy farm waste treatment lagoons was challenging for the 

bioretention units.  Comparison of results revealed that the Denyte unit performed better 

than the S:OS unit. 
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CHAPTER 1:     INTRODUCTION  

Environmental protection programs have successfully improved water quality over the 

past few decades through point source pollution control.  However, aquatic ecosystems 

remain impaired, primarily due to the complex pollution problems caused by non-point 

sources of pollution (USEPA, July 2003).  Non-point source pollution, unlike point 

sources of pollution such as industrial and sewage treatment plants, comes from many 

diffuse sources (USEPA, March 2005) including atmospheric deposition, leaking septic 

systems, urban runoff and agricultural runoff. 

 

In 1998, approximately 32% of U.S. surface waters were assessed for water quality 

(USEPA, 2000).  Of the waters assessed, approximately 40% of U.S. streams, lakes and 

estuaries were not clean enough to support uses such as fishing and swimming.  Non-

point sources of pollution were the most prevalent cause for impairment of the evaluated 

waters.  Sediment, bacteria, nutrients and metals were found to be the leading pollutants, 

while runoff from agricultural lands and urban areas were the primary sources of these 

pollutants.  Runoff from agricultural land occurs when water from precipitation and/or 

snowmelt travels across the land and/or building surfaces and is conveyed to nearby 

surface waters.  Runoff can also be incorporated into groundwater through the process 

of infiltration.  Pollutants are often integrated into agricultural runoff, which becomes a 

non-point source of pollution.   

 

Nutrients, animal wastes, sediment, salts and pesticides are the primary pollutants 

associated with agricultural runoff (USEPA, January 1993).  Nitrogen and phosphorus 
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are the two major nutrients often transported with agricultural runoff.  Sources of 

nitrogen and phosphorus in agricultural runoff include commercial fertilizers, animal 

wastes, crop residues and atmospheric deposition.  The term animal waste includes 

manure, urine, process waters, feed and bedding materials. Agricultural runoff can be 

polluted by coming into contact with one or more of the animal waste components.  

Sediment is incorporated into agricultural runoff due to the process of erosion.  The 

presence of salts in agricultural runoff is due to the natural weathering process of soil 

and geologic material.  Agricultural runoff can also transport pesticides (and their by-

products), which are widely used to control plant pests and improve plant production 

(USEPA, 1993).   

 

The focus of this project is the control of nitrogen in agricultural runoff, which is a 

concern due to its contributions to eutrophication.  Nitrogen can also be a public health 

concern if incorporated into a drinking water supply.  Elevated levels of nitrogen in the 

form of nitrate and/or nitrite in drinking waters are known to cause methemoglobinemia 

in infants (USEPA, July 2003).  Eutrophication occurs when nutrients are introduced at 

higher than background levels into an aquatic environment, resulting in a dramatic 

increase in aquatic plant growth.  Eutrophication degrades water quality due to excessive 

plant growth and depletes aquatic life.  The adverse effects that agricultural runoff can 

have are difficult to minimize through treatment of the runoff due to its non-point source 

characteristics.  However, proper management along with stormwater runoff control and 

treatment technologies can help diminish the extent of non-point source pollution from 

agricultural sources.   
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Reducing the load of a certain pollutant at its source is one method of proper 

management that can reduce the effects of non-point source pollution.  For example, a 

farmer can create a nutrient management plan that specifies the proper amount of 

fertilizer to apply to a crop to meet the nutrient needs of that crop.  This can reduce the 

nutrient load in runoff that occurs from excess fertilization of cropland.  Management by 

itself can not completely address the problems of agricultural runoff.  Control of 

stormwater runoff along with treatment technologies, often called best management 

practices (BMPs), is sometimes necessary when management alone cannot reduce the 

non-point source pollution to an acceptable level.  BMPs are often site specific 

technologies, meaning that one BMP might work well at one site but might not be the 

best option at a different site.  The following are some BMPs that can be used by 

agricultural operations to diminish their contributions to non-point source pollution: 

 Sedimentation Basins; 

 Treatment Lagoons and Storage Ponds; 

 Constructed Wetlands; 

 Vegetative Filter Strips; and 

 Bioretention Systems (proposed in this research). 

 

Selection of the proper BMP for a certain site can depend on many factors such as 

treatment goals, land availability, cost and cost effectiveness of the BMP.  In order to 

reduce non-point source pollution, appropriate BMPs need to be available to treat a wide 

variety of pollutants under a wide variety of conditions.  BMPs have proven to be 
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effective at treating a wide variety of stormwater pollutants.  However, little information 

is available on the performance and optimization of stormwater BMPs for the control of 

nitrogen. 

1.1 Research Objectives 

The overall objective of this research project was to develop a robust and efficient 

bioretention system to control non-point sources of nitrogen.  Specific objectives 

include: 

 Design and construction of bioretention systems to achieve total nitrogen 

removal; 

 Acclimate system for optimal performance; and  

 Evaluate the bioretention systems operation and performance under both 

controlled laboratory and field conditions. 

1.2 Scope of Work 

Two pilot-scale denitrifying bioretention systems were designed to include; a ponding 

region, a mulch region, a top soil region, a nitrification region and a denitrification 

region, as shown in Figure 1.1.  The only difference between the two bioretention 

systems was their denitrification region.  One was used to carry out autotrophic 

denitrification by supplying the denitrification region with an inorganic electron donor 

while the other was used to carry out heterotrophic denitrification by supplying the 

denitrification region with an organic electron donor.  The evaluation of the operation 

and performance of the two bioretention systems was carried out in a three phase 

experimental program.  The objective of Phase I was to design, construct and acclimate 
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the two bioretention systems.  In Phase II, the bioretention systems were set-up in the 

laboratory and evaluated under controlled conditions using a synthetic stormwater as the 

influent, intended to mimic nitrogen levels contained in runoff from agricultural 

croplands.  The objective of Phase III was to investigate the performance of the 

bioretention systems under field conditions.  Water from a waste treatment lagoon at a 

dairy farm in Northeastern CT was used as the  influent during Phase III. 

 
Figure 1.1: Bioretention System Schematic  

(dimensions in inches) 
 

Throughout this research project, the evaluation of the two bioretention units was 

conducted through laboratory analysis of influent and effluent samples.  The performance 
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of the two bioretention units was based on their ability to treat various pollutants 

including nutrients (N & P), organic matter, sediment and metals.  However, the major 

pollutant of concern was nitrogen since the overall goal of the bioretention units was 

nitrogen removal. 

 
 



 

 7 
 

CHAPTER 2:     LITERATURE REVIEW 

This literature review begins with an overview of the health and environmental impacts 

of excess nitrogen inputs into aquatic environments.  The components of the nitrogen 

cycle related to this research project are discussed in detail.  The sources and concerns of 

the primary pollutants associated with agricultural runoff are discussed.  Agricultural 

runoff treatment technologies that are deployed to reduce the non-point source pollution 

from agricultural runoff are presented.   

2.1 Health and Environmental Impacts of Excess Nitrogen 

Although nitrogen is an essential element for plants, animals and microorganisms it can 

have detrimental affects on human health.  Elevated levels of nitrogen in the form of 

nitrate (NO3
-) and/or nitrite (NO2

-) in drinking waters are known to cause 

methemoglobinemia (also known as blue baby syndrome) in infants.  When NO3
- is 

consumed it can be microbially reduced to NO2
- within the human body which in turn can 

transform the oxygen binding hemoglobin into non-oxygen binding methemoglobin 

(Fewtrell, 2004).  Elevated levels of methemoglobin lead to insufficient levels of oxygen 

in the bloodstream.  To protect human health, the United States Environmental 

Protection Agency (USEPA) has set the drinking water maximum contaminant level 

(MCL) at 10 mg/L and 1mg/L (as nitrogen) for NO3
- and NO2

-, respectively.   

 

Along with human health concerns, the influx of various forms of nitrogen can also have 

detrimental affects on aquatic ecosystems.  A decrease in dissolved oxygen (DO) 

concentrations, fish toxicity and eutrophication are all water quality concerns associated 
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with nitrogen (Metcalf and Eddy, 2003).  When nitrogen in the form of ammonium 

(NH4
+) enters aquatic ecosystems, the DO concentration can be depleted due to the 

oxygen demanded when NH4
+ is converted to NO3

- through the process of nitrification.  

Dissolved NH4
+ can also be toxic to fish, especially trout, at concentrations above 0.2 

mg/L (USEPA, 2003).  In aquatic environments, nutrient availability (i.e. nitrogen and 

phosphorus) usually limits plant growth.  When nutrients are introduced into a stream, 

lake, or estuary at elevated levels, aquatic plant production may increase dramatically. 

This process is known as eutrophication.  Increasing the amount of aquatic plants 

increases the amount of organic matter in the ecosystem, which eventually dies and 

decays.  This decaying organic matter produces unpleasant odors and depletes the 

oxygen supply required by aquatic life.  Besides the affect on aquatic life, excess plant 

growth can also interfere with recreational activities normally supported prior to the 

eutrophic conditions of the aquatic ecosystem such as swimming (USEPA, 1993). 

 

An important detail related to eutrophication is that generally phosphorus availability is 

the limiting factor for plant growth in freshwater ecosystems.  The limiting factor for 

plant growth in marine ecosystems is generally nitrogen (USEPA, 2003).  In freshwater 

ecosystems, nitrogen fixing blue-green algae have the ability to obtain their required 

nitrogen by fixing nitrogen gas dissolved in water (WEF, 1998).  This implies that fixed 

forms of nitrogen available in freshwater systems do not limit the growth of these 

bacteria.  Therefore, any excess phosphorus that enters the freshwater ecosystem can 

cause an increase in plant and algae growth and lead to eutrophic conditions.  Nitrogen is 

the limiting nutrient in marine ecosystems because phosphate is generally present in 
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abundance and blue-green algae do not grow in saline environments (WEF, 1998).  

Therefore, plant growth is generally limited by the available nitrogen in marine 

ecosystems.   

 

Many authorities believe that controlling phosphorus inputs into freshwater aquatic 

ecosystems alone can control the problem of eutrophication.  However, some studies 

have shown that during the summer months algal growth can be limited by inorganic 

nitrogen levels (ammonia and nitrate) (WEF, 1998).  Therefore, nitrogen control in 

freshwater systems under these circumstances, as well as in estuarine ecosystems, is 

necessary to avoid eutrophic conditions.  The control of both ammonia-nitrogen and 

nitrate-nitrogen is necessary to reduce eutrophication.   

 

2.2 The Nitrogen Cycle 

Nitrogen comes in various forms and is an essential element for the survival of plants, 

animals and microorganisms.  The forms of nitrogen important to aquatic ecosystems 

include nitrogen gas (N2), ammonium (NH4
+), nitrate (NO3

-), nitrite (NO2
-) and organic 

nitrogen (Org N).  The oxidation state of NH4
+, most Org N, N2, NO2

-, and NO3
- is -3, -

3, 0, +3, and +5, respectively (WEF, 1998; Metcalf and Eddy, 2003).  N2 is the most 

abundant gas in our atmosphere and accounts for 78% (by volume) of the air we breathe 

(Davis and Masten, 2004).  However, nitrogen in the form of N2 is not available for use 

by plants, animals and most microorganisms.  In order for plants, animals and 

microorganisms to be able to utilize nitrogen, N2 must be converted to a more chemically 
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available form such as NH4
+, NO3

- or Org N (Harrison, 2003).  Therefore, the cycling of 

N2 is an essential process that is necessary to maintain life.  Figure 2.1 shows the 

nitrogen cycle and the various transformation pathways that take place between the 

different forms of nitrogen.   

 

 
Figure 2.1: The Nitrogen Cycle  

(adapted from Madigan et al., 1997; Harrison, 2003; King, 1987; Metcalf and Eddy, 

2003) 

 

There are five major transformation pathways in the nitrogen cycle that are responsible 

for cycling nitrogen between its various forms: nitrification, denitrification, nitrogen 

uptake, nitrogen fixation, and ammonification.  Nitrification and denitrification are the 

Nitrogen Cycle
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NH4
+

NO2
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-

N2

Ammonification

Nitrification

Nitrification
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major transformation pathways related to this research and will be discussed in detail in 

subsequent sections.   

 

Nitrogen uptake, sometimes called nitrogen assimilation, occurs when NO3
- or NH4

+ is 

converted to Org N.  Both plants and microorganisms carry out the process of nitrogen 

uptake in order to obtain the necessary element of nitrogen.  The nitrogen obtained 

through the process of uptake is utilized to form proteins, nucleic acids and other Org N 

compounds (King, 1987).   

 

Nitrogen fixation occurs when N2 is reduced to NH4
+, which in turn is usually directly 

converted to Org N.  Fixation is the only pathway in which N2 can be utilized directly 

from the atmosphere and can only be carried out biologically by certain microorganisms.  

Nitrogen fixation can also occur chemically in the atmosphere during lightning events 

and during the manufacturing of nitrogen containing fertilizers.  However, chemical 

fixation occurs to a lesser extent than biological fixation (Madigan et al., 1997).   

 

The presence of the nitrogenase enzyme system is required for biological nitrogen 

fixation (Hubbell and Kiddler, 1992).  The nitrogenase enzyme acts as a catalyst in the 

reduction of N2 to NH4
+ and certain Org N compounds.  Biological nitrogen fixation can 

be carried out by free-living microorganisms as well as microorganisms that create 

symbiotic relationships with host plants.  Examples of free-living microorganisms that 

carry out nitrogen fixation include Azotobacter and Beijerinckia (non-photosynthetic 

aerobic bacteria), Clostridium (non-photosynthetic anaerobic bacteria) and Anabaena 
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(photosynthetic cyanobacteria, often called blue-green algae) (Hubbell and Kiddler, 

1992).  In the legume family of plants (i.e. beans, peas, clover) symbiotic relationships 

with N2 fixing microorganisms, frequently in the genus Rhizobium, are often established.  

The microorganisms live within legume root nodules and receive carbohydrates along 

with a favorable living environment from their host plant, and in return the plant utilizes 

some of the N2 fixed by the microorganisms (Harrison, 2003).  The NH4
+ and Org N 

created through nitrogen fixation can be further transformed into other nitrogen 

compounds through the process of nitrification, nitrogen uptake or ammonification.   

 

Ammonification, which can also be called nitrogen mineralization, is the transformation 

of Org N to NH4
+.  Ammonification can occur when animals excrete excess organic 

nitrogen, in the form of urea (CO(NH2)2), which is transformed into NH4
+ through 

enzymatic hydrolysis (Muck, 1982).  The urease enzyme is responsible for the hydrolysis 

of urea and can be found in feces as well as soils (Muck, 1982; Havlin et al., 1999).  A 

large number of bacteria, fungi and actinomycetes possess the enzyme urease and 

transform urea into NH4
+ through the following reaction (Havlin et al., 1999): 

 

CO(NH2)2 + H+ + 2H2O  2NH4
+ + HCO3

-     (2.1) 

 

The rate of ammonification of urea can be affected by temperature, pH and soil moisture 

content.  Generally, higher rates occur in warm temperatures, near neutral pH values and 

at soil moisture contents that are optimal for plant growth (Muck, 1982; Havlin et al., 

1999).  In soils that exhibit the optimal environmental conditions, most of the urea is 
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transformed to NH4
+ within several days after introduction (Havlin et al., 1999).  In a 

typical freestall barn (urea and feces in contact) the majority of urea will be transformed 

to NH4
+ within 6 hours at 30ºC and within 24 hours at 10ºC (Muck, 1982).   

 

The hydrolysis of urea is not the only pathway in which ammonification occurs.  

Ammonification also takes place during the decomposition of organic matter.  

Heterotrophic microorganisms consume dead organic matter and during this process a 

significant amount of the nitrogen contained within the organic matter is converted to 

NH4
+ (Harrison, 2003).  A large number of heterotrophic organisms are capable of 

decomposing organic matter and can range from aerobic to anaerobic, acid-sensitive to 

acid-resistant, and spore-forming to non-spore-forming microorganisms (Alexander, 

1991).  Therefore, the decomposition of organic matter in most instances will be carried 

out as long as microbial life is viable.  However, environmental conditions such as 

moisture content, pH and temperature can affect the rate of ammonification of organic 

matter (Alexander, 1991). 

 

Ammonification can be carried out by aerobes and anaerobes at a wide range of moisture 

contents.  However, the optimum rate of ammonification generally occurs when the 

moisture content is at 50% to 75% of the water holding capacity of a soil.  The rate of 

ammonification generally diminishes at low moisture contents (Alexander, 1991).  

Generally, ammonification rates are greatest at near neutral pH and are depressed under 

acidic conditions (Alexander, 1991).  Rates can also be affected by the temperature of 

the environment in which ammonification of organic matter is taking place.  In general, 



 

 14 
 

low temperatures reduce the rate while higher temperatures increase the rate.  

Ammonification can be carried out at near freezing temperatures, however, optimum 

rates usually are observed when the temperature is between 40ºC and 60ºC (Alexander, 

1991).  No matter what the rate is of ammonification, the NH4
+ produced from the 

process can be further transformed into other nitrogen species through either the 

processes of uptake or nitrification. 

 

2.2.1 Nitrification 

Nitrification is a two step process in which NH4
+ is oxidized to NO2

- and then NO2
- is 

oxidized to NO3
-, as shown below.  The overall balanced reaction for the complete 

oxidation of NH4
+ to NO3

- is shown in equation 2.2 (Rittmann and McCarty, 2001):  

 Step 1: 2NH4
+ + 3O2  2NO2

- + 4H+ + 2H2O 

 Step 2: 2NO2
- + O2  2NO3

- 

Overall Balanced Reaction:   

NH4
+ + 1.815O2 + 0.1304CO2     

0.0261C5H7O2N + 0.973NO3
- + 1.973H+ + 0.921H2O   (2.2) 

 

The two step process of nitrification is carried out by bacteria known as nitrifiers.  The 

most common genus of bacteria that carries out the first step is Nitrosomonas while the 

Nitrobacter is the most common genus of bacteria responsible for the second step in the 

nitrification process (Rittmann and McCarty, 2001).  Nitrosomonas and Nitrobacter 
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along with other nitrifying bacteria require certain environmental conditions in order to 

carry out nitrification. 

 

Nitrifying bacteria are classified as autotrophs, chemolithotrophs and obligate aerobes 

(Rittmann and McCarty, 2001).  The autotrophic nature implies that these bacteria utilize 

inorganic carbon sources such as CO2.  The chemolithotrophic characteristic of these 

bacteria means that they use reduced inorganic compounds (NH4
+ and NO2

-) as electron 

donors in energy yielding reactions.  The characteristic of being obligate aerobes implies 

that oxygen (O2) is utilized as an electron acceptor in energy yielding reactions.  

Therefore, in order for nitrification to take place, nitrifying bacteria normally require 

environmental conditions in which CO2, NH4
+, NO2

- and O2 are available.  One exception 

to these requirements is the process referred to as the anammox reaction.  During this 

reaction bacteria are able to oxidize ammonia under anoxic conditions (Madigan et al., 

1997).   

 

Besides the required environmental conditions, the process of nitrification can be 

influenced by several other characteristics of the surrounding environment.  The 

hydrogen-ion concentration (pH), alkalinity, temperature, metal concentrations and 

presence of toxins all can have an affect on the process of nitrification (Metcalf and 

Eddy, 2003).  Nitrification is a pH sensitive process that is usually carried out in 

wastewater treatment processes in a pH range of 7 to 7.2.  Optimal nitrification reaction 

rates occur when the pH is in the 7.5 to 8.0 range and rates are significantly reduced 

when the pH falls below 6.8.  Alkalinity is consumed in the nitrification process, as 
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shown in Equation 2.2, which in turn will reduce the pH of the surrounding environment 

if sufficient alkalinity is not available.  Therefore, in some nitrification processes an 

outside source of alkalinity may be needed if the alkalinity of the water being treated is 

not sufficient to buffer the acidity produced.  Temperature affects the growth rates of the 

nitrifying bacteria, which in turn affects the rate at which nitrification occurs.  Generally, 

decreasing the temperature will decrease the nitrification rate.  The optimum temperature 

for nitrification has been reported to be between 30ºC and 36ºC, with nitrifier growth 

observed between 4ºC and 50ºC (WEF, 1998).  Between 8ºC and 30ºC, Equation 2.3 

can be used to estimate the specific growth rate of the nitrifiers (WEF, 1998). 

 

 µ = 0.47*e0.095*(T-15)        (2.3) 

where: 
µ = specific growth rate of nitrifiers (d-1) 
T = temperature (ºC) 

 

Solvent organic chemicals, amines, proteins, tannins, phenolic compounds, alcohols, 

cyanates, ethers, carbamates, benzene and heavy metals are known to be toxic to 

nitrifying bacteria.  Therefore, in order to have nitrification occur, both the requirements 

of the process and the desired environmental conditions must be met. 

 

Nitrification can occur in natural ecosystems, such as soils, if the necessary requirements 

and desired environmental conditions are available.  The process of nitrification can also 

be carried out in water and wastewater treatment processes.  Nitrification is sometimes 

desired in municipal wastewater treatment due to water quality concerns over (1) the 
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effect of ammonia on receiving water with respect to dissolved oxygen (DO) 

concentrations and/or fish toxicity, (2) the need to provide nitrogen removal to control 

eutrophication, and (3) the need to provide nitrogen control for water-reuse applications 

including groundwater recharge (Metcalf and Eddy, 2003).  With a goal of nitrogen 

removal, nitrification is one of the processes carried out in the bioretention systems 

utilized in this project.  However, when the goal of a treatment process is total nitrogen 

removal, the process of nitrification must be followed by denitrification. 

 

2.2.2 Denitrification 

Denitrification is the only nitrogen transformation pathway in the nitrogen cycle that has 

the ability to remove nitrogen from ecosystems with its end product being N2 (Harrison, 

2003).  Therefore, denitrification is required in treatment processes for total nitrogen 

removal.  Some key examples of denitrification are (1) advanced treatment of 

wastewater discharged to watersheds that must be protected against eutrophication, (2) 

treatment of wastes with high levels of nitrogen, such as agricultural runoff and 

wastewater from feedlots, (3) and treatment of drinking waters that contain elevated 

NO3
- + NO2

- levels, thereby reducing the human health risk associated with 

methemoglobinemia (Rittmann and McCarty, 2001). 

 

The NO3
- reduction reaction, known as denitrification, includes intermediate steps in 

which NO3
- is transformed to NO2

-, to nitric oxide (NO), to nitrous oxide (N2O), and 

then to N2 (Metcalf and Eddy, 2003): 
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NO3
-  NO2

-  NO  N2O  N2      (2.4) 

 

The process of denitrification is carried out by bacteria known as denitrifiers.  

Denitrifiers are widespread among both heterotrophic and autotrophic bacteria 

(Rittmann and McCarty, 2001).  Halobacterium, Methanomonas and Pseudomonas 

species are a few examples of denitrifiers that are classified as heterotrophic (Metcalf and 

Eddy, 2003).  Thiobacillus and Thiomicrospira are examples of species of denitrifiers 

that are classified as autotrophic (Zhang and Lampe, 1998).  Both heterotrophic and 

autotrophic denitrifiers require certain environmental conditions in order to carry out 

denitrification. 

 

Heterotrophic and autotrophic denitrifiers by nature are facultative aerobes as well as 

chemotrophs (Rittman and McCarty, 2001).  The trait of being a facultative aerobe 

means that these bacteria shift to NO3
- or NO2

- respiration when O2 becomes limiting.  

This means that NO3
- or NO2

- becomes the terminal electron acceptor in energy yielding 

reactions when O2 becomes limited.  Environments that are anoxic (low O2 levels) and 

contain NO3
- or NO2

- will promote the process of denitrification.  Along with being 

facultative aerobes, denitrifiers are chemotrophs that can use either organic or inorganic 

electron donors.  Those that utilize organic electron donors are heterotrophs and those 

that utilize inorganic electron donors are autotrophs.  Heterotrophs have been shown to 

use a wide array of organic compounds including but not limited to methanol, acetate 

and biodegradeable organic matter that is present in wastewater.  During autotrophic 
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denitrification inorganic electron donors such as hydrogen and sulfur are utilized 

(Metcalf and Eddy, 2003).  Equation 2.5 shows the overall heterotrophic denitrification 

reaction when organic matter (CH2O) is utilized as the electron donor (derived following 

the McCarty (1975) procedure).  Equation 2.6 represents the overall autotrophic 

denitrification reaction when elemental sulfur (S0) is utilized as the electron donor 

(Bachelor and Lawrence, 1978). 

 

1.866CH2O + NO3
- + 0.97H+   

0.104C5H7O2N + 1.343CO2 + 1.993H2O + 0.448N2    (2.5) 

 

1.1S0 + 0.4CO2 + NO3
- + 0.76H2O + 0.08NH4

+  

0.08C5H7O2N + 1.1SO4
-2 + 0.5N2 + 0.781H+     (2.6) 

 

From Equation 2.5, it can be determined that 3.57 grams of alkalinity (as CaCO3) are 

produced per gram of NO3
- reduced during heterotrophic denitrification.  From Equation 

2.6, it can be determined that 4.5 grams of alkalinity (as CaCO3) are consumed per gram 

of NO3
- reduced during autotrophic denitrification.  Typically, when alkalinity is 

produced the pH of the surrounding environment is elevated and the opposite occurs 

when alkalinity is consumed, the pH will decrease.  Generally, the buffering capacity of 

the surrounding environment will dictate the extent of the pH change.  Unlike the pH 

sensitive process of nitrification, there is less of a concern over pH influences on 

denitrification rates.  No significant effect on the rate of heterotrophic denitrification has 

been reported for pH values in the range of 7.0 to 8.0.  However, a decrease in the rate 
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of heterotrophic denitrification has been observed when the pH was decreased to 6.0 

(Metcalf and Eddy, 2003).  The optimum pH values for autotrophic denitrification using 

sulfur is between 6 and 8 (Holt et al., 1994).  Autotrophic denitrification rates have been 

shown to be severely inhibited below pH 5.5 (Liu and Koenig, 2002). 

 

2.3 Agricultural Runoff 

During the field testing phase of this project the bioretention units utilized runoff from an 

agricultural (dairy farm) operation.  This section of the literature review discusses 

agriculture, the constituents in agricultural runoff and the impact that runoff from 

agricultural lands can have on the water quality of the receiving water(s).  In view of the 

fact that runoff from a dairy farming operation was exploited in the field testing of the 

bioretention units, the main focus of this section will be on the impacts of dairy farming.  

However, impacts from the agricultural industry as a whole are also included to illustrate 

the concerns related to non-point source pollution from agricultural practices.  

 

Approximately half of the land area of the United States is used for agricultural purposes 

including cropland, pastureland and rangeland.  The profession of agriculture often has 

detrimental effects on surface and groundwater resources, soil erosion and the depletion 

of water quality (Davis and Masten, 2004).  Surface and groundwater resources are 

often depleted due to the high water demands for irrigation purposes, especially in arid 

regions.  Loss of top soil, through the process of erosion, is often a problem if proper 

grazing and cropping practices are not followed.   
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Runoff from agricultural land occurs when water from precipitation and/or snowmelt 

travels across the land and/or building surfaces and is conveyed to nearby surface waters.  

Runoff can also be incorporated into groundwater through the process of infiltration.  A 

variety of constituents are integrated into agricultural runoff, many of which can lead to 

the degradation of the receiving water.  Animal wastes, nutrients, organic matter, salts, 

fecal microorganisms, metals, sediments, and pesticides are the primary pollutants 

associated with agricultural runoff (USEPA, 1993, 2005; NRCS, 1992).  The sources 

and related pollution concerns of the primary pollutants are discussed in the following 

sections.  Unless noted otherwise, the information pertaining to these primary pollutants 

was adapted from the USEPA’s document “National Management Measures for the 

Control of NonPoint Pollution from Agriculture” (USEPA, 1993). 

 

2.3.1 Animal Wastes 

The USEPA defines the term animal waste to include: the fecal and urinary wastes of 

livestock; process water (such as from a milking parlor); and the feed, bedding, litter, 

and soil with which they become intermixed (USEPA, 2003).  The following pollutants 

can be transported by runoff if it comes into contact with animal wastes. 

 Oxygen-demanding substances; 

 Nitrogen, phosphorus, and other major and minor nutrients; 

 Organic solids; 

 Salts; 
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 Bacteria, viruses, and other microorganisms (i.e. fecal microorganisms); 

 Metals; and  

 Sediments. 

 

Due to the wide array of pollutants listed above it is evident that runoff, that has come 

into contact with animal wastes, can cause various concerns related to the quality of the 

receiving waters.  Oxygen-demanding wastes deplete a water body of O2, which in turn 

can be harmful to aquatic species that require O2 to survive. 

 

Animal wastes can be incorporated into runoff from a dairy farm in various ways and is 

greatly dependent on the operational procedures of a specific farming operation.  For 

instance, the manner in which cattle are held will affect the extent that animal wastes are 

incorporated into runoff.  Cattle confined under a roofed enclosure will help diminish the 

direct contact between runoff and animal wastes.  However, if cattle are allowed to roam 

freely in pasturelands, runoff from this land will incorporate the feces and urea excreted 

on the land surface.  Dairy farming operations often utilize manure as a fertilizer source.  

In between fertilizing events, the method of manure storage can have an impact on the 

extent to which runoff comes into contact with animal wastes.  Runoff will come into 

contact less with manure that it is contained within a storage tank compared with manure 

that is collected and stored in an area that is open to the elements.   

 

When land application of the stored manure is carried out, the timing as well as the 

method used, can impact the water quality of runoff from these lands.  The time of year 
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as well as the time between application and runoff events can both affect the extent to 

which animal wastes are incorporated into the runoff.  Manure applied to frozen ground 

or snow covered ground can result in higher concentrations of animal wastes during 

rainfall or snowmelt, especially when runoff events occur shortly after application.  

Consequently, the application of manure should (ideally) be on land that is not frozen nor 

covered with snow and at a time when precipitation is not forecasted in the near future.  

Surface spreading and subsurface incorporation (i.e. injection) of manure are two 

methods that can be used when fertilizing lands with manure.  The practice of surface 

spreading allows the direct incorporation of animal waste into runoff to a further degree 

than when manure is injected into the subsurface.  Therefore, if it is possible, subsurface 

incorporation of manure can be beneficial to the water quality of runoff. 

 

2.3.2 Nutrients 

In order for dairy farming operations, as well as all agricultural practices, to have 

successful crop production an adequate supply of nutrients, such as nitrogen (N), 

phosphorus (P) and potassium (K), as well as a proper soil pH needs to be provided 

(Davis and Masten, 2004).  The primary sources of crop nutrients are commercial 

(chemical) fertilizers and manure (USEPA, 2003).  The most widely used chemical 

fertilizers contain lime (to maintain a proper soil pH), N, P and K at varying 

concentrations depending on the crop needs (Davis and Masten, 2004).  The source of 

manure is usually from farm animals; however, the sludge or effluent from municipal and 

industrial wastewater treatment plants can also be utilized as soil amendments (USEPA, 
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2003).  There are few environmental concerns associated with lime and K but 

widespread problems are associated with N and P (Davis and Masten, 2004).  In addition 

to fertilizers; atmospheric deposition, irrigation water, wildlife and crop residues also can 

be sources of N and P (USEPA, 2003).   

 

Dairy farming operations can discharge N and P to the environment in various ways 

including runoff or seepage from animal holding areas, rupture of manure storage 

lagoons, failure of liners in manure storage lagoons or the accidental spillage of 

fertilizers.  However, the major source of N and P release to the environment is through 

runoff or seepage from croplands.  N and P are purposely applied to croplands by 

farmers to promote crop production as well as naturally added through atmospheric 

deposition and excretions from livestock and wildlife.  The extent to which N and P are 

incorporated into runoff from naturally occurring sources is hard to control.  However, 

through proper farming practices, the extent to which the intentionally added N and P 

are incorporated into runoff can be diminished (Davis and Masten, 2004).  As discussed 

previously with regards to land application of manure, proper timing, methods and rates 

of fertilizer applications can help reduce the N and P incorporated into the runoff.  The 

rate at which of N and P are added to the land should be based on the crops needs and 

the soil N and P levels.  When N and P are added to the land at rates that exceed a crops 

needs, the excess nutrients can be incorporated into runoff and lead to detrimental effects 

on the quality of the receiving water such as eutrophication. 
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2.3.3 Organic Matter 

Organic matter is usually composed of a combination of carbon, hydrogen, oxygen and 

sometimes nitrogen (Metcalf and Eddy, 2003).  All animal and vegetable originating 

substances contain carbon compounds creating various sources from which organic 

matter can be incorporated into agricultural runoff (NRCS, 1992).  Organic matter 

present in runoff is of concern because of various detrimental affects it can have when 

incorporated into surface waters. 

 

Animal wastes, fertilizers and crop residues are some of the sources from which organic 

matter can be incorporated into runoff from a dairy farm operation.  Manure consists 

largely of organic matter and therefore, when utilized as a fertilizer can provide a 

significant source of organic matter that can be incorporated into runoff.  Another 

contributor of organic matter in runoff from dairy farm operations can be crop residues.  

When crops are harvested, the remaining plant material often is incorporated into the 

soil.  This crop residue can be transported by runoff and become a concern with regards 

to the quality of the receiving water. 

 

Water quality becomes a concern when organic matter is decomposed by bacteria.  

Bacteria consume or degrade organic matter to obtain energy for cell maintenance and 

the synthesis of new cell tissue (Metcalf and Eddy, 2003).  When O2 is present, the 

degradation process can be carried out by both aerobic bacteria which require the 

presence of O2 to survive, and facultative bacteria which can survive with or without the 

presence of O2 (NRCS, 1992).  If sufficient oxygen and aerobic or facultative bacteria 
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are present, the aerobic degradation of organic matter will continue until all the 

biodegradeable waste is consumed.  During the degradation process three activities are 

carried out by the bacteria: oxidation of organic matter, cell synthesis and endogenous 

respiration.  The following generalized equations represent these activities (Metcalf and 

Eddy, 2003).  

 

Oxidation of Organic Matter: 

Organic Matter + O2 + Bacteria   

CO2 + H2O + NH3 + Other End Products + Energy    (2.7) 

Cell Synthesis: 

Organic Matter + O2 + Bacteria + Energy   

New Cell Tissue        (2.8) 

Endogenous Respiration: 

Cell Tissue + O2  CO2 + NH3 + H2O      (2.9) 

 

Water quality can be negatively impacted during aerobic degradation due to the 

depletion of O2 throughout the process.  The addition of organic matter to a water body 

can lower O2 levels to such an extent that fish and other aquatic life can die from 

asphyxiation.  The extent to which O2 levels are depleted primarily depends on the 

amount of organic matter present, the initial O2 levels of the waste stream and receiving 

water, the re-aeration abilities of the receiving water and the temperature of the water.  

In addition to the concerns over O2 depletion, the decomposition of organic matter can 

also create color, taste, odor and disinfection by-product problems associated with public 
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water supplies.  The decomposition of organic compounds containing nitrogen can also 

lead to issues related to water quality with respect to nitrogen inputs, which were 

discussed previously. 

 

2.3.4 Salts 

Salts are naturally present in all soils as well as fresh waters, coastal waters, estuarine 

waters and ground waters.  The presence of salts is due to the natural weathering 

process of soil and geologic material.  Salts dissolve into water as it percolates through 

soil and rock formations (Davis and Masten, 2004).  The movement and deposition of 

salts depends on the amount and distribution of rainfall and irrigation, the soil and 

underlying strata and evapotranspiration rates.  In humid regions, salts are naturally 

leached through the soil and substrata by rainfall.  In arid and semi-arid regions salts that 

have not been removed by natural leaching are concentrated in the soil.  The extent of 

natural leaching will affect the naturally occurring salt concentrations in soils and waters.  

However, salt concentrations can be significantly influenced by irrigation of agricultural 

lands. 

 

The water used for irrigation, whether from ground, surface or reclaimed waters, has a 

background concentration of salts.  When water is lost due to plant consumption or by 

evaporation, the salts remain in the soils and become concentrated.  This is referred to as 

the “concentrating effect.”  This effect increases the amount of salts that can dissolve 

into runoff, which can lead to negative impacts related to water quality of the receiving 
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water body.  The salt concentrations in runoff from a dairy farm operation will be 

directly related to the water used for irrigation as well as the geographical location of the 

dairy farm.  For instance, a dairy farm that uses irrigation water with moderate to high 

salt concentrations and is located in an arid or semi-arid location will most likely have 

runoff with elevated salt concentrations. 

 

Runoff with elevated salt concentrations that is introduced into a fresh water ecosystem 

can have toxic affects to both aquatic plants and fish species.  Generally, salt water 

ecosystems are not influenced by runoff with elevated salt concentrations.  However, 

anadromous fish can be adversely affected.  Anadromous fish primarily live in saline 

waters but rely on freshwater systems near the coast for crucial portions of their life 

cycles.  Therefore, freshwater systems with elevated salt concentrations near the coast 

can have negative affects on anadromous fish.   

 

2.3.5 Fecal Microorganisms 

Warm-blooded animals excrete large quantities of microorganisms including bacteria, 

viruses, parasites and fungi.  Some of these microorganisms are considered pathogens 

because they can cause diseases in animals and humans (NRCS, 1992).  Various diseases 

that can be transmitted to humans through contact with animal manure are listed in Table 

2.1.   

 
Table 2.1: Diseases and Microorganisms Spread By Animal Manure (from NRCS, 1992) 
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Dairy farm runoff can transport fecal microorganisms after coming into contact with 

barnyards, pastures, rangelands, feedlots, manure storage areas and areas where land 

application of manure occurs.  The quality of the receiving water body can be negatively 

impacted due to the various diseases that can result from human contact with fecal 

microorganisms.  Some studies have shown high levels of antibiotic resistance in 

microorganisms in runoff from livestock operations.  This is a concern since antibiotics 

are often utilized for human treatment.  Drinking water contamination (both surface and 

groundwater), beach closures and shellfish contamination can all be results of fecal 

microorganism contamination from agricultural runoff (USEPA, 2003).   
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2.3.6 Metals 

All living organisms require various metals at varying concentrations for proper growth, 

including iron (Fe), chromium (Cr), copper (Cu), zinc (Zn) and cobalt (Co).  However, 

all these metals can be toxic when present at elevated concentrations (Metcalf and Eddy, 

2003).  Metals can accumulate and disrupt organs, lead to cancer and cause birth defects.  

Therefore, aquatic ecosystems and human health can be at risk when water resources 

contain metals at elevated concentrations. 

 

Sources of metals in agricultural runoff include plant residues, animal wastes, fertilizers, 

specific herbicides and fungicides, and the use of municipal and industrial wastewater 

effluent or sludge for fertilizer (Csuros and Csaba, 2002).  The type of metals 

incorporated into the runoff is directly related to the operational procedures of a certain 

farming operation (i.e. types of fertilizers, fungicides, etc. used).  For instance, farmers 

often feed swine a diet high in Cu and Zn to promote growth; however, 80-90% of this 

Cu and Zn is excreted from the animal (USEPA, May 2004).  This animal waste has 

elevated levels of Cu and Zn and can possibly lead to water quality concerns if they are 

incorporated into runoff.  Copper sulfate foot baths are another operational practice 

carried out by dairy farmers which can lead to Cu being integrated into agricultural 

runoff.  Copper sulfate foot baths are utilized for hoof health.  Often times, spent copper 

sulfate solution is integrated into liquid manure which is then land applied (Rankin, 

2004).  The Cu can in turn be transported within runoff from these lands and possibly 

lead to water quality concerns.   
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Domestic wastewater effluents, as well as the sludge from the process, can contain 

various metals from metabolic waste products, corrosion of distribution/collection 

systems and from household products, such as detergents.  Some examples of metals that 

can be found in domestic wastewaters include Cu, lead (Pb), Zn, cadmium (Cd), Fe, 

manganese (Mn), Cr, nickel (Ni), Co, boron (B) and arsenic (As) (Csuros and Csaba, 

2002).  Agricultural operations that utilize wastewater effluent or sludge as a fertilizer 

source are inadvertently applying metals to the land surface.  These metals can be 

incorporated into runoff and detrimentally affect the quality of the receiving waters.   

 

2.3.7 Sediment 

Sediment is the solid material, both mineral and organic, that is incorporated into 

agricultural runoff due to the process of erosion.  Erosion, caused by runoff, occurs 

when soil is removed by flowing water (Davis and Masten, 2004).  Dairy farming 

practices such as spreading manure as a fertilizer, tilling for crop production as well as 

cattle handling can all have an influence on the amount of sediment incorporated into 

runoff.  A land surface that is fertilized with manure has a certain amount of solids 

applied to it, which in turn can lead to an increase of sediment in the runoff from this 

land surface.  Field management, such as tillage or cultivation, is necessary for dairy 

farmers to perform for crop production.  When these practices are carried out, the top 

soil of the land is loosened and repositioned.  When runoff occurs over this loose land 

surface the amount of sediment carried by runoff can be elevated.  The manner in which 

cattle are handled at a dairy farm operation can lead to similar affects that fertilization 
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with manure and field management have on sediment levels in runoff.  For example, 

cattle fed by grazing in pasturelands, introduce manure to the land surface as well as 

loosen the land surface due to cattle movement.  Runoff from dairy operations that carry 

out confined handling of cattle can have elevated levels of sediment if runoff comes into 

contact with these areas.  Manure, feed, bedding, litter and soils can all be contributors 

of sediment to runoff that comes into contact with confined handling areas.   

 

Sediment in runoff is a concern due to the detrimental effects that suspended solids, 

turbidity and settling of solids can have on the receiving water body.  Suspended solids 

can deplete aquatic plant populations by decreasing the amount of sunlight available for 

photosynthesis.  Suspended solids also affect fish species by covering spawning areas and 

food supplies, clogging the filtering capacity of filter feeders, and clogging and harming 

the gills of fish.  The turbidity associated with sediment is known to interfere with the 

feeding habits of certain species of fish.  Solids contained in sediment can also settle out 

of suspension and be deposited into the receiving water body.  Deposited sediment can 

reduce the transport capacity of streams and rivers as well as reduce the storage capacity 

of rivers and lakes.  The reduction in capacities can affect aquatic ecosystems as well as 

cause more frequent flooding.  

 

In addition to the concerns associated with sediment that have already been discussed, 

the organic characteristics of sediment can have further detrimental affects on the 

receiving water body.  Section 2.3.3 discusses the concerns related to organic matter.   
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Sediment can also transport certain chemicals in an absorbed state such as various 

pesticides, phosphorus and ammonium.  These transported chemicals can have their own 

adverse affects on the water quality of the receiving water bodies.  Section 2.3.2 

discusses the concerns related to phosphorus and ammonium and Section 2.3.8 discusses 

the concerns related to pesticides. 

 

2.3.8 Pesticides 

The USEPA defines the term pesticide as any substance or mixture of substances 

intended for preventing, destroying, repelling, or mitigating any pest or intended for use 

as a plant regulator, defoliant, or desiccant (USEPA, July 2003).  Insecticides, 

herbicides, fungicides and miticides are some of the various pesticides utilized in 

agriculture to control plant pests and improve crop production.  The use of pesticides is 

beneficial for agriculture, but can create negative impacts if they are incorporated into 

surface or groundwaters.  The extent to which pesticides are incorporated into dairy 

farm runoff depends on factors such as the length of time between pesticide applications 

and rainfall/irrigation occurrence, intensity and duration of rainfall/irrigation, the amount 

of pesticide applied as well as the persistence of the pesticide in the environment.   

 

Pesticides can have a high potential for human harm as well as harm to aquatic 

environments due to their variations in chemical makeup (USEPA, July 2003).  

However, the effects of pesticides on humans and aquatic life are not yet fully 

understood (USGS, 1999).  Possible human health effects from overexposure to 
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pesticides include cancer, reproductive or nervous-system disorders, and acute toxicity 

(Copeland, 2005).  Recent studies suggest that some pesticides can disrupt endocrine 

systems and affect reproduction by interfering with natural hormones of aquatic species 

(Copeland, 2005).  Even though pesticide toxicity is not yet fully understood, the need to 

manage and monitor pesticide use and distribution within the environment is evident. 

 

2.4 Agricultural Runoff Treatment Technologies 

A variety of constituents that can have detrimental effects on the quality of the receiving 

water(s) when integrated into agricultural runoff.  Controlling the extent to which these 

constituents enter runoff as well as the treatment of polluted runoff can help reduce the 

non-point source pollution caused by agricultural runoff.  This section focuses on some 

of the methods that can be deployed to reduce the non-point source pollution associated 

with agricultural runoff.   

 

The direct treatment of runoff from agricultural lands is difficult to accomplish due to its 

non-point source characteristic.  However, proper management along with stormwater 

runoff control and treatment technologies can help diminish the extent of non-point 

source pollution.  This is often referred to as the implementation of Best Management 

Practices (BMPs).  Non-structural as well as structural BMPs are often utilized in 

agricultural operations.  Unlike structural BMPs, non-structural BMPs do not require 

any physical construction.  BMPs are designed to reduce the quantities of pollutants that 
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are generated and/or delivered from a source to a receiving water body through the 

following approaches (USEPA, 2003).   

 Minimizing pollutants available (source reduction); 

 Retarding the transport and/or delivery of pollutants, either by reducing water 

transported, and thus the amount of the pollutant transported, or through 

deposition of the pollutant; or 

 Remediating or intercepting the pollutant before or after it is delivered to the 

water resource through chemical or biological transformation. 

 

Reducing the load of a pollutant at its source is one method of proper management that 

can reduce the effects of non-point source pollution.  For example, a farmer can create a 

nutrient management plan that specifies the proper amount of fertilizer (manure or 

chemical) to apply to a crop to just meet the nutrient needs of that crop.  This can reduce 

the nutrient load in runoff that can occur from excess fertilization of cropland.  Nutrient 

management plans are an excellent non-structural BMP that reduces the amount of 

nutrients available to be transported by runoff.  Farmers can also develop additional 

management plans, in the same manner as nutrient management plans, that are aimed at 

source reduction of the other major contaminants discussed in Section 2.3.  Diet 

manipulation is another form of management that can help reduce waste products 

excreted by farm animals.  Diet manipulation consists of determining the proper diet 

requirements (nutrients, protein, etc.) of an animal and adjusting the feed composition to 

meet the requirements without exceeding them.  Studies have shown that the proper 

selection of a protein source in cattle feed can reduce nitrogen excretion by 15 to 25% 
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(NRCS, 2003b).  The same management plans; however, can not entirely eliminate non-

point source pollution from agricultural operations.  Structural BMPs aimed at 

controlling stormwater runoff as well as treating polluted runoff are sometimes necessary 

when management alone can not reduce the non-point source pollution to an acceptable 

level.  Structural BMPs are often site-specific technologies, meaning that one BMP 

might work well at one farm but might not be the best option at another farm.  Selection 

of the proper BMP for a certain site can depend on many factors such as treatment goals, 

land availability, cost and cost effectiveness.  The following are some structural BMPs 

that can be used by agricultural operations to diminish their contributions to non-point 

source pollution: 

 Sedimentation Basins; 

 Treatment Lagoons, Storage Ponds and Storage Tanks; 

 Constructed Wetlands; 

 Vegetative Filter Strips; and 

 Bioretention Systems (proposed by this research). 

 

2.4.1 Sedimentation Basins 

Sedimentation basins are constructed to collect and store debris or sediment in an 

attempt to reduce or abate pollution by sediment and debris being transported in runoff 

(NRCS, 2003a).  The main purpose of a sedimentation basin is the removal of sediment 

and debris from runoff, in order to preserve the capacity of the receiving water (NRCS, 

2003a).  Sedimentation basins can require runoff control strategies, such as diversion 
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structures, in order to have the desired runoff enter the basin area.  A sedimentation 

basin may be desirable to treat runoff from barnyards, feedlots and other areas that 

contribute an elevated amount of sediment and debris to agricultural runoff.  Typically, a 

sedimentation basin will retain 40-65% of the total solids that enter into it (NRCS, 

2005).  The physical removal of solids retained within a sedimentation basin is 

occasionally required in order to maintain a properly working basin.  Sedimentation 

basins can also be installed as a pretreatment step to the other structural BMPs, listed 

above. 

 

2.4.2 Treatment Lagoons and Storage Ponds 

Treatment lagoons and waste storage ponds are structural BMPs that are often 

associated with waste management plans.  Figure 2.2 depicts some of the various waste 

handling options that are available to dairy farmers.  The purpose of a treatment lagoon 

when associated with a waste management plan is to biologically treat waste, such as 

manure , and thereby reduce pollution potential (NRCS, 2003d).  A lagoon treats 

manure as a liquid after it has been diluted by wash water and/or runoff.  For the purpose 

of this section it will be assumed that lagoons are operated to treat runoff containing high 

levels of animal wastes (i.e. from barnyards, feedlots, etc.).  The purpose of a waste 

storage pond is to retain manure, bedding and runoff liquid for later use, such as land 

application for fertilization (NRCS, 1992).  Waste storage ponds are not intended to 

biologically treat the waste but inevitably some biological activity will take place within a 

storage pond in the same manner as in a treatment lagoon. 
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Figure 2.2: Waste Handling Options at a Dairy Farm (NRCS, 1992) 

 

Biological treatment within a lagoon is primarily carried out by aerobic and/or anaerobic 

bacteria (Barker, 1996).  Biological treatment of organic matter as well as the 

transformation of nitrogen species can be achieved in both aerobic and anaerobic 

lagoons.  Nitrogen transformations that take place in a lagoon depend directly on the 

environmental conditions of the lagoon, especially the dissolved oxygen concentration, 

as discussed in Section 2.2.  

 

Under aerobic conditions, treatment lagoons and storage ponds can generate nitrate 

through the process of nitrification.  Leaching of nitrate from lagoons and storage ponds 

can occur depending on the permeability of the underlying soil.  Nitrate leaching is a 

concern due to the human health risks related to elevated levels of nitrate in drinking 
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water.  To prevent nitrate leaching, lagoons and storage ponds should be constructed in 

soils with relatively low permeability.  In certain instances where native soils are highly 

permeable, low permeability liners can be constructed out of concrete, geomembranes 

and/or clay to reduce leaching.  If anoxic conditions exist within a lagoon or storage 

pond the nitrate produced can be converted to nitrogen gas through the process of 

denitrification.  This can result in total nitrogen removal (biologically) within a lagoon or 

storage pond, which may not be desirable if the liquid is intended for use as fertilizer. 

 

In addition to biological treatment, physical treatment can also occur through the settling 

of solids that enter a treatment lagoon or waste storage pond.  Lagoons and ponds that 

treat runoff containing animal wastes should always have initial solids settling, separation 

or removal prior to the waste stream entering the lagoon (Barker, 1996).  Pretreatment is 

essential to avoid excessive solid buildup rates within a lagoon.  A sedimentation basin is 

an example of a pretreatment step that can be utilized to remove a portion of the solids 

contained in the runoff.  However, some solids will inevitably pass through a 

sedimentation basin and in turn have the ability to settle out of solution and be 

incorporated into the sediment of the lagoon or storage pond.   

 

As shown in Figure 2.2, the effluent from a treatment lagoon or a waste storage pond 

can either be used for land application or discharged into the environment.  Land 

application is most commonly carried out and serves as irrigation water as well as a 

nutrient source for crops (Hamilton et al., 2002).  If a treatment lagoon or storage pond 

is operating properly, the effluent should contain lower levels of pollutants in comparison 
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to influent levels,  which in turn reduces the amount these constituents can be 

incorporated into runoff and lead to non-point source pollution.  Up to 80% of the total 

nitrogen entering lagoons cannot be accounted for in lagoon effluent and a great portion 

of the phosphorous contained in manure is retained in the lagoon sediment (Hamilton et 

al., 2002).  Therefore, lagoons are successful at retaining or transforming a large portion 

of the nutrients, N and P, which could be integrated into agricultural runoff and lead to 

detrimental effects such as eutrophication.  However, the nitrogen loss within a 

treatment lagoon is mostly due to volatilization of ammonia to the atmosphere (CENR, 

2000), which in turn can still contribute to eutrophication when atmospheric deposition 

of this nitrogen occurs.  Table 2.2 gives some typical concentrations of various 

contaminants within anaerobic and aerobic lagoons operating at a dairy farm (NRCS, 

1992).  The anaerobic lagoon received a significant loading of manure while the aerobic 

lagoon was utilized to treat milking parlor wastes only.  It can be concluded that the 

anaerobic lagoon exhibits significantly higher concentrations than does the aerobic 

lagoon. 

 

Table 2.2: Dairy Farm Anaerobic and Aerobic Lagoon Characteristics (NRCS, 1992) 
Contaminant Anaerobic Lagoon Aerobic Lagoon 

TN 200 mg/L as N 20 mg/L as N 
NH4

+ - N 119.8 mg/L as N 12 mg/L as N 
Volatile Solids 1097 mg/LP 200 mg/L 

Total Phosphorous 58 mg/L as P 9.6 mg/L as P 
BOD5 350 mg/L  35 mg/L  
COD 1498 mg/L as N 150 mg/L 

 

In instances where the effluent is discharged to the environment, further treatment might 

be desired depending on the effluent characteristics as well as site characteristics.  Site 
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characteristics such as the proximity to water resources will often dictate whether 

additional treatment of the effluent is necessary.  If desired, further treatment of the 

effluent can be achieved through the implementation of additional structural BMPs such 

as constructed wetlands or vegetated filter strips. 

 

2.4.3 Constructed Wetlands 

According to the Natural Resources Conservation Service, a constructed wetland is a 

constructed, shallow, earthen impoundment containing hydrophilic vegetation that can be 

designed to treat either point or non-point sources of water pollution (NRCS, 2002).  

Constructed wetlands have been utilized in agriculture to treat the effluent from waste 

treatment lagoons and waste storage ponds; wastewater from milking parlors; and runoff 

from open feedlots and croplands.  Figure 2.3 shows how a constructed wetland can be 

integrated into a waste management system at a dairy farming operation. 
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Figure 2.3: Constructed Wetland Integrated into Dairy Farm Waste Management 

(Cronk, 1996) 
 

 
The three principal types of constructed wetlands are known as surface flow wetlands, 

subsurface flow wetlands and floating aquatic plant systems (Figure 2.4; NRCS, 2002).  

Currently, surface flow wetlands are the preferred method when treating agricultural 

wastes and therefore will be the focus of this section.   
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Figure 2.4: Types of Constructed Wetlands (from NRCS, 2002) 

 

Surface flow wetlands are shallow earthen basins planted with rooted, emergent wetland 

vegetation (NRCS, 2002).  Typical water depths in a surface flow wetland range from 6 

to 18 inches.  Ideally, bottom slopes are flat from side to side and either flat or slightly 

sloped from inlet to outlet.  To a large extent the treatment of pollutants entering surface 

flow wetlands is the result of microbial activity (i.e. bacteria and fungi).  Microorganisms 

can be found attached to the submerged plant stems and litter within the wetland, within 
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the soil/plant root matrix and suspended throughout the entire water column (NRCS, 

2002).  Microbial activity is not the only method in which treatment of pollutants is 

achieved in surface flow wetlands.  The primary treatment processes that can be achieved 

through a surface flow wetland system include (Simeral, 1998): 

 Uptake and transformation of nutrients by microorganisms and plants; 

 Biodegradation and uptake of pollutants by microorganisms and plants; 

 Filtration and chemical precipitation through contact with substrate and litter; 

 Settling of suspended particulate matter; 

 Chemical transformation of pollutants (i.e. ammonification); 

 Absorption and ion exchange on the surfaces of plants, sediment, and litter; and 

 Predation and natural die-off of pathogens. 

 

Proper design of a surface flow wetland is essential to achieve the desired treatment of 

contaminants.  Removal of settleable solids from the influent and the total water budget 

are the most important design considerations (Simeral, 1998).  If excessive solids enter a 

wetland system they can destroy the system by essentially filling in the wetland.  A water 

budget takes into account the amount of water going into, flowing out of and remaining 

in the wetland system.  A proper water balance must be maintained in order to sustain 

plant populations, this is especially important during dry weather periods.  Other 

important design considerations include the physical characteristics (size, shape, slopes, 

etc.), the soil used for construction, species of vegetation utilized and management of the 

system after establishment (Simeral, 1998). 
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Through the aforementioned processes, a properly designed surface flow wetland can be 

utilized for the treatment of various contaminants associated with agricultural runoff.  

These contaminants include nutrients (i.e. nitrogen and phosphorous), oxygen 

demanding substances, sediment, metals and pathogens (fecal microorganisms) (NRCS, 

2002; EPA 1996).  Table 2.3 summarizes the average contaminant removal from two 

swine and three dairy facilities surface flow wetlands treating the effluent from waste 

treatment lagoons.   

 

Table 2.3: Average Contaminant Removal from Surface Flow Wetlands Treating Lagoon 
Effluent at Swine and Dairy Farm Facilities (Compiled from NRCS, 2002) 

Contaminant Average Removal Efficiency (%) 
Swine Farm Dairy Farm 

NH4
+ - N 87.5  69.7  

Org N 86.5  54.5  
Total Phosphorous 40.0  60.7  

PO4
3- - P 70.5  60.0  

BOD5 87.0  77.0  
COD 67.5  58.0  

 

From Table 2.3, it can be concluded that properly functioning constructed wetlands can 

provide significant reductions in nutrients (N and P) as well as oxygen demanding wastes 

(i.e. organic matter).  Discharge techniques of the treated effluent from constructed 

wetlands include recycling it back through the wetland system (to maintain water 

budget), utilization for irrigation purposes, release to surface waters or to grass filter 

strips (Simeral, 1998).   
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2.4.4 Vegetative Filter Strips 

Vegetative filter strips (VFS) are areas of planted or indigenous vegetation that can be 

used to treat agricultural runoff from various sources such as feedlots, croplands and 

pasturelands (Lorimor et al., 2002).  A properly designed VFS will have the desired 

runoff flowing evenly throughout the strip, slowing down the runoff velocity and 

allowing contaminants to settle out (Smith, 2000).  In addition to treatment through 

settling of contaminants (i.e. sediment), a VFS can also treat runoff through other 

processes such as infiltration, adsorption and aeration (Lorimor et al., 2002).  The 

process of infiltration promotes the filtering of contaminants from runoff and also 

reduces the volume of runoff leaving a VFS.  Soil and plant surfaces within a VFS 

provide numerous surfaces in which removal of soluble contaminants (i.e. phosphorous) 

can be achieved through the process of adsorption.  Treatment can also occur due to 

aeration of runoff while it flows through a VFS.  Aeration can provide the necessary O2 

that is required for the decomposition of oxygen demanding wastes as well as 

transformation processes of nitrogen species (i.e. ammonification and nitrification).  

Overall, a properly designed VFS system has been shown to remove sediment, oxygen 

demanding wastes, nutrients (nitrogen and phosphorous) as well as fecal microorganisms 

from agricultural runoff (Lorimor et al., 2002).  

 

The physical characteristics of a VFS system are key design considerations to achieve a 

properly functioning VFS system.  Physical properties of a VFS system include size and 

shape, land surface slopes, construction material, and the vegetation utilized.  The size 

and shape of a VFS system will depend on land availability as well as the degree of 
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treatment desired.  In general, the degree of treatment increases as the size of a VFS 

system increases.  VFS systems should have flat cross-section with a slight slope (< 4%) 

in the direction of flow (Lorimor et al., 2002).  The construction material utilized (i.e. 

soils) will directly dictate the infiltration rate of runoff within a VFS.  Soils with higher 

infiltration rates will absorb runoff and its associated dissolved contaminants faster than 

soils with low infiltration rates (Smith, 2000).  VFS systems should consist of permanent 

herbaceous vegetation consisting of a single species or a mixture of grasses, legumes 

and/or other species adapted to the soil, climate and the anticipated contaminants being 

transported by the runoff (NRCS, 2003c).   

 

The hydraulic nature of a VFS system will also dictate how well a VFS system will 

operate.  In order to achieve proper treatment from a VFS system it is important to have 

even distribution of runoff entering a VFS (Lorimor et al., 2002).  This will promote 

uniform loading across the VFS which will in turn result in slower runoff velocities 

within the system, encouraging the settling of solids.  The uniform depth of runoff across 

the width of a VFS system should be kept less than 1.5 inches in order to help trap 

sediment and other constituents (Lorimor et al., 2002). 

 

In addition to the physical and hydraulic design considerations, the characteristics of the 

runoff to be treated will play an important role in properly designing a VFS system.  The 

concentrations of the constituents of concern (i.e. nutrients, oxygen demanding wastes, 

etc.) along with the desired degree of treatment from a VFS will be important when 

sizing the system.  Generally, the size of a VFS system will increase as the concentrations 
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and desired degree of treatment increases.  No matter what size a VFS is, heavy 

sediment loads can have significant negative impacts on the treatment efficiency.  When 

runoff carrying a high level of sediment enters a VFS, build up of this sediment occurs 

which in turn affects the flow path of the runoff and often can cause short-circuiting 

through the system.  Short-circuiting greatly decreases the treatment efficiency of VFS 

systems.  Therefore, VFS systems must be preceded by a properly operating 

sedimentation basin when the runoff contains a high level of sediment (Lorimor et al., 

2002).  Figure 2.5 illustrates two design variations, Serpentine and Wide, of VFS 

systems being utilized to treat runoff from an animal feedlot.  In both instances the VFS 

system is preceded by a settling basin and even distribution of runoff is promoted.  The 

Serpentine VFS design utilizes terraces to distribute and dictate the flow of runoff 

through the VFS while the Wide VFS design utilizes a gated pipe to evenly distribute the 

flow of runoff. 
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Figure 2.5: Serpentine and Wide VFS Design for Treating Feedlot Runoff (Lorimor et 

al., 2002) 
 

The depletion of various contaminants from agricultural runoff can be achieved through 

the proper pretreatment, design and maintenance of a VFS system.  Table 2.4 

summarizes the removal efficiencies achieved from a properly functioning VFS system 

treating feedlot runoff contaminants.  From these results it can be concluded that a 

properly functioning VFS system, on an average basis, has been observed to have 

significant reductions in sediment (total solids), oxygen demanding wastes (COD), 

nitrogen and fecal microorganisms. 
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Table 2.4: Summary of VFS Contaminant Removal From Feedlot Runoff (from Lorimor 
et al., 2002) 

Contaminant Removal Efficiency (%) 
Average Maximum Minimum 

Total Solids 64.5 87.0 23.6 
COD 74.8 92.1 15.0 

Total Nitrogen 71.5 95.3 18.0 
NH4

+ - N 69.4 99.2 18.6 
Fecal Coliform 76.6 100.0 31.0 

 

2.4.5 Bioretention Systems 

Bioretention systems are a BMP that is conventionally utilized to treat urban stormwater 

runoff from commercial, residential and industrial areas (USEPA, 1999).  However, this 

research project investigated the possibility of utilizing bioretention systems to treat 

runoff from agriculture.  In a conventional bioretention system, a grass buffer strip and 

ponding area is used to attenuate peak runoff flows.  Water then infiltrates through a 

vegetated/soil mulch layer and then through a sand layer.  Figure 2.6 illustrates the 

conventional bioretention system layout utilized to treat urban stormwater runoff.   
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Figure 2.6: Conventional Layout of Urban Bioretention System (from PGDER, 1993) 

 

Treatment of contaminants being transported by the runoff occurs through 

evapotransporation, plant uptake, biodegradation, filtration and adsorption (USEPA, 

1999).  Bioretention systems have been reported to remove nutrients (nitrogen and 

phosphorous), metals, sediment and organic matter through the various treatment 

mechanisms.  Both total suspended solids (sediment) and organic matter have been 

reported to be reduced by 90% (PGDER, 1993).  Davis et al. (2001) reported high 

reductions in metals (copper, lead, and zinc; >92%) and moderate reductions for 
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phosphorous (~80%), total Kjeldahl nitrogen (TKN) (NH4
+ + Org N) (65-75%), and 

ammonia (60-80%).  However, only low removal rates (< 20%) of nitrate/nitrite nitrogen 

have been reported in conventional bioretention systems (Davis et al., 2001; Davis et al., 

2006).  Kim et al. (2003), proposed a modification of the bioretention system for 

removal of total nitrogen where runoff is conveyed to a ponding area and gradually 

infiltrates through a vegetated/mulch area then through a sand media where nitrification 

takes place.  The nitrified stormwater then travels through a submerged denitrification 

region, which is supplied with an electron donor, where nitrate is reduced to nitrogen gas 

by anoxic heterotrophic or autotrophic denitrifying bacteria.  The outlet from the 

bioretention system is configured in a manner so that the denitrification zone remains 

submerged to maintain the anoxic conditions required by the denitrifying organisms.  A 

cross-sectional view of a bioretention system modified for total nitrogen removal is 

shown in Figure 2.7.   

 
Figure 2.7: Cross-Section of Bioretention System Modified for Total Nitrogen Removal 
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Kim et al. (2003) investigated the use of one inorganic substrate (sulfur) and six organic 

substrates (alfalfa, leaf mulch compost, shredded newspaper, sawdust, wheat straw and 

wood chips) as potential electron donors within the submerged denitrification region.  

The organic electron donors were mixed with sand at a ratio that provided a sufficient 

mass of the electron donor for the extent of the column studies.  The sulfur was mixed 

with limestone to provide an alkalinity source to buffer the acidity produced during 

autotrophic denitrification.  Kim et al. (2003) investigated the use of both small (0.6 to 

1.18 mm) and large (2 to 2.36 mm) sulfur particles.  Through laboratory column studies 

it was concluded that the newspaper, wood chips and small sulfur/limestone performed 

the best out of the electron donors studied.  During the study, the columns had water 

applied to them for 35 to 40 days at a flowrate of 2.2 ml/min.  The water contained 

nitrate at a concentration of approximately 2 mg/L as nitrogen.  The performance was 

based on nitrate removal efficiencies and effluent water quality with regards to turbidity 

and TKN levels.  Approximate nitrate removal efficiencies within the shredded 

newspaper, wood chip and small sulfur/limestone columns were 100%, 95% and 91%, 

respectively.  The mass of sulfur added was the same in the columns containing small and 

large particles, however, only approximately 30% nitrate removal was achieved in the 

large sulfur particle column compared with the small sulfur particle column’s removal of 

91%.  Kim et al. (2003) suggests that this is probably due to the increased number of 

sulfur particles in the small sulfur column, allowing for more surface area for contact 

with the nitrate-laden water and for attached growth of denitrifyers.   
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Kim et al. (2003) further investigated the performance of the shredded newspaper, wood 

chips and small sulfur particles (mixed with limestone) by varying the nitrate loading and 

flowrate applied to the columns.  Of these three electron donors the newspaper column 

showed the best percentage of nitrogen removal efficiency throughout this study.  In 

particular, the newspaper column out-performed the wood chips and small sulfur 

columns at higher nitrate loading rates and flowrates.   

 

Further investigation of shredded newspaper was carried out in a pilot-scale bioretention 

study (Kim et al., 2003).  The pilot-scale reactor used was a 30” long by 16” wide by 

18” deep plastic box modified to contain an anoxic denitrification region similar to that 

shown in Figure 2.7.  The anoxic denitrification region was 7” in depth and contained the 

shredded newspaper and sand mixture.  Overlying this region was a 7” layer of loamy 

sand, leaving 4” available for ponding at the top of the pilot-scale bioretention unit.  

Synthetic runoff containing nitrate at approximately 2 mg/L as N was applied to the 

bioretention unit at 206 ml/min for 6 hours during laboratory pilot-scale experiments.  

During the laboratory pilot-scale studies high nitrate removal efficiencies of 70 to 80% 

were observed.   

 

The modified pilot-scale bioretention unit investigated by Kim et al. (2003) resulted in 

high denitrification rates and therefore, in theory makes this modified bioretention system 

a prospective treatment technology for runoff containing high levels of nitrate.  However 

during these pilot-scale studies, nitrate was the only nitrogen species applied to the 

bioretention units and, therefore, denitrification was the only process carried out within 
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the units.  Other nitrogen species (i.e. NH4
+ and Org N) should have been applied to 

investigate the performance of this modified bioretention system with regard to overall 

total nitrogen removal through ammonification, nitrification and denitrification.   
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CHAPTER 3:     METHODS OF INVESTIGATION 

Two pilot-scale denitrifying bioretention systems were designed and tested during this research 

project.  The overall goal of this research was to investigate the efficacy of the systems when 

utilized for the treatment of non-point sources of nitrogen such as agricultural runoff.  Both units 

were constructed and operated identically except that one unit was designed for autotrophic 

denitrification while the other unit was designed for heterotrophic denitrification.  While nitrogen 

removal was the main focus of this project, other constituents were monitored to examine the 

overall performance of the two units.  The experimental program was carried out in three phases, 

shown in Table 3.1. 

 

Table 3.1: Experimental Program Summary 
Phase Description Dates  
Phase I Design, Construct and Acclimate Bioretention Units August 2006 to March 2007 

Phase II Laboratory Testing of Bioretention Units April 2007 to July 2007 
Phase III Field Testing of Bioretention Units August 2007 to May 2008 

 

A number of water quality parameters were measured throughout the project to gain insight into 

the performance of the two units.  Table 3.2 presents the various constituents monitored 

throughout the project, the analytical methods used and the method detection limits for each 

analyte.  Ammonium and nitrate were measured using different analytical techniques during 

different phases of the project, as noted in Table 3.2.  Appendix E contains the quality 

assurance/quality control procedures that were followed as close as possible throughout this 

project in order to ensure accurate laboratory analysis. 

 

Table 3.2: Analytical Methods Summary 
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Parameter Analytical Method Method Detection 
Limit 

Total Nitrogen (TN) HACH Test ‘N Tube: Persulfate Digestion Method 0.4 mg/L as N 

Ammonium (NH4
+) APHA et al. (2005) Standard Method 4500-NH3 D: Ammonia-

Selective Electrode Method (used during Phase I and II) 0.06 mg/L as N 

Ammonium (NH4
+) APHA et al. (2005) Standard Method 4500-NH3 C: Titrimetric 

Method (used during Phase III) 5 mg/L 

Nitrate (NO3
-) HACH Test ‘N Tube: Cadmium Reduction Method 8039 (used 

only for Phase I simulated rain event #1 due to IC problems) 0.3 mg/L as N 

Nitrate (NO3
-) Dionex Ion Chromatography (IC) System ICS-900 coupled 

with a Dionex AS40 Autosampler 0.07 mg/L as N 

Nitrite (NO2
-) Dionex Ion Chromatography (IC) System ICS-900 coupled 

with a Dionex AS40 Autosampler 0.07 mg/L as N 

Phosphate (PO4
3-) Dionex Ion Chromatography (IC) System ICS-900 coupled 

with a Dionex AS40 Autosampler 0.31 mg/L as P 

Total Phosphorous 
(TP) 

HACH Test ‘N Tube; Equivalent to APHA et al. (2005) 
Standard Method 4500-P E: Ascorbic Acid Method 0.02 mg/L as P 

Sulfate (SO4
2-) Dionex Ion Chromatography (IC) System ICS-900 coupled 

with a Dionex AS40 Autosampler 0.45 mg/L 

Bromide (Br-) Dionex Ion Chromatography (IC) System ICS-900 coupled 
with a Dionex AS40 Autosampler 0.07 mg/L 

5-day Biochemical 
Oxygen Demand 

(BOD5) 

APHA et al. (2005) Standard Method 5210B 
DOi – DO5 > 2 

mg/L; 
DO5 > 1 mg/L 

Chemical Oxygen 
Demand (COD) 

HACH AcuVacTM Reagent Ampules; APHA et al. (2005) 
Standard Method 5220C: Closed Reflux Colorimetric Method  3 mg COD/L 

Alkalinity APHA et al. (2005) Standard Method 2320B: Titration 
Method; End Point pH of 4.5 (Phosphates Present) 20 mg/L as CaCO3 

Solids (TSS and 
VSS) APHA et al. (2005) Standard Methods 2540D and 2540E - 

Dissolved Oxygen* 
(DO) 

Electrometric Method using a YSI 5000 DO Meter 
(Yellow Springs, OH) 1 mg/L 

pH Electrometric Method using a Orion EA 940 pH Meter 
(Beverly, MA) 

0-14 
pH units  

Copper (Cu) APHA et al. (2005) Standard Method 3111: Flame Atomic 
Absorption Spectroscopy 1.5 mg/L 

Zinc (Zn) APHA et al. (2005) Standard Method 3111: Flame Atomic 
Absorption Spectroscopy 1.5 mg/L 

*DO measured as part of BOD5 test.  DO MDL is reportable level. 
 

The various parameters that were analyzed during this project were based on a number of 

objectives.  Testing for the various nitrogen species was carried out to evaluate the reactors 

performance with regards to the goal of total nitrogen removal and understanding the mechanisms 

of nitrogen removal in the systems.  Phosphorous is a constituent often related to non-point 

source pollution due to its contribution to eutrophication.  Sulfate (SO4
2-) was measured because 
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it is a product of the autotrophic denitrification process carried out in the sulfur/oyster shell 

bioretention unit.  BOD5 and COD are both common techniques used to measure bulk 

concentrations of organic matter in aqueous samples (Metcalf and Eddy, 2003).  BOD5 to COD 

ratios were also used to evaluate the biodegradeability of organic matter contained in the influent 

and effluent.  A ratio of 0.5 or greater generally implies the waste can easily be treated by 

biological means.  Ratios less than 0.3 are often associated with wastes that may contain toxic 

compounds or require acclimated microorganisms to be treated (Metcalf and Eddy, 2003).  

Dissolved oxygen (DO) measurements were required as part of the analytical technique used to 

measure BOD5.  Alkalinity production and consumption occurs during the transformation of 

nitrogen species that takes place during total nitrogen removal through the processes of 

nitrification and denitrification.  Therefore, alkalinity measurements were conducted as an insight 

into the processes being carried out within the bioretention units.  Total suspended solids (TSS) 

as well as volatile suspended solids (VSS) were measured in order to gain insight on the 

bioretention units ability to remove sediment.  The measurement of pH gives insight on the 

aqueous environmental conditions entering and exiting the units.  Metals concentrations were 

measured to evaluate the ability of the bioretention units to remove these constituents and to 

assess the possibility for toxic effects from the influent to the microbial community within the 

units. 

 

3.1 Phase I: Design, Construction and Acclimation of Bioretention Units 

The first phase of this project included the design, construction and acclimation of the two 

bioretention units.  The reactors were constructed from open top rectangular tanks made of 
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polyethylene, manufactured by American Tank Company, Inc. Each unit measured 30” tall by 24” 

wide and 18” deep, resulting in a volume of 7.5 ft3 or approximately 56 gallons (~212 liters).  

Figure 3.1 shows the specific regions of the bioretention unit and the corresponding dimensions of 

each layer.  Figure 3.1 also illustrates the general flow through the units; the influent entered the 

top of the units and flowed by gravity through the various regions and was discharged through an 

effluent pipe located 8” from the bottom of the unit.   

 

 
Figure 3.1: Front View of Bioretention Units Illustrating Regions  

(Dimensions in inches) 
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From Figure 3.1, it can be noted that there were six distinct regions that made up the bioretention 

units.  From top to bottom these regions were: ponding, mulch, top soil, nitrification, 

denitrification and stone.  The following gives design specifics for the six regions: 

 Ponding Region: 

 Approximately 4 inches in depth 

 Allows for ponding of about 7.5 gallons (28 liters) of stormwater runoff  

 Mulch Region: 

 Approximately 1 inch layer of cedar bark mulch that was purchased from the 

Amherst Farmers Supply store located in Amherst, MA 

 The purpose of the mulch layer is to prevent erosion of the top soil from the 

influent 

 Top Soil Region: 

 Approximately 3 inches of topsoil 

 The topsoil was acquired from a corn field located in Hadley, MA 

 Topsoil was characterized as a silt loam from a soil survey conducted by the 

USDA (1981) and exhibits moderate permeability 

 The top soil’s purpose was to promote ponding and gradual infiltration of 

stormwater runoff into the underlying nitrification layer 
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 Nitrification Region: 

 Total depth of approximately 14 inches 

 Unsaturated zone constructed of sand designed to sustain aerobic conditions 

necessary for of nitrification 

 A blasting sand (“OOS Blasting Sand”) was used within this region that was 

supplied by the Amherst Farmers Supply store located in Amherst, MA 

 Manufactured by Holliston Sand Company, Inc. 

 Grain sizes range from 0.3 to 0.84 mm with approximately 77% by 

weight between 0.5 to 0.71 mm (from manufacturers specifications) 

 Sand provides surface for attached microbial growth 

 

 Denitrification Region:  

 Total Depth of approximately 7 inches 

 Bioreactor outlet was designed to keep this layer saturated, see Figure 3.2 

 One reactor used a Sulfur/Oyster Shell mixture and the other used a woody 

material called De-NyteTM (discussed below) 

 Denitrification media provided a surface for attached microbial growth and 

electron donor for denitrification 

 Stone Layer: 

 Total Depth of approximately 1 inch 

 Angular stone with average size range of 3/8 to 1 inch 

 This stone layer will prevent the denitrification media from clogging the 

effluent piping 
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All of the regions except for the denitrification region were identical in both of the bioretention 

units utilized in this project.  The difference between the denitrification regions was the media 

contained within this region.   

 

The denitrifying media in the unit designed for autotrophic denitrification consisted of a mixture 

of elemental sulfur pellets and crushed oyster shells at a ratio of 3:1 by volume.  This bioretention 

unit will be referred to as “S:OS.”  The sulfur was supplied from the Georgia Gulf Sulfur 

Corporation and is characterized as 4 mm pellets that closely resemble the shape of lentils.  Sulfur 

is a by-product of the oil refinery industry and is inexpensive and readily available.  The process of 

autotrophic denitrification carried out within the S:OS bioretention unit exploited sulfur as the 

electron donor during the denitrification reaction, as discussed in Section 2.2.2.  The crushed 

oyster shell that was included within this region was manufactured by Core Calcium & Shell 

Products of Mobile, AL and was purchased from the Amherst Farmers Supply in Amherst, MA.  

The purpose of the oyster shell was to provide an alkalinity source due to the alkalinity required in 

the process of autotrophic denitrification, discussed in Section 2.2.2.  According to the 

manufacturing specifications, the crushed oyster shell utilized during this project was >97% 

CaCO3 making it a prime source of alkalinity within the S:OS bioretention unit.  Sengupta et al., 

(2007) demonstrated that the S:OS mixture provided high denitrification rates from septic system 

wastewater streams and further investigation of this S:OS mixture for other applications was 

desired.  Therefore, this research project tested the S:OS mixtures ability to remove nitrogen from 

non-point sources, such as stormwater runoff.   
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The denitrifying media in the unit that was designed for heterotrophic denitrification consisted of 

De-NyteTM, which is manufactured by Presby Environmental, Inc. of Sugar Hill, NH.  The De-

NyteTM material was comprised of by volume: 38% maple sawdust, 38% birch sawdust and 25% 

washed concrete sand.  This bioretention unit will be referred to as “Denyte” in this report.  

During studies carried out by Presby Environmental, Inc. the De-NyteTM media demonstrated 

promising nitrate removal rates from septic system effluent (Germano-Presby et al., 2005).  

Therefore, the decision was made to further investigate this media for other applications such as 

treatment of stormwater containing elevated levels of nitrogen.  Along with the high nitrate 

removal rates, both sawdust and concrete sand are readily available and relatively inexpensive, 

making the De-NyteTM media economically attractive.  The process of heterotrophic 

denitrification carried out in the Denyte bioretention unit exploited the organic matter (sawdust) 

as the electron donor during the denitrification reaction, as discussed in Section 2.2.2. 

 

The process of denitrification, both heterotrophic and autotrophic, requires an anoxic 

environment, as discussed in Section 2.2.2.  The bioretention units were designed to promote 

anoxic conditions by keeping the denitrification region submerged.  To achieve this the effluent 

was collected at the bottom of the units using ¾ inch perforated PVC piping located within the 

stone region and then discharged at the top of the denitrification region, 8” above the bottom of 

the units..  This configuration of effluent piping required the water being treated travel through 

the entire depth of the denitrification region prior to being discharged from the reactors but still 

kept the denitrification region submerged.  Figure 3.2 shows the layout of the effluent piping that 

was used.  The ½ inch PVC gas standpipe illustrated in Figure 3.2 provides a vent for the effluent 

piping and prevents N2 gas, produced from denitrification, from collecting in the effluent piping. 
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Figure 3.2: Effluent Piping Layout within Bioretention Units 

 

The pilot-scale bioretention units were initially constructed in the Engineering Laboratory II 

building located on the campus of the University of Massachusetts Amherst.  Construction of the 

units was done from the bottom up (i.e. from stone region up).  The acclimation of the units was 

done simultaneously with the construction of the units in order to establish the necessary 

microbial communities within the denitrification and nitrification regions.  Inoculation started with 

the denitrification region and proceeded to the nitrification region. 

 

The inoculation procedure was identical for both reactors and was conducted at the same time.  

The stone and denitrification media was added to both reactors according to the design 

specifications discussed previously.  Mixed liquor from the Belchertown Wastewater Treatment 

Plant (WWTP) located in Belchertown, MA was collected and allowed to settle in the laboratory.  
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Approximately 1.5 liters of supernatant was decanted and mixed with a sodium nitrate (NaNO3) 

solution with an approximate concentration of 10 mg N/L.  Sufficient volume of this mixture was 

added to both units to recirculate this mixture through the denitrification region.  In order to 

promote anoxic conditions, required for denitrification, the denitrification region was covered 

with plastic so oxygen transfer from the air was inhibited.  The effluent NO3
- concentration from 

both units was monitored daily to measure the extent to which denitrification was occurring.  

Periodically, the region was respiked with NO3
- when the effluent NO3

- concentration decreased 

below 2 mg/L as N.  This inoculation procedure was stopped after 23 days, when satisfactory 

denitrification from both units was observed.   

 

Inoculation of the nitrification regions was carried out in a similar manner as the denitrification 

procedure.  Initially, the nitrification (sand) media was added to both units and mixed liquor was 

acquired from the Belchertown WWTP.  The supernatant from the mixed liquor was added to a 

stock solution containing NaNO3, glycine (Org N) and ammonium chloride (NH4Cl) at 

concentrations of 2 mg N/L, 8 mg N/L and 4 mg N/L, respectively.  For approximately one week 

recirculation was performed in both units.  After a week, recirculation was stopped and both units 

were fed with a solution containing the same compounds at the same concentrations initially used 

without the supernatant.  Approximately 20 liters of this solution was intermittently added to each 

unit daily.  At this point the effluent from both reactors was wasted.  Total nitrogen, NH4
+ and 

NO3
- effluent concentrations from both units were monitored in order to gain insight into the 

extent to which nitrification and denitrification was occurring within the units.  Periodically, 

additional supernatant from the Belchertown WWTP was added to the nitrification region of the 

reactors to increase the microbial population density.  When a satisfactory level of total nitrogen 
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removal was achieved in both units, through the processes of nitrification and denitrification, 

construction of the units was completed by adding the top soil and mulch regions.  Overall, the 

inoculation of the nitrification regions took approximately 45 days.   

 

3.2 Phase II: Laboratory Testing of Bioretention Units 

Phase II of this project consisted of testing the bioretention units under controlled laboratory 

conditions.  This phase of the project was carried out in the Engineering Laboratory II building 

located on the campus of the University of Massachusetts Amherst.  The experimental program 

for testing the bioretention units in the laboratory was designed based on similar research projects, 

characteristics of stormwater runoff from agricultural lands, typical rainfall characteristics for the 

Western Massachusetts region, and the drainage area the bioretention units was expected to treat.  

From the research conducted on these topics the testing protocol, and flowrate, duration and 

chemical make-up of the synthetic stormwater were formulated. 

 

Davis et al. (2001) investigated the use of bioretention systems to treat urban stormwater runoff.  

The general testing procedure utilized by Davis et al. (2001) was the basis for the protocol that 

was followed during Phase II of this project.  The protocol utilized by Davis et al. (2001) 

consisted of applying synthetic stormwater that contained various constituents to the bioretention 

units at a constant flowrate for a specified duration.  The synthetic stormwater’s various 

constituents and their concentrations were based on published values corresponding to urban 

stormwater runoff.  The flowrate and duration were based on an average annual precipitation 

event in the Baltimore, MD-Washington, D.C. area with a duration of six hours.  The bioretention 
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area was set at 5% of the drainage area being treated and a rational method runoff coefficient 

representative of an urban location was utilized to determine the runoff loading applied to the 

bioretention system.  Effluent samples were collected at selected time intervals throughout the 

application of the synthetic stormwater.   

 

This project focused on the treatment of agricultural runoff in the Massachusetts region and 

therefore, some necessary adaptations to the protocol utilized by Davis et al. (2001) were made.  

The Massachusetts Department of Conservation and Recreation’s online precipitation database 

was utilized for historical precipitation values for Amherst, MA, which were then used to 

determine the average annual precipitation event.  A rational method runoff coefficient 

representative of agricultural lands was utilized when determining the application rate and 

duration of synthetic stormwater runoff to the units.  The flowrate and the duration at which the 

synthetic stormwater was applied to the bioretention units along with the basis for these values 

are as follows (see Appendix C for calculations): 

 Flowrate: 240 ml/min (0.063 gpm) 

 Application duration: 6 hours  

 Total volume per rain event was approximately 86.4 liters (22.8 gallons) 

 The rate and duration were based on the following: 

 Average storm total = 0.6 inches  

 Average. storm duration = 6 hours 

 Bioreactor area is 5% of drainage area (USEPA, September 1999) 

 Runoff coefficient of 0.15, representative of grassed land (WEF, 1992) 
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Synthetic stormwater nitrogen and phosphorous concentrations were based on the research 

carried out by Davis et al. (2001) and literature values of nitrogen levels in agricultural runoff.  

Although Davis et al. (2001) studied the treatment of urban stormwater runoff; it was decided not 

to significantly change their levels of nitrogen and phosphorous so that the results obtained in this 

project could be compared with previously published results.  The nitrogen and phosphorous 

concentrations utilized in this project and those used by Davis et al. (2001) are shown in Table 

3.3.  Table 3.3 shows that the addition of NH4
+ was the only difference between the chemical 

make-up of the synthetic stormwater used in Phase II of this project and that used by Davis et al. 

(2001).  The target total nitrogen concentration of 8 mg/L (as N) was applied to the bioretention 

units throughout the laboratory testing of the units.   

Table 3.3: Chemical Make-up of Synthetic Stormwaters During Phase II and Davis et al. (2001) 

Pollutant Chemical Used 
Phase II 

Concentration 
(mg/L) 

Davis et al. (2001) 
Concentration 

(mg/L) 
Nitrate (NO3

-) Sodium Nitrate 2 (as N) 2 (as N) 
Ammonium (NH4

+) Ammonium Chloride 2 (as N) Not Included 
Organic Nitrogen (Org N) Glycine 4 (as N) 4 (as N) 

Phosphate (PO4
3-) Dibasic Sodium 

Phosphate 0.6 (as P) 0.6 (as P) 

 

Estimated concentrations of nitrogen from various agricultural croplands, with and without 

manure applied to the surface, are shown in Table 3.4 (NRCS, 1992).  From these values it can be 

concluded that the 8 mg/L (as N) contained within the synthetic stormwater is fairly 

representative of the nitrogen levels that can be expected in agricultural runoff from croplands.  

Therefore, this synthetic stormwater allowed for the investigation on the use of these bioretention 

units for the treatment of nitrogen in agricultural runoff and also allowed for the results to be 

compared with those of Davis et al. (2001). 
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Table 3.4: Estimated Nitrogen Concentration in Runoff from Agricultural Croplands With and 
Without Manure Applied to Surface (NRCS, 1992) 

Cropping Conditions Dissolved Nitrogen Concentration in Runoff (mg/L as N) 
With Manure Applied Without Manure Applied 

Grass 11.9 3.2 
Small Grain 16.0 3.2 
Row Crop 7.1 3.0 

Rough Plow 13.2 3.0 
 

The experiments carried out in the lab are referred to as “laboratory events.”  During each event 

the synthetic stormwater was applied to both units in an identical manner.  Between events no 

synthetic stormwater was applied to the bioretention units.  One exception to this was between 

the first and second laboratory event, where 20 liters of synthetic stormwater was added every 

three days to both bioretention units.  This was done in order to promote the further establishment 

of the nitrifying and denitrifying microbial communities within the bioretention units. 

 

Two synthetic stormwater storage containers were used during the laboratory events.  One 

contained dechlorinated tap water and the other contained a concentrated solution of the 

constituents being applied to the units.  Based on stoichiometry, the tap water was dechlorinated 

by adding enough sodium thiosulfate to remove an assumed 1 mg/L residual chlorine 

concentration.  The concentrated solution was mixed with the dechlorinated tap water just prior 

to being applied to the units at a ratio that gave the synthetic feed the desired composition shown 

in Table 3.3.  The mixing ratio also resulted in the desired flowrate of 4 ml/sec entering the 

bioretention units.  The type of pump and tubing that was used for the concentrated solution were 

Cole-Parmer Masterflex C/L Model #77120-62 and Cole-Parmer Silicone Tubing (flexible), 

respectively.  The type of pump and tubing that was used for the tap water were Cole-Parmer 
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Masterflex Model #7553-20 and Cole-Parmer Masterflex Tygon Lab Tubing Model #06409-17, 

respectively.   

 

The influent synthetic stormwater flowed by gravity throughout the regions of the bioretention 

units and exited the units through the effluent piping.  The effluent synthetic stormwater from the 

bioretention units was discharged into the sewer.  At selected time intervals, influent and effluent 

synthetic stormwater samples were taken from the S:OS and Denyte units.  Samples were taken at 

the same time from both units in order to keep the testing procedure identical.  Laboratory 

analysis of the samples was conducted in order to gain insight into the overall operation and 

performance of the two bioretention units.  The results of the laboratory events conducted during 

Phase II of this project are presented in Chapter 4.   

 

In addition to the laboratory events, a hydraulic tracer test was conducted during two of the 

events in order to gain insight into the hydraulic characteristics of the units.  This was done by 

spiking the influent for one hour with a bromide (Br-) solution shortly after the start of two 

laboratory events, 75 minutes for event #2 and 45 minutes for event #3.  During the one hour 

spike, the Br- solution, which was made by adding potassium bromide (KBr) to the tap water, was 

added to both units.  The Br- concentration used during the tracer test needed to be high enough 

to diminish the effects of dilution within the units and was set at approximately 1000 mg/L.  Br- 

was used for the hydraulic tracer test because it is stable and can also be analyzed using the IC 

analytical technique, which was already being used for analysis.  The effluent samples taken 

during the laboratory events that had a tracer test conducted were analyzed for Br- to estimate the 
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overall mean hydraulic residence time of both bioretention units.  The results of the tracer study 

are presented in Chapter 4. 

 

3.3 Phase III: Field Testing of Bioretention Units 

The objective of Phase III was to investigate the performance of the bioretention units under field 

conditions.  The same bioretention units that were utilized during Phase II of this project were 

used during Phase III.  The field site was chosen to test the ability of the bioretention units ability 

to remove nitrogen contained in agricultural runoff.  Other factors that played a role in choosing 

an appropriate field site were the geographical location, topography, characteristics of the runoff 

and approval from the landowner.  The experimental program carried out during the field testing 

of the units mimicked the Phase II program as closely as possible to be able to compare the 

laboratory and field results. 

 

Students from the University of Massachusetts Dartmouth, located in Dartmouth, MA, 

collaborated with the UMass Amherst research team during the field testing phase of the project.  

In order to keep travel time and distance to a minimum, an agricultural operation centrally located 

between the two institutions was desired.  Mr. Marc Cohen, Sourcewater Protection Specialist 

with the Atlantic States Rural Water & Wastewater Association, manages rural watersheds in 

Connecticut and agreed to give his assistance in finding an appropriate field site location.  Mr. 

Cohen was aware of possible field site locations in Northeastern CT, which is geographically 

centered between UMass Amherst and UMass Dartmouth.   
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The desire to have a field site centrally located between UMass Amherst and UMass Dartmouth 

established the general area in which Phase III of this project would be conducted.  The next step 

was to find an owner of an agricultural operation in this geographical location that approved of 

the installation and testing of the two bioretention units.  In addition to approval, the topography 

of the land dictated whether the bioretention units could be installed in a manner so control over 

the flow that entered and exited the units was possible.  The need for extensive diversion 

structures was not desired during the field testing so that the impact these temporary units would 

have on the agricultural operation was kept to a minimum.   

 

The characteristics of the agricultural runoff also impacted whether or not an agricultural 

operation would be acceptable for the field testing of the bioretention units.  Originally, it was 

desired to feed the bioretention units runoff from croplands that had manure applied to them, 

since this was the type of runoff investigated during the laboratory testing of the bioretention 

units.  Therefore, the search for an area that had manure applied to it that met the aforementioned 

requirements was carried out in collaboration with Mr. Cohen.  However, after unsuccessfully 

searching for a field site that met these requirements and due to time constraints associated with 

the project, other field testing options were investigated.  Mr. Cohen suggested a dairy farming 

operation located in Putnam, CT that was owned and operated by someone who was very 

interested in assisting us and willing to allow us to field test our units on his dairy farm.  As 

requested, the exact location and the identity of the owner of the dairy farm will be kept 

anonymous.  While visiting the dairy farm, a waste treatment lagoon located on the property was 

discussed as an alternative waste stream to apply to the bioretention units.  Figures 3.3 and 3.4 

show the location of Putnam, CT and an aerial view of the field site, respectively. 



 

 73 
 

 
Figure 3.3: Location of Putnam, CT 

 

 
Figure 3.4: Aerial Layout of Field Site (from Google Earth) 

 

Putnam, CT 
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Waste treatment lagoons are often associated with agricultural waste management plans, as 

discussed in Section 2.4.2.  As shown in Figure 3.4, runoff from the barn and animal holding areas 

was diverted into a sedimentation basin where settleable solids are retained.  Following the 

sedimentation basin, the runoff was conveyed into the waste treatment lagoon.  The contents of 

the waste treatment lagoon were not utilized at the dairy farm operation for fertilization purposes.  

Instead, the contents of the lagoon were released over an overflow spillway when the water level 

of the lagoon reached the spillway elevation.  The overflow from the lagoon then either infiltrated 

the land surface or flowed into a stream located adjacent to the treatment lagoon.  Therefore, this 

overflow from the lagoon could have environmental impacts both to surface waters and 

groundwater depending on the infiltration rate and chemical make-up of the overflow water.  It 

was decided to characterize the water contained in the treatment lagoon and investigate the 

options available for testing the ability of the bioretention units to treat this water.  Samples from 

the waste treatment lagoon were collected on June 1st and June 28th of 2007 to get an initial 

insight into the characteristics of the water being released from the lagoon.  Table 3.5 shows the 

analytical results of these samples with regards to nutrients (nitrogen and phosphorous) and 

organic matter (BOD5 and COD).   

 

Table 3.5: Results of June 1st and June 28th, 2007 Waste Treatment Lagoon Samples 
Analyte June 1st Concentration June 28th Concentration Units 

NO3
- <MDL <MDL mg/L as N 

NO2
- <MDL <MDL mg/L as N 

NH4
+ 64.4 47.6 mg/L as N 

PO4
3- 16.8 19.5 mg/L as P 

BOD5 144 71 mg/L 
COD 1,638 1,347 mg/L 
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Table 3.5 shows that the water contained within the treatment lagoon exhibited relatively high 

levels of nutrients in the form of NH4
+ and PO4

3- as well as organic matter.  From Table 3.5 it can 

be seen that the level of NH4
+ contained within the treatment lagoon was more than 20 times 

higher than that applied to the units during laboratory testing.  The high nitrogen concentration 

contradicted our original plan of testing the units in the field at similar nutrient concentrations as 

those applied to the units in the laboratory.  However, the high concentration of nitrogen 

contained within the lagoon was viewed as an opportunity to observe the performance of the 

bioretention units when used to treat high strength runoff.  Therefore, it was decided to utilize the 

water contained within the waste treatment lagoon as influent to the bioretention units during the 

field testing phase of this project.   

 

Subsequently, a system to apply the water from the treatment lagoon to the bioretention units 

needed to be developed.  It was decided to design a system that conveyed the waste treatment 

lagoon water to the bioretention units that did not rely on the overflow spillway.  This was chosen 

since water from the treatment lagoon was not constantly released over the spillway.  Therefore, 

water could be applied to the bioretention units even during times when water was not being 

released over the spillway.  Piping was installed at the southern end of the waste treatment lagoon 

in order to convey water from the lagoon to the location of the bioretention units (see Figure 3.4).  

The bioretention units were located at the southern end of the waste treatment lagoon because 

this area was not utilized by the dairy farmer and therefore, the field testing of the units would not 

interfere with the dairy farming operation.   
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The influent piping consisted of 1 ¼” PVC piping and was installed in a manner so that the water 

from the waste treatment lagoon flowed by gravity to the bioretention units.  At the time of 

installation, the influent piping intake was set approximately 2” below the water surface of the 

waste treatment lagoon.  The photographs of Figure 3.5 depict the influent piping layout from the 

waste treatment lagoon to the bioretention units.  From Figure 3.5 it can be seen that a single 

intake pipe withdrew water from the waste treatment lagoon.  Prior to discharging the water into 

the bioretention units, the influent piping was divided using a T-connection to convey water to 

both of the bioretention units.  The water was discharged from the influent piping into the top of 

the bioretention units.  Valves were installed at the discharge ends of the piping to control the 

flowrate at which the waste treatment lagoon water was applied to the bioretention units.   

 

 
Figure 3.5: Influent Piping Layout during Field Testing of Bioretention Units 

 

The experiments carried out during Phase III of this project are referred to as “field events.”  In 

order to be able to compare results, the experimental program for testing the bioretention units 

during Phase III of this project was kept similar to the experimental program followed during 

Phase II.  The main difference between Phase II and III was the chemical make-up of the water 

being applied to the bioretention units.  During the field events, the flowrate and duration in which 
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the waste treatment lagoon water was applied to the bioretention units were 4 ml/sec and 6 hours, 

respectively (identical to Phase II), except for Field Events #1 and #3 (see Table 3.6).  At the start 

of each field event the influent valves were adjusted so that a flowrate of 4 ml/sec was achieved.  

Between field events, the influent valves were closed to prevent the waste treatment lagoon water 

from entering the bioretention units.   

 

Influent and effluent samples were collected from the bioretention units at selected time intervals 

during each field event.  Laboratory analysis of the samples was conducted in order to gain insight 

into the overall operation and performance of the two bioretention units.  The influent was left on 

for an extended period during Field Event #3 in order to gain insight into the response of the 

bioretention units to a longer storm event.  Table 3.6 presents the dates on which the field events 

were conducted as well as information pertaining to each of the events.   

Table 3.6: Field Event Dates and Comments 
Field Event Date Conducted Remarks 

#1 August 1, 2007  3 hour event rather than the usual 6 hour 
 Full laboratory analysis conducted on samples 

#2 August 15, 2007  6 hour event 
 Full laboratory analysis conducted on samples 

#3 September 12, 2007  Extended Event – influent applied for 55 hours 
 Samples obtained during 1st 6 hours as usual and at 55 

hours 
 No solids, total phosphorous or pH data for samples 

#4 November 2, 2007  6 hour event 
 No solids, total phosphorous or pH data for samples 

#5 November 28, 2007  6 hour event 
 Full laboratory analysis conducted on samples 

#6 April 2, 2008  6 hour event 
 Full laboratory analysis conducted on samples 

#7 May 7, 2008  6 hour event 
 Full laboratory analysis conducted on samples 
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A total of 7 field events were conducted between August 1, 2007 and May 7, 2008.  No field 

events could be conducted between September 12, 2007 and November 2, 2007 due to an 

extended dry period, which caused the water level of the waste treatment lagoon to drop below 

the intake pipe for the bioretention units.  No field events were conducted between November 28, 

2007 and April 2, 2007 due to the freezing of the waste treatment lagoon.  The results of the field 

events conducted during Phase III of this project are presented in Chapter 4.   
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CHAPTER 4:     RESULTS AND DISCUSSION 

The efficacy of two pilot-scale bioretention systems, modified for total nitrogen removal, was 

investigated through experimental testing of the units in the laboratory (Phase II) and the field 

(Phase III).  During Phase II, the ability of the bioretention units to treat synthetic runoff with 

nitrogen levels expected in runoff from croplands was investigated.  Phase III investigated the 

ability of the bioretention units to treat water from a waste treatment lagoon at a dairy farm in 

Northeastern CT.  The performance of both units was evaluated through laboratory analysis of 

influent and effluent samples throughout Phase II and III.  Table 3.2 summarizes the various 

parameters measured to gather insight into the performance of the two bioretention units.  Phases 

II and III were preceded by Phase I, which established the necessary nitrifier and denitrifier 

microbial communities within the bioretention units.  The results obtained during Phase II and III 

of this research project are presented and discussed in the following sections.   

 

4.1 Phase II Results 

A synthetic stormwater, intended to mimic nitrogen levels contained in runoff from agricultural 

croplands, as discussed in Section 3.2, was used as the influent in Phase II of this project.  A total 

of three laboratory events were performed.  Hydraulic characteristics of the bioretention units 

were also evaluated during Phase II through tracer studies.  Full sets of experimental data from 

Phase II can be found in Appendix A.   

 

Laboratory Event #1 was carried out on April 16, 2007.  A total of two influent samples and six 

effluent samples were collected during this event.  Average influent and effluent concentrations 
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for the various parameters measured are shown in Table 4.1.  Standard deviations from the 

average values are shown in parentheses.   

 

Table 4.1: Average Results of Laboratory Event #1 

Analyte Average 
Influent 

Average S:OS 
Effluent 

Average 
Denyte Effluent Units  

pH 6.8 (0.06) 7.7 (0.51) 6.8 (0.16)   
TN 6.5 (0.66) 4.5 (3.45) 4.1 (2.74) mg/L as N 

NO3
- 2.3 (0.45) 3.7 (2.48) 3.4 (2.84) mg/L as N 

NH4
+ 2.0 (0.19) 1.0 (0.43) 0.6 (0.14) mg/L as N 

TP 0.5 (0.03) 0.2 (0.01) 0.1 (0.01) mg/L as P 
Alkalinity < MDL 74.0 (19.09) 187.3 (67.53) mg/L as CaCO3 

COD 19.4 (4.42) 30.0 (21.73) 41.3 (37.33) mg/L 
BOD5 6.2 (1.29) 15.0 57.9 mg/L 
TSS 0.4 (0.49) 0.8 (0.57) 9. 3 (3.30) mg/L 
VSS 0.1 (0.14) 0.8 (0.57) 6.5 (1.47) mg/L 

*Standard deviations given in ( ), see Appendix A for # of samples used to 
determine standard deviations. 

 

Table 4.1 shows that there was an increase in COD, BOD5, TSS and VSS concentrations in both 

of the bioretention units.  The generation of organics and solids within the bioretention units was 

most likely due to the production of soluble microbial products (SMP) and leaching of organic 

material.  The higher values observed in effluent samples from the Denyte unit was probably due 

to the leaching of organic matter from wood chips in the denitrification zone.  Alkalinity 

production was observed in both of the bioretention units, with the Denyte effluent exhibiting 

higher levels of alkalinity then the S:OS effluent.  This can be explained by the production of 

alkalinity during the process of heterotrophic denitrification and the consumption of alkalinity 

during the process of autotrophic denitrification.  Based on the stoichiometry (equations 2.2, 2.5 

and 2.6); nitrification results in 7.07 grams of CaCO3 consumed per gram of NH4
+ oxidized, 

heterotrophic denitrification results in 3.57 grams of CaCO3 produced per gram of NO3
- reduced 
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and autotrophic denitrification (using elemental sulfur) results in 4.5 grams of CaCO3 consumed 

per gram of NO3
- reduced.  The oyster shell contained within the denitrification region of the 

S:OS unit was expected to replace some of the alkalinity consumed during autotrophic 

denitrification.  Through dissolution studies, Sengupta et al. (2007) found that the oyster shells 

rate of release of alkalinity was approximately 10 mg/L as CaCO3 per day.  Total phosphorous 

removal was achieved in both of the bioretention units, which was most likely due to the sorption 

of phosphorous onto the media contained within the bioretention units (Evangelou, 1998).  

Approximately, 67% and 87% TP removal was achieved within the S:OS and Denyte bioretention 

units, respectively.   

 

The main goal of both bioretention units was TN removal.  However, Table 4.1 shows that lower 

than expected TN removal was achieved in both of the units during the first lab event.  On an 

average basis, only 31% and 36% TN removal was achieved within the S:OS and Denyte 

bioretention units, respectively.  Figures 4.1 and 4.2 shows the influent and effluent nitrogen 

speciation over time during Laboratory Event #1.  The extent to which ammonification, 

nitrification and denitrification were carried out within the bioretention units can explain the low 

level of TN removal achieved.  Excellent ammonification took place in both of the units since 

effluent TN was usually only comprised of NH4
+ and NO3

-.  Moderate rates of nitrification 

occurred in both units, which can be concluded from the relatively low levels of NH4
+ and 

elevated levels of NO3
- in the effluent.  The elevated levels of NO3

- in the effluent of both units 

implies that denitrification was the process limiting the extent to which TN removal was achieved 

within the bioretention units.   
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Figure 4.1: Average Influent and Effluent Nitrogen Species vs. Time for S:OS Unit During 

Laboratory Event #1.  Org N Conc. Calculated by Difference Between TN and NO3
- + NH4

+.  
 

 

 
Figure 4.2: Average Influent and Effluent Nitrogen Species vs. Time for Denyte Unit During 
Laboratory Event #1.  Org N Conc. Calculated by Difference Between TN and NO3

- + NH4
+. 
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Influent and effluent pH did not vary much from neutral, and therefore, no inhibition to the 

processes of nitrification and denitrification were expected due to pH.  Instead, the nitrifying and 

denitrifying microbial communities were most likely not yet established enough to handle the 

nitrogen loading rate.  From Figures 4.1 and 4.2, it can be concluded that initial TN removals 

were high in both units but then the TN removal declined rapidly and TN production was even 

observed.  This can be explained by the initial flushing of the submerged denitrification region that 

contained water that remained in the denitrification region from the previous application.  

Following the initial flushing, the TN levels increased rapidly due to the influent nitrogen loading 

rate exceeding the capacities of the nitrifying and denitrifying microbial communities, especially 

the denitrifying microbial community.   

 

Due to the poor TN removal achieved during Laboratory Event #1, approximately 20 liters of 

synthetic stormwater was applied to both units every 3 to 7 days for 5 weeks (total of 10 

applications) to promote the establishment of the nitrifying and denitrifying microbial 

communities.  Laboratory Event #2 was carried out on June 5, 2007.  A total of two influent 

samples and thirteen effluent samples were taken during this event.  Average influent and effluent 

concentrations for the various parameters are shown in Table 4.2.  The standard deviations from 

the average values are shown in parentheses.   
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Table 4.2: Results of Laboratory Event #2 

Analyte Average 
Influent 

Average S:OS 
Effluent 

Average Denyte 
Effluent Units  

pH 6.7 (0.03) 7.0 (0.21) 6.3 (0.16)   
TN 7.6 (1.69) 0.8 (0.44) 1.4 (0.67) mg/L as N 

NO3
- 1.4 (0.19) < MDL < MDL mg/L as N 

NH4
+ 2.0 (0.32) 0.7 (0.10) 0.2 (0.03) mg/L as N 

TP 0.6 (0.14) 0.3 (0.05) 0.1 (0.03) mg/L as P 
SO4

2- 5.2 (0.19) 54.9 (32.71) 1.0 (1.43) mg/L 
Alkalinity 20.8 (2.47) 179.7 (61.20) 306.7 (121.71) mg/L as CaCO3 

COD 4.1 (0.44) 82.0 (33.74) 124.5 (47.72) mg/L 
BOD5 7.3 (1.89) 19.7 (15.14) 49.2 (27.46) mg/L 
TSS 0.7 (0.49) 2.2 (0.87) 20.7 (10.53) mg/L 
VSS 0.4 (0.14) 1.3 (1.10) 9.4 (2.42) mg/L 

*Standard Deviations given in ( ), see Appendix A for # of samples used to 
determine standard deviations. 

 

As shown in Table 4.2, an increase in COD, BOD5, TSS, VSS and alkalinity concentrations were 

observed in both of the bioretention units during Laboratory Event #2.  These increases were 

most likely due to leaching of organic matter and SMP production, as discussed previously.  Both 

bioretention units had similar TP removal rates as achieved in Laboratory Event #1.  

Approximately, 55% and 84% of the influent TP was removed within the S:OS and Denyte 

bioretention units, respectively.  Figure 4.3 shows the effluent SO4
2- concentrations over time in 

the S:OS unit effluent during Laboratory Event #2.  Based on the stoichiometry of autotrophic 

denitrification using elemental sulfur, 92% of the effluent SO4
2- production could be attributed due 

to sulfur oxidizing denitrification.  The remainder of the SO4
2- produced is most likely due to the 

utilization of O2 as an electron acceptor, especially between synthetic storm events, when O2 from 

the nitrification region can transfer into the denitrification region.  This is confirmed by the initially 

high SO4
2- concentrations observed due to the initial flushing of the denitrification region.  Steady 

SO4
2- concentrations were observed approximately 300 minutes (5 hours) following the start of 
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the influent application, as shown in Figure 4.3.  A 50% decrease in effluent SO4
2- concentration 

was observed approximately 200 minutes (3.3 hours) after the start of the influent application.  

The initial flushing of the denitrification region could be estimated from these results to be 

between 200 and 300 minutes.  This estimate is reinforced by the increase in TN observed in the 

effluent of both units during laboratory Event #1 after 218 minutes, as shown in Figures 4.1 and 

4.2. 
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Figure 4.3: S:OS Effluent SO4

2- Concentration vs. Time During Laboratory Event #2 
 

High TN removals were observed in both of the bioretention units during Laboratory Event #2.  

On an average basis, 89% and 82% of the influent TN was removed by the S:OS and Denyte 

bioretention units, respectively.  The increase in TN removal achieved during Laboratory Event 

#2 can be attributed to the establishment of the microbial community following Laboratory Event 

#1.  Figures 4.4 and 4.5 show the influent and effluent nitrogen speciation over time during 

Laboratory Event #2.  Relatively steady TN removal efficiencies were achieved in both 

bioretention units throughout the entire event.  The rapid increase in effluent TN concentration 

following the initial flushing of the denitrification region that occurred during Laboratory Event 
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#1 did not occur during Laboratory Event #2.  Towards the end of Event #2 there was a slight 

increase in the TN concentration in the S:OS bioretention unit effluent.   

 

 
Figure 4.4: Average Influent and Effluent Nitrogen Species vs. Time for S:OS Unit During 

Laboratory Event #2.  Org N Conc. Calculated by Difference Between TN and NO3
- + NH4

+. 
 

 
Figure 4.5: Average Influent and Effluent Nitrogen Species vs. Time for Denyte Unit During 
Laboratory Event #2.  Org N Conc. Calculated by Difference Between TN and NO3

- + NH4
+. 
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As a result of the increased microbial activity within the bioretention units, it was decided not to 

apply synthetic stormwater to the bioretention units between Laboratory Event #2 and #3.  

Laboratory Event #3 was carried out on June 19, 2007 after an 18 day idle period.  A total of two 

influent samples and eighteen effluent samples were taken during this event.  Average influent and 

effluent concentrations for the various parameters analyzed for are shown in Table 4.3.  The 

standard deviations from the average values are shown in parentheses.   

 

Table 4.3: Results of Laboratory Event #3 

Analyte Average 
Influent 

Average S:OS 
Effluent 

Average Denyte 
Effluent Units  

pH 7.0 (0.04) 7.6 (0.26) 6.7 (0.13)   
TN 7.6 (1.68) 0.6 (0.14) 0.9 (0.27) mg/L as N 

NO3
- 1.5 (0.43) < MDL < MDL mg/L as N 

NH4
+ 2.1 (0.49) 0.43 (0.25) 0.3 (0.20) mg/L as N 

TP 0.6 (0.17) 0.2 (0.04) 0.1 (0.03) mg/L as P 
SO4

2- 5.1 (0.36) 49.0 (30.09) 3.3 (1.17) mg/L 
Alkalinity < MDL 163.3 (60.33) 280.0 (79.40) mg/L as CaCO3 

COD 12.7(0.22) 60.6 (4.36) 87.5 (7.72) mg/L 
BOD5 7.3 (1.90) 13.0 (10.13) 29.3 (13.93) mg/L 
TSS 0.8 (0.35) 2.5 (2.63) 14.4 (6.0) mg/L 
VSS 0.5 (0.35) 2.4 (2.63) 8.2 (0.84) mg/L 

*Standard Deviations given in ( ), see Appendix A for # of samples used to 
determine standard deviations. 

 

An increase in COD, BOD5, TSS, VSS and alkalinity concentrations was observed from both of 

the bioretention units during Laboratory Event #3.  These increases can be explained for the same 

reasons as discussed previously with regards to the results of Laboratory Event #1.  Laboratory 

Event #3 resulted in both bioretention units having similar TP removal rates as those achieved in 

Laboratory Event #1 and #2.  Approximately, 63% and 89% of the influent TP was removed 

within the S:OS and Denyte bioretention units, respectively.  The production of SO4
2- within the 
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S:OS bioretention unit during Laboratory Event #3 was similar to that observed during 

Laboratory Event #2.  Nearly 84% of the S:OS effluent SO4
2- observed during Laboratory Event 

#3 could be attributed to the process of autotrophic denitrification.   

 

Laboratory Event #3 resulted in higher TN removal in both of the bioretention units than that 

achieved in Laboratory Event #2.  On an average basis, 92% and 88% of the influent TN was 

removed by the S:OS and Denyte bioretention units, respectively.  The increase in the TN 

removal achieved during Laboratory Event #3 further reinforced that a robust microbial 

community of nitrifiers and denitrifiers had been established in both of the bioretention units.  

Figures 4.6 and 4.7 show the influent and effluent nitrogen speciation over time during 

Laboratory Event #3.  Steady and excellent TN removal was achieved in both of the units 

throughout Event #3.   

 

 
Figure 4.6: Average Influent and Effluent Nitrogen Species vs. Time for S:OS Unit During 

Laboratory Event #3.  Org N Conc. Calculated by Difference Between TN and NO3
- + NH4

+. 
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Figure 4.7: Average Influent and Effluent Nitrogen Species vs. Time for Denyte Unit During 
Laboratory Event #3.  Org N Conc. Calculated by Difference Between TN and NO3

- + NH4
+. 

 

The final Laboratory Event (#3) resulted in excellent nitrogen and phosphorous removal by both 

of the bioretention units.  Davis et al. (2001) observed approximately 80% phosphorous removal, 

65-75% TKN removal, 60-80% NH4
+ removal and less than 20% NO3

- removal during laboratory 

testing of conventional bioretention units.  Laboratory Event #3 resulted in an average of 63% 

(S:OS) and 93% (Denyte) TP removal, 90% and 85% TKN removal, 80% and 88% NH4
+ 

removal and >95% (S:OS and Denyte) NO3
- removal.  When compared to the results of Davis et 

al. (2001) it can be concluded that the bioretention units utilized during this project met or 

exceeded most of their removal efficiencies.  The major difference in the results obtained in this 

project was the excellent NO3
- removal compared to the poor NO3

- removal of Davis et al. 
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Kim et al. (2003) conducted a series of laboratory tests to evaluate the performance of various 

electron donors for denitrification.  During these laboratory studies, Kim et al. (2003) concluded 

that shredded newspaper out-performed the other electron donors, which included wood chips 

and elemental sulfur, the two electron donors utilized during this research project.  During column 

studies, small sulfur particles (0.6 to 1.18 mm) resulted in 91% NO3
- removal compared to only 

30% NO3
- removal when large sulfur particles (2 to 2.36 mm) were used.  This is an interesting 

finding since this project observed >95% NO3
- removal when using even larger sulfur particles (4 

mm).  Kim et al. (2003) utilized limestone as an alkalinity source within the denitrification region, 

where as this project utilized crushed oyster shell as an alkalinity source.  Therefore, the 

difference in findings could be due to the different sources of alkalinity utilized.  The careful 

acclimation of the bioretention units during this project could also have been a factor in the 

difference in results from those of Kim et al. (2003). 

 

Kim et al. (2003) conducted pilot-scale studies utilizing shredded newspaper as the electron donor 

within the denitrification region.  Kim et al (2003) observed 70 to 80% NO3
- removal from the 

bioretention unit with shredded newspaper as the electron donor.  Whereas, this research project 

observed >95% NO3
- removal within pilot-scale bioretention units utilizing elemental sulfur and 

wood chips as electron donors.  Similar testing procedures, with regards to the concentration of 

NO3
-, flow rates and the application duration, were utilized by Kim et al. (2003) to those utilized 

during this research project.  Therefore, the performance observed during this research project 

contradicts the findings of Kim et al. (2003) that shredded newspaper out performs elemental 

sulfur and wood chips when utilized as an electron donor.   
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As noted previously, tracer studies were also conducted during Phase II of this project.  The 

tracer studies were conducted during Laboratory Event #2 and #3 in an effort to estimate the 

overall mean hydraulic residence times of both bioretention units.  The first tracer study 

conducted during Laboratory Event #2 was not conducted in a manner that would allow for a 

particularly good estimate of the hydraulic residence times.  The reason for poor results of the 

first tracer study is two-fold.  First of all, the Br- solution was not added soon enough following 

the start of Laboratory Event #2, which resulted in poor breakthrough of the tracer in the effluent 

during the duration of the event.  Also, sampling of the effluent was not carried out for a long 

enough period of time to see the Br- concentration in the effluent rise to a maximum and diminish.  

Therefore, it was decided to conduct another tracer study during Laboratory Event #3.  However, 

this time the Br- tracer pulse was introduced to both bioretention units earlier and the duration of 

effluent sampling was increased.  These changes resulted in a better effluent Br- breakthrough 

curve that rose to a peak concentration and diminished thereafter.  Figure 4.8 illustrates both 

bioretention units’ effluent Br- concentration over time during Laboratory Event #3.   
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Figure 4.8: Effluent Br- Concentration vs. Time During Laboratory Event #3 

 

The results of the Br- pulse input tracer study conducted during Laboratory Event #3 were 

analyzed following the exit age distribution method of Lawler and Benjamin (2006).  This exit age 

distribution method allows for the estimation of the mean residence time of a hydraulic system.  

Based on the exit age distribution method, the overall mean hydraulic residence times were 

estimated to be approximately 6 hours and 4.3 hours for the S:OS and Denyte bioretention units, 

respectively.  The difference in the hydraulic residence times is most likely due to the difference in 

denitrification media within the two bioretention units, since the rest of the media in the units 

were the same.  Appendix A contains the full set of data and calculations utilized to achieve the 

mean hydraulic residence time estimations. 

 

Figure 4.8 shows that the initial breakthrough of Br- in the effluent took approximately 250 
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effluent concentration to diminish and reach steady state (200 to 300 minutes as shown in Figure 

4.3) as well as with the increase in effluent TN concentrations from both reactors observed in 

laboratory Event #1 (218 minutes as shown in Figures 4.1 and 4.2).  Therefore, 250 minutes 

would be a good estimate for the time it takes to initially flush the submerged denitrification 

region. 

 

Based on the stoichiometry of denitrification, the mass of substrate supplied within the 

denitrification regions and the amount of NO3
- reduced per year the denitrification life expectancy 

of both units was estimated.  The amount of substrate contained within the units denitrification 

region was estimated to be 2.6 kg of organic matter (cellulose) within the Denyte unit and 42.1 kg 

of sulfur within the S:OS unit.  The amount of cellulose available was based on the methods of 

Germano-Presby et al. (2005) and the amount of sulfur available was determined by the volume of 

sulfur added to the S:OS unit.  The amount of NO3
- reduced per year was based on 80 rain events 

per year, which was the number of rain events used to determine the average storm for the 

Western MA region.  Each rain event would input approximately 691 mg NO3
- -N to the units.  

Based on the methods used by Germano-Presby et al. (2005), it was determined that the 

denitrifying life expectancy for the Denyte unit would be approximately 16.5 years, see Appendix 

C for calculations.  Based on Equation 2.6, approximately 2.5 g of sulfur is consumed per gram of 

NO3
- reduced and from this it was estimated that the denitrifying life expectancy of the S:OS unit 

would be approximately 305 years, see Appendix C for calculations. These estimates are solely 

based on denitrification abilities and do not reflect the actual sustainability of the units.   
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In reality, these units would most likely require some maintenance on an annual basis or even 

more frequently in order to maintain optimal performance.  The type of maintenance that can be 

expected is the visual inspection of the top soil and mulch layer to check for erosion and 

inspection of the proper flow through the units during wet weather events to make sure water is 

flowing correctly into and out of the units.  Major maintenance such as replacing material (top 

soil, sand, denitrification substrates, etc.) would most likely need to take place on a less frequent 

interval, such as every 5 to 10 years.  The denitrification life expectancy estimates of 16.5 and 305 

years for the Denyte and S:OS units, respectively, do not necessarily establish the time between 

replacement of these substrates since they are solely based on reduction of NO3
-.  In reality, these 

substrates most likely will break down and be unavailable for denitrification more rapidly, and 

therefore, will need to be replaced more frequently.  Replacement of materials every 5 to 10 years 

is solely an estimate and the actual maintenance requirements should be based on the operation 

and performance of the units.  The actual real-life sustainability of these units will not be 

completely established until full-scale bioretention units are installed and operated for an extended 

period of time.   

 

4.2 Phase III Results 

Water from a waste treatment lagoon at a dairy farm in Putnam, CT was supplied to the 

bioretention units during Phase III of this project.  A total of seven field events were performed 

between August 2007 and May 2008.  Influent and effluent samples were obtained during each 

field event in order to gain insight into the performance of the two bioretention units.  The time 
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frame for Phase III allowed for the observation of the response of the bioretention units to 

seasonal changes.  Full sets of experimental data for the field events are included in Appendix B. 

 

The waste treatment lagoon exhibited much higher concentrations of nutrients, nitrogen and 

phosphorous, when compared to the concentrations applied to the units during Phase II.  Samples 

obtained from the treatment lagoon revealed relatively high levels of COD, BOD5 and suspended 

solids within the lagoon.  Solids were not applied to the units during Phase II of this project.  

Therefore, the increased nutrient concentrations and the presence of high concentrations of 

organic material and solids made the waste treatment lagoon water a drastic change in influent for 

the bioretention units.  The average composition of the waste treatment lagoon effluent during 

field testing of the bioretention units is shown in Table 4.4. 

 

Table 4.4: Average Composition of Waste Treatment Lagoon during Phase III 
Analyte Average  Maximum  Minimum Units  

pH 7.8 7.9 7.4  - 
TN 81.5 114.0 39.6 mg/L as N 

NO3
- <MDL 3.8 - mg/L as N 

NO2
- <MDL - - mg/L as N 

NH4
+ 29.7 56.0 10.6 mg/L as N 

TP 45.1 57.5 21.2 mg/L as P 
PO4

3- 23.5 30.1 10.1 mg/L as P 
Alkalinity 687.2 925.0 372.5 mg/L as CaCO3 

COD  1759.4 3258.1 185.2 mg/L 
BOD5 185.2 291.3 113.1 mg/L 
TSS  508.0 114.7 1,440.0 mg/L 
VSS 461.3 1334.0 105.3 mg/L 
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A comparison between Tables 4.4 and 2.2 shows that the waste treatment lagoon had similar 

characteristics to anaerobic lagoons operated at other dairy farms.  This is likely due to the lack of 

aeration of the treatment lagoon at the dairy farm where Phase III was carried out.   

 

During Field Event #1, the waste treatment lagoon water was applied for only 3 hours instead of 

the usual 6 hours.  This was done to promote the initial acclimation of both bioretention units to 

the change in influent from Phase II to Phase III.  During Field Event #3, the influent was applied 

to the units for an extended period to observe their response to a continuous application of 

influent.  For the rest of the field events the waste treatment lagoon water was applied to both 

bioretention units for 6 hours at a flowrate of 4ml/sec.  Detailed results from each field event will 

not be presented within the text of this document, but can be viewed in Appendix B.  The results 

of a field event, following the acclimation carried out in Field Event #1 and prior to the freezing 

of the units in the winter, will be presented to show the typical field performance of both 

bioretention units.  The response of the units to freezing will be presented through the discussion 

of results obtained during the spring 2008 field events. 

 

The results from Field Event #2, which was carried out on August 15, 2007, will be presented to 

illustrate the typical performance of the bioretention units during the field events conducted in the 

late summer and fall of 2007.  The average results of Field Event #2 are summarized in Table 4.5. 

 

 

 

Table 4.5: Results of Field Event #2 – Typical Performance during Summer/Fall 2007 Events 
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Analyte Influent Average S:OS 
Effluent 

Average Denyte 
Effluent Units  

pH 7.9 7.0 6.5   
TN 82.8 37.6 48.2 mg/L as N 

NO3
- < MDL < MDL < MDL mg/L as N 

NO2
- < MDL < MDL < MDL mg/L as N 

NH4
+ 21.8 8.4 9.3 mg/L as N 

TP 51.6 16.6 19.8 mg/L as P 
PO4

3- 28.8 < MDL < MDL mg/L as P 
SO4

2- 27.1 441.4 22.4 mg/L 
Alkalinity 891.0 469.7 615.2 mg/L as CaCO3 

COD 1,215.8 694.7 789.8 mg/L 
BOD5 143.7 49.7 95.2 mg/L 
TSS 252.0 31.3 67.8 mg/L 
VSS 222.0 25.2 54.7 mg/L 

 

From Table 4.5 it can be seen that the influent water had high alkalinity and a decrease in 

alkalinity was observed in the effluent from both bioretention units.  Based on the stoichiometry, 

approximately, 245 mg/L and 50 mg/L of the alkalinity (as CaCO3) consumed within the S:OS 

and Denyte units, respectively, was due to the processes of nitrification and denitrification (see 

Appendix C for calculations).  The remainder of the alkalinity consumed within both bioretention 

units was most likely due to changes of the influent carbonate system within the units.   

 

SO4
2- measurements were taken in order to gain insight into the levels of SO4

2- being produced 

within the S:OS denitrification region.  During Field Event #2 the S:OS effluent SO4
2- 

concentration declined over time, most likely due to the initial flushing of the denitrification region 

as discussed previously with regards to the results of the laboratory events.  However, the field 

event effluent SO4
2- concentrations were much higher than those observed during the laboratory 

events.  On and average basis, only 37% of the SO4
2- observed in the effluent could be attributed 

to the process of autotrophic denitrification within the S:OS bioretention unit.  The remainder of 
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the SO4
2- produced was most likely due to the utilization of O2 as an electron acceptor, especially 

between events when O2 in the nitrification region could transfer into the denitrification region.  

This is confirmed by the initial higher SO4
- concentrations observed due to the flushing of the 

denitrification region.   

 

The S:OS bioretention unit removed an average of 88% and 89% of the influent TSS and VSS, 

respectively.  The Denyte unit achieved an average of 73% and 75% of the influent TSS and VSS.  

Total suspended solids have been reported to be reduced by 90% in conventional bioretention 

units (PGDER, 1993).  Both bioretention units exhibited fairly constant TSS and VSS removal 

throughout the entire 6 hour duration of Field Event #2.  TSS and VSS removal in the 

bioretention units is due to the media filtering out solids.  The top soil region most likely retained 

the majority of the solids due to the relatively low permeability of this region.   

 

Field Event #2 resulted in an average of 68% (S:OS) and 62% (Denyte) TP removal and greater 

than 99% removal of PO4
3- in both bioretention units.  PO4

3- removal accounts for approximately 

82% and 90% of the TP removal observed from the S:OS and Denyte bioretention units, 

respectively.  Approximately 15% and 14% of the TP removal was estimated to be due to VSS 

removal within the S:OS and Denyte units, respectively.  This estimate was made by assuming 

that C5H7O2N1P0.1 was the chemical formula for VSS (Rittmann and McCarty, 2001).  From these 

results, it can be concluded that adsorption of PO4
3- and filtration of VSS removal are the two 

major removal mechanisms of TP within the bioretention units.   
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Table 4.5 shows that COD and BOD5 concentrations in the waste treatment lagoon were 

relatively high.  The S:OS unit removed an average of 43% and 65% of the influent COD and 

BOD5, respectively.  The Denyte unit removed an average of 35% and 34% of the influent COD 

and BOD5, respectively.  Approximately 54% and 56% of the COD removal was estimated to be 

due to VSS removal within the S:OS and Denyte units, respectively.  The BOD5 removed by the 

bioretention units was due to the biological decomposition of organic matter.  Figure 4.9 (S:OS) 

and Figure 4.10 (Denyte) show the concentrations of COD and BOD5 in the influent and effluent 

samples collected during Field Event #2. 

 
Figure 4.9: S:OS COD and BOD5 during Field Event #2 
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Figure 4.10: Denyte COD and BOD5 during Field Event #2 

 

Figures 4.9 and 4.10 show that the effluent COD concentration from both bioretention units 

increased over time.  The lower initial COD concentration was most likely due to the flushing of 

the submerged denitrification region containing the water from the previous influent application.  

The water retained between events had an extended period for biological treatment to occur.  The 

same trend over time occurs for BOD5, but not as drastically did for the COD.  This is probably 

due to the fact that the BOD5 fraction of COD is generally readily biodegradeable.  Therefore, the 

removal of BOD5, throughout the entire field event, remains relatively constant due to the 

biodegradation occurring within the units.   

 

The mediocre removal of COD and BOD5 observed during Field Event #2 could have been due to 

the low BOD5 to COD ratio of the influent.  Ratios less than 0.3 are often associated with 

wastewater that can be difficult to treat biologically (Metcalf and Eddy, 2003).  The waste 

treatment lagoon exhibited a ratio of approximately 0.1, and therefore, implies that biological 

treatment could be difficult.  
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Moderate removal of nitrogen was accomplished by the bioretention units.  On an average, the 

mass removal rate was approximately 0.13 mg/L-min and 0.10 mg/L-min of nitrogen removed by 

the S:OS and Denyte units, respectively.  The S:OS and Denyte units achieved an average TN 

removal of 55% and 42%, respectively.  The removal of NH4
+ accounts for 30% and 36% of the 

TN removal attained by the S:OS and Denyte units, respectively.  Approximately, 53% and 59% 

of the TN removal was estimated to be due to VSS removal within the S:OS and Denyte units, 

respectively, by assuming an empirical chemical formula for VSS of C5H7O2N1P0.1.  Figure 4.11 

(S:OS)  and Figure 4.12 (Denyte) illustrate the speciation of nitrogen in the influent and effluent 

samples taken during Field Event #2.  NO3
- and NO2

- were below the method detection limit for 

all samples collected during Field Event #2, and therefore, are not included in Figures 4.11 and 

4.12. 

 

 
Figure 4.11: S:OS Nitrogen Speciation during Field Event #2.  Particulate + Dissolved Org N 
Conc. Calculated by Difference Between TN and NO3

- + NH4
+.  Particulate Org N Fraction 

Determined by Assuming an empirical formula of C5H7O2N1P0.1 for VSS. 
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Figure 4.12: Denyte Nitrogen Speciation during Field Event #2.  Particulate + Dissolved Org N 

Conc. Calculated by Difference Between TN and NO3
- + NH4

+.  Particulate Org N Fraction 
Determined by Assuming an empirical formula of C5H7O2N1P0.1 for VSS. 

 

Figures 4.11 and Figure 4.12 show that effluent TN concentrations from both units increased over 

time.  The lower initial TN concentration is most likely due to the flushing of the submerged 

denitrification region containing the water from the previous influent application.  The water 

retained between events has had an extended period for biological treatment to occur.  Following 

the flushing of this water, the TN concentration increases, possibly due to the nitrogen levels 

entering the bioretention units overwhelming the nitrifying and denitrifying microbial 

communities.  The lack of NO3
- and NO2

- in the effluent suggests that excellent denitrification 

occurred in both units.  The presence of NH4
+ in the effluent implies complete nitrification did not 

occur in the units.  Influent and effluent pH values did not vary much from neutral pH, and 

therefore, no inhibition to the processes of nitrification and denitrification were expected due to 

pH.  Figures 4.11 and 4.12 show that effluent NH4
+ concentrations did not make up the majority 

of the effluent TN concentration.  This implies another factor most likely controlled the extent to 

which the bioretention units could remove TN.   
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The fraction of particulate and dissolved Org N in the influent and effluent samples suggest that 

the transformation of Org N to NH4
+ (ammonification) most likely limited the extent of TN 

removal.  Ammonification must occur prior to nitrification, and therefore, if it does not occur the 

Org N cannot be removed through the process of denitrification. Ammonification occurs either 

through hydrolysis of Org N, in the form of urea, or through heterotrophic decomposition of 

organic matter, as discussed in Section 2.2.  During Field Event #2, the TN contained in most 

samples was composed of 77% to 79% Org N.  Therefore, these high fractions of Org N imply 

that the extent to which the processes of hydrolysis and/or heterotrophic decomposition of 

organic matter occurred within the bioretention units was limited.   

 

The limited ammonification occurring within both bioretention units led to the mediocre TN 

removal observed during Phase III of this project.  Currently, Umass Dartmouth students are 

investigating pretreatment of the waste treatment lagoon water prior to application to the 

bioretention units.  The goal of the pretreatment process is to remove organic carbon through 

methanogenesis and to promote the process of ammonification.  Pretreatment is expected to 

increase the extent to which TN removal can be achieved by the bioretention units.  Results from 

Umass Dartmouth have not yet been generated at this time, and therefore, are not included in this 

Thesis.   

 

As noted previously, the influent was left on for an extended period during Field Event #3 to 

observe the response of the units to continuous application of influent over an extended storm 

event.  Field Event #3 was initially carried out in the same fashion as the other field events, 
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sampling over 6-hour period.  After the usual 6-hour field event, the influent was left on for two 

additional days.  Influent and effluent samples were obtained after two days, a total of 55 hours 

after the initial start of Field Event #3.  Table 4.6 summarizes the results with regard to TN 

concentration. 

 

Table 4.6: Results of Extended Influent Application – Field Event #3 

Sample Sample Time After 
Start of Event (hr) 

Total Nitrogen Concentration (mg/L as N) 
S:OS Denyte 

Influent #1 6 90.3 
Influent #2 55 79.0 

   
Effluent #1 2 22.8 12.1 
Effluent #2 4 31.3 26.8 
Effluent #3 6 41.0 35.5 
Effluent #4 55 58.0 66.0 

 

Table 4.6 shows that a decrease in TN removal was observed when the influent was applied for an 

extended period.  The effluent TN concentration from both units after 55 hours was higher than 

the effluent concentrations observed after 6 hours.  These results demonstrate that under the field 

testing conditions, the bioretention units perform better when the influent is intermittently applied 

to the units.  Allowing the units to be idle between influent applications permits further treatment 

of the water contained within the submerged denitrification region, resulting in better average TN 

removal from both of the bioretention units. 

 

Figure 4.13 illustrates the influent and effluent average TN concentrations observed during each 

field event conducted during Phase III of this project.  It should be noted that Field Event #1 was 

only carried out for 3 hours rather than the usual 6 hours.  Also, no field events could be 

conducted between September 12, 2007 and November 2, 2007 due to an extended dry period, 
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which caused the water level of the waste treatment lagoon to fall below the intake pipe.  The 

results of Field Event #4 show that both bioretention units performed well after this 50 day 

dormant period.  An increase in TN removal was observed between Field Event #2 and Field 

Event #4.  This increase in performance is most likely due to the further acclimation of the 

microbial communities to the waste treatment lagoon effluent.  Field Event #4 resulted in the best 

average TN removal, with approximately 76% and 74% achieved from the S:OS and Denyte 

units, respectively.  Field Event #5 resulted in a decrease in performance from both bioretention 

units.  This is most likely due to a decrease in microbial activity due to the lower temperature at 

which this field event was conducted.  The waste treatment lagoon froze over following Field 

Event #5.  Field testing of the bioretention units resumed in the Spring of 2008 when the waste 

treatment lagoon thawed.   
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Figure 4.13: Summary of Average TN Removal during Phase III 

 

Figure 4.13 shows a decrease in the influent TN concentration following Field Event #5.  This can 

be explained by an operational change at the dairy farm where Phase III of this project was 
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bioretention units compared with the Summer and Fall 2007 events was most likely due to the 

freezing of the bioretention units during the winter months.   

 

The microbial communities within the bioretention units most likely were detrimentally affected 

due to the freezing of the units.  Therefore, the extent to which biological denitrification occurred 

decreased within the bioretention units after thawing.  In addition, the freezing and subsequent 

thawing of the media within the units could have caused “cracking” within the media structure, 

creating short-circuits within the units.  This is reinforced by high solids concentrations observed 

in the effluent from the S:OS unit during Field Event #6, which could explain the S:OS effluent 

TN concentration being higher than the influent TN concentration.  Short-circuiting would allow 

for the flushing of solids contained within the S:OS from previous field events, with higher 

influent TN concentration, being flushed from the units and in turn resulting in higher effluent TN 

concentrations than those in the influent.  The solids contained in the effluent of the Denyte unit 

during Field Event #6 were not abnormally high, and therefore, could explain the TN removal 

achieved. 

 

Figure 4.13 shows that the second field event following the winter months, Field Event #7, had an 

increase in TN removal both bioretention units when compared with Field Event #6.  This is most 

likely explained by the re-acclimation of the microbial communities within the bioretention units.  

In addition, the solids contained in the S:OS effluent decreased from Field Event #6, implying that 

the short-circuiting affect decreased.  During Field Event #6 and #7, the Denyte unit out 

performed the S:OS unit.  This suggests that heterotrophic denitrifiers survive freezing and 

rebound better than autotrophic denitrifiers.   
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Overall, it appeared that the Denyte bioretention unit performed better than the S:OS bioretention 

unit when treating the waste treatment lagoon effluent during Phase III.  Of the seven field events 

conducted, five resulted in the Denyte unit achieving better TN removal than the S:OS unit.  The 

Denyte unit also outperformed the S:OS unit following the winter months, implying that the 

Denyte unit is less affected by seasonal changes.   

 

Due to the reduced performance observed from the units during Phase III, the denitrification life 

expectancy was not estimated for the units.  The maintenance requirements previously discussed 

with regards to the laboratory testing would also be necessary under field conditions.  Full-scale 

testing of the units under real-life conditions should be carried out so that the actual life 

expectancy and maintanence requirements can be established for the bioretention units. 
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CHAPTER 5:     CONCLUSIONS 

The overall objective of this research was to develop a robust and efficient bioretention system to 

control non-point sources of nitrogen.  Specifically, the design, acclimation, operation and 

performance under various conditions were investigated.  Two pilot-scale denitrifying 

bioretention systems were investigated, one was used to carry out autotrophic denitrification 

(S:OS unit) and the other was used to carry out heterotrophic denitrification (Denyte unit).  The 

experimental program was performed in three phases.  Phase I and II took place in a laboratory 

setting and Phase III took place under field conditions. 

 

During Phase I the nitrifying and denitrifying microbial communities were acclimated in the two 

bioretention units.  The acclimation of the denitrification and nitrification regions took 

approximately 23 days and 45 days, respectively.  In Phase II, a synthetic stormwater intended to 

mimic nitrogen levels contained in runoff from agricultural croplands, was used as the influent.  

Water from a waste treatment lagoon at a dairy farm in Northeastern CT was used as the influent 

during Phase III. 

 

Excellent performance was observed in both bioretention units during Phase II.  The final 

laboratory event resulted in an average of 63% (S:OS) and 93% (Denyte) TP removal, 92% and 

88% TN removal, 90% and 85% TKN removal, 80% and 88% NH4
+ removal and >95% (S:OS 

and Denyte) NO3
- removal.  The level of nitrogen removal observed from both bioretention units 

exceeded those observed in similar studies.  The high level of nitrogen removal observed during 

Phase II was most likely due to the proper design of the units and the careful acclimation of the 

microbial communities within the units.  The mean hydraulic residence times were estimated based 
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on data from a tracer test as 6 hours and 4.3 hours for the S:OS and Denyte bioretention units, 

respectively.   

 

Moderate removals of TN, TP, solids and organic material were observed during Phase III of this 

study.  A typical field event (Event #2) resulted in 55% (S:OS) and 42% (Denyte) TN removal, 

68% and 62% TP removal, 88% and 73% TSS removal, 89% and 75% VSS removal, 43% and 

35% COD removal, and 65% and 34% BOD5 removal.  Ammonification appeared to limit the 

extent to which TN removal could be achieved, due to the presence of high Org N concentrations 

observed in the effluent from both bioretention units.  Currently, the UMass Dartmouth team is 

investigating pretreatment of the influent prior to application of the bioretention units to remove 

organic carbon and promote ammonification.  Pretreatment is expected to increase the extent to 

which TN removal can be achieved by the bioretention units.   

 

Phase III demonstrated that the bioretention systems operated better when the influent was 

intermittently applied rather than applied for an extended period.  Idle time in between events 

permits further treatment of the water in the submerged denitrification region, resulting in better 

average TN removal. 

 

The time frame in which Phase III was carried out allowed for observations of the response of the 

units to seasonal changes.  Both bioretention units performed well after a 50 day dormant period 

induced by dry weather.  During cold temperatures, a decrease in the performance was observed, 

which was most likely due to reduced microbial activity within the units.  Freezing of the 

bioretention units over the winter negatively affected their performance during the Spring.  This 
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could be due to detrimental affects to the microbial communities.  Also, due to elevated levels of 

solids in the effluent from the bioretention units it is expected that the freezing and subsequent 

thawing of the media within the units could have caused “cracking” of the media structure, 

creating short-circuiting within the S:OS bioretention unit.  However, the bioretention units 

showed an improvement in performance in the second field event conducted during the Spring of 

2008.  This implies that the bioretention units can re-acclimate themselves after freezing during 

the winter months.   

 

Overall, the results of this research project demonstrate that bioretention units can be used to 

achieve total nitrogen removal from stormwater runoff.  However, the characteristics of the 

stormwater runoff will dictate the performance of the bioretention units.  Phase II showed that 

bioretention units can achieve excellent TN removal from runoff that is characteristic of 

agricultural croplands.  Phase III showed that the treatment of high strength runoff from dairy 

farm waste treatment lagoons was challenging for the bioretention units.   

 

In comparison, the S:OS and Denyte bioretention units performed similarly during Phase II.  

However, the Denyte unit appeared to perform better than the S:OS unit during Phase III.  The 

Denyte unit achieved higher average TN removals than the S:OS in most of the field events.  The 

Denyte unit also outperformed the S:OS unit following the winter months, implying that the 

Denyte unit was less affected by low temperatures. 
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Suggestions for further research include: 

 Observe the performance of both bioretention units when the pretreatment step, being 

investigated by UMass Dartmouth, is carried out at the dairy farm in Putnam, CT. 

 Conduct full-scale experiments of a bioretention unit used to treat runoff from agricultural 

lands with manure applied.  Due to the challenges observed during Phase III of this project 

it would not be recommended to attempt treatment of such high strength waste with a full-

scale bioretention unit.  Since the Denyte unit outperformed the S:OS unit it would be 

recommended to use organic matter as the denitrification substrate in the full-scale unit 

rather than sulfur. 

 Carry out full-scale experiments for a long enough period to get an idea of the actual life 

expectancy of the units and the timeline for which maintenance and replacement of media 

is required.   
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APPENDIX C: Sample Calculations 
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Calculation of Flowrate: 
 
Bioretention Surface Area = 2’ X 1.5’ = 3 ft2 

 
Bioretention Area is 5% of Drainage Area  Drainage Area = 3 ft2 / 0.05 = 60 ft2 

 
Rational Method Runoff Coefficient = 0.15 (grassed lands) 
 
Therefore Actual Drainage Area of Bioretention Units are 60 ft2 / 0.15 = 400 ft2 
 
With Above information the flowrate was calculated as follows: 
 
Average Storm Total = 0.6” ; Storm Duration = 6 hours 
 
400 ft2 X 0.15 X (0.6/12)’ = 3 ft3 or 22.5 gallons  runoff volume from drainage area 
 
Flowrate = 22.5 gallons / 6 hours = 3.75 gallons/hour or ~ 0.063 gpm or ~ 4 ml/min 
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Field Event #2 TN, TP and COD removals due to VSS Removal: 
Data for Field Event #2:          

  

Average 
VSS 

(mg/L) 
Average TN 
(mg/L as N) 

Average TP 
(mg/L as P) Average COD (mg/L)       

Influent 222 82.75 51.56 1215.8       
S:OS Effluent 25.2 37.55 16.59 694.7       
Denyte Effluent 54.7 48.2 19.77 789.8       
Average Removals:          

  
VSS 

(mg/L) 
TN (mg/L as 

N) 
TP (mg/L as 

P)  COD (mg/L)       
S:OS 196.8 45.2 34.97 521.1       
Denyte 167.3 34.55 31.79 426       
           
Using the following assumptions I calculated how much COD, TN and TP removal 
was due to VSS removal: 

      
      

1) VSS Chemical Formula = C5H7O2NP0.1 (From Rittmann and McCarty)       
2) 1.42 mg COD/ mg VSS          
           
Calculated removals due to VSS removal:         
   TN (mg/L as N) TP (mg/L as P)  COD (mg/L)       
 S:OS 23.8 (52.7%) 5.1 (14.6%) 279.4 (53.6%)       
 Denyte 20.2 (58.5%) 4.3 (13.5%) 237.5 (55.8%)       
           
Example Calculations:          
For S:OS TN removal: (196.8 mg C5H7O2NP0.1/L) * (14 g N/116 g C5H7O2NP0.1) = 23.8 mg/L of N removed from VSS removal 
For S:OS TP removal: (196.8 mg C5H7O2NP0.1/L) * (30*0.1 g P/116 g C5H7O2NP0.1) = 5.1 mg/L of P removed from VSS removal 

For S:OS COD removal: 
( 222 mg COD - 25.2 mg COD) * (1.42 g COD/ g VSS) = 279.4 mg/L of COD removed from VSS 
removal  
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Lab Event #3 and Field Event #2 Sulfate Production Due to Denitrification: 
       
Based on 
Stoichiometry:      
7.54 g SO4 produced / g NO3 reduced    
       
Lab Event #3:       
Inf. TN = 6.1  5.46 mg NO3 reduced/L  
Avg. Eff TN = 0.64     
       
Therefore: 5.46 * 7.54 = 41.1 g SO4 produced/L   
       

Actual Average SO4 = 48.9 mg/L 
~84% due to 
denitrification 

      
Field Event #2:      
Inf. TN 82.8      
Avg. Eff TN 37.6      

TN Removal From VSS = 23.8  
~21.4 mg NO3 
reduced/L 

      
Therefore: 21.4 * 7.54 = 161.2 g SO4 produced/L   
       

Actual Average SO4 = 440 mg/L 
~37% due to 
denitrification 
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Field Event #2 Alkalinity Change due to Nitrification/Denitrification    
       
Based on Stoichiometry:      
For Nitrification: 7.07 mg CaCO3 consumed / mg NH4 oxidized   
For Heterotrophic Denitrification: 3.57 mg CaCO3 produced / mg NO3 reduced  
For Autotrophic Denitrification: 4.5 mg CaCO3 consumed / mg NO3 reduced  
       
Field Event #2:       
S:OS had a removal of 21.2 mg N/L removed by Nit/Denit    
Denyte had a removal of 14.2 mg N/L removed by Nit/Denit   
       
TN removal was from NH4 going to NO3 going to N(gas).    
       
Therefore:       
Nitrification:       
21.2 * 7.07 = 150 mg CaCO3 consumed/L in S:OS unit    
14.2 * 7.07 = 100 mg CaCO3 consumed/L in Denyte unit    
Denitrification:       
21.2 * 4.5 = 95.4 mg CaCO3 consumed/L in S:OS unit    
14.2 * 3.57 = 50.7 mg CaCO3 produced/L in Denyte unit    
       
Net CaCO3:       
S:OS: -150 + -95.4 = -245.4 mg CaCO3/L     
Denyte: -100 + 50.7 = -49.3 mg CaCO3/L     
 
 
 

      
       
Overall S:OS Alk declined by 421.3 and therefore ~58% due to Nit/Denit  
Overall Denyte Alk declined by 275.8 and therefore ~18% due to Nit/Denit  
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Calculation of Denitrification Life Expectancy: 
 
Nitrate reduced per event = 691.2 mg, found by 8mg NO3/L reduced * 86.4 L per event 
# of events per year = 80 (western MA average) 
Nitrate reduced per year = 691.2 * 80 = 55.3 g NO3 
 
Denyte Unit: 
Based on methods of Germano-Presby et al. (2005) it was determined that 0.915 kg of 
NO3 can be reduced by mass of cellulose contained in denitrification region. 
 
Therefore: 915 g NO3 / (55.3 g NO3 per year) = 16.5 years 
 
S:OS Unit: 
 
Mass of sulfur contained in denitrification region is about 42.1 kg 
From Eq. 2.6 found that 2.5 g sulfur consumed per g NO3 reduced 
Per event: 0.6912 g NO3 reduced * 2.5 g Sulfur consumed per g NO3 reduced = 1.728 g 
sulfur consumed per event 
Per Year: 1.728 * 80 events = 138 g sulfur consumed per year 
 
Therefore: 42,100 g Sulfur / (138 g sulfur consumed per year) = 304.5 years 
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TN Calibration Curve: 

Standard Conc. 
(mg/L as N) 

Abs. @ 
410 nm 

Correctio
n 

0 0.047 0.000 
5 0.132 0.085 

10 0.246 0.199 
20 0.450 0.403 
25 0.547 0.500 

TN HACH Kit Calibration Curve 

y = 0.02x
R2 = 0.9987
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TN MDL Analysis:     

Sample Abs. @ 
410 nm 

Correctio
n 

Conc. 
(mg/L as 

N)   
Blank 0.059 0 0.000   

1 0.068 0.009 0.450   
2 0.067 0.008 0.400   
3 0.068 0.009 0.450   
4 0.07 0.011 0.551   
5 0.07 0.011 0.551   
6 0.069 0.01 0.501   
7 0.075 0.016 0.801   
   average std dev  
   0.529 0.132  
      

MDL = std dev * 3.14 = 0.41 
mg/L as 

N  
*Sample Target Concentration was 0.5 mg/L as N   
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COD Calibration Curve: 
Standard 

Conc. (mg/L) 
Abs. @ 
420 nm 

Correctio
n  

0 0.786 0 
5 0.766 0.02 
50 0.627 0.159 

100 0.478 0.308 
125 0.385 0.401 

COD Calibration Curve

y = 0.0032x
R2 = 0.999
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TP Calibration Curve: 

Standard Conc. 
(mg/L as P) 

1st Abs. @ 
880 nm 

2nd Abs. 
@ 880 nm 2nd-1st 

Correctio
n 

0 0.089 0.114 0.025 0 
0.1 0.089 0.175 0.086 0.061 
0.3 0.091 0.27 0.179 0.154 
0.6 0.09 0.44 0.35 0.325 
1 0.09 0.671 0.581 0.556 

TP-P Calibration Curve

y = 0.5502x
R2 = 0.9989
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NO3-N Calibration Curve - HACH Kit: 
Standard Conc. 

(mg/L as N) 
Abs. at 
507nm 

Correctio
n 

0 0.005 0 
0.5 0.01 0.005 
1 0.017 0.012 
2 0.04 0.035 
4 0.076 0.071 
8 0.132 0.127 

 

NO3-N Calibration Curve - HACH Kit

y = 0.016240x
R2 = 0.993491
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Ammonia Electrode Calibration Curve Example  

Concentration (mg/L as N) 
Readout (mV)  

4.0 200.1  
2.0 218.4  
1.0 237.5  

**Separate Calibration Curve Carried out for each Lab and Field Event 
due to operator manual suggestion.  Standards used generally in this 
range, however, sometimes slightly different depending on the 
expected concentrations. 

 

Ammonia Calibration Curve - ISE Meter

y = -26.978397Ln(x) + 237.366667
R2 = 0.999848
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Quality Assurance/Quality Control 
For each analytical batch of samples processed, the following steps were followed as 
close as possible as part of Quality Assurance/Quality Control procedures and to assure 
defensibility of analytical results: 

(a)  Recovery of known additions: 

The recovery of known additions will be part of regular analytical protocol.   This will 
be used to verify the absence of matrix effects or the amount of interference.   The 
sum of duplicates and known additions will be greater than 20% of the samples.   The 
known addition will be between 1 and 10 times the ambient level. The procedure 
would not be used above the demonstrated linear range of the method.   As part of 
this method, concentrated solutions will be used so that volume change in sample is 
negligible. 

(b)  Analysis of duplicates: 

Duplicate samples will be processed on a routine basis.   A duplicate sample is a 
sample that will be processed exactly as the original sample, including preparation 
and analysis.   The duplicate samples will be used to determine precision.   The sum 
of duplicates and known additions will be greater than 20% of the number of 
samples. 

(c)  Analysis of reagent blanks: 

Reagent blanks will be analyzed whenever new reagents will be used or 5% of the 
sample load, whichever is greater.   This will monitor purity of reagents and the 
overall procedural blank.   A reagent blank will be run after any sample with a 
concentration greater than that of the highest standard or that might result in carryover 
from one sample to the next. 

(e)  Calibration with standards: 

As a minimum, three different dilutions of the standard would be measured when an 
analysis is initiated.   Reportable analytical results would be those within the range of 
the standard dilutions used.   Values above the highest standard would not be 
reported unless an initial demonstration of greater linear range has been made and the 
value is less than 1.5 times the highest standard.   If a blank is subtracted, the result 
will be reported even if it turns out to be negative. 
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