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ABSTRACT

INVESTMENTS IN ENERGY TECHNOLOGICAL
CHANGE UNDER UNCERTAINTY

FEBRUARY 2009

EKUNDAYO SHITTU

B.Eng., UNIVERSITY OF ILORIN, NIGERIA

M.S., AMERICAN UNIVERSITY IN CAIRO, EGYPT

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erin Baker

This dissertation addresses the crucial problem of how environmental policy un-

certainty influences investments in energy technological change. The rising level of

carbon emissions due to increasing global energy consumption calls for policy shift.

In order to stem the negative consequences on the climate, policymakers are con-

cerned with carving an optimal regulation that will encourage technology investments.

However, decision makers are facing uncertainties surrounding future environmental

policy.

The first part considers the treatment of technological change in theoretical mod-

els. This part has two purposes: (1) to show–through illustrative examples–that

technological change can lead to quite different, and surprising, impacts on the

marginal costs of pollution abatement. We demonstrate an intriguing and uncom-

mon result that technological change can increase the marginal costs of pollution

vii



abatement over some range of abatement; (2) to show the impact, on policy, of this

uncommon observation. We find that under the assumption of technical change that

can increase the marginal cost of pollution abatement over some range, the ranking

of policy instruments is affected.

The second part builds on the first by considering the impact of uncertainty in the

carbon tax on investments in a portfolio of technologies. We determine the response

of energy R&D investments as the carbon tax increases both in terms of overall and

technology-specific investments. We determine the impact of risk in the carbon tax

on the portfolio. We find that the response of the optimal investment in a portfolio of

technologies to an increasing carbon tax depends on the relative costs of the programs

and the elasticity of substitution between fossil and non-fossil energy inputs.

In the third part, we zoom-in on the portfolio model above to consider how un-

certainty in the magnitude and timing of a carbon tax influences investments. Under

a two-stage continuous-time optimal control model, we consider the impact of these

uncertainties on R&D spending that aims to lower the cost of non-fossil energy tech-

nology. We find that our results tally with the classical results because it discourages

near-term investment. However, timing uncertainty increases near-term investment.
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CHAPTER 1

INTRODUCTION

It has become imperative and generally accepted that the approach to mitigating

the negative trend of climate change lies in the development of a new cluster of

alternative technologies while improving on the current economic options available.

In fact, it can be credibly argued that drastic emissions reduction must be made

to forestall a global climate change catastrophe. This calls for a consideration of

investments in technologies that aim at near-zero emissions or high level emissions

reduction. However, there are technology options that have the potential of either

not adequately addressing these levels of abatement or do so at very high incremental

abatement costs.

A key driver for these investments is the policy type adopted by the regulatory

agency. Unfortunately, at this time, there is no well-defined operating global policy to

motivate the level of investments to bring about an appreciable reduction or outright

halt in carbon emissions. Thus, there are inherent uncertainties associated with the

anticipation of a future policy to influence R&D spending in these technologies.

In view of the foregoing reasons, this research aims to address the question of

how a firm should optimally allocate its technology R&D investments: first, given a

portfolio of technologies with different impacts on emissions reduction and different

incremental costs of abatements; and second, in the face of uncertainties about a

future environmental policy.

In order to address this question, first, we acknowledge and establish that not

all technical changes are the same in their effects on the cost of reducing emissions

1



incrementally. Second, we show that this disparity affects the potency of regulatory

policies to induce spending in these technologies. Third, we address the issue of how

overall and individual R&D spending in a suite of technologies is influenced by an

increasing carbon tax. Finally, we examine, individually, the impact of uncertainty in

the magnitude and uncertainty in the timing of the carbon tax on R&D investment

into non-fossil technologies under a continuous-time, act-learn-act, optimal control

framework.

Due to its central relevance, the next part of this introductory chapter discusses

the meaning and technological implication of the marginal abatement cost in Section

1.1. Sections 1.2 and 1.3 describe the motivation and objectives of this dissertation.

This chapter ends with a preface to the rest of this dissertation in Section 1.4.

1.1 The marginal abatement cost

In this section, we present a simple model for a conceptual definition of the

marginal abatement cost (MAC) curve. Abatement cost is the cost of reducing emis-

sions below the business-as-usual level – we assume that in the absence of technical

change and in the absence of carbon policy there exists a profit-maximizing level of

emissions, ε̄. Abatement is defined as the reduction in emissions below this level. For

example, if actual emissions are ε, then abatement is μ = ε̄−ε. Some kinds of techni-

cal change may lead to a new profit maximizing level of emissions, say ε∗ < ε̄. In this

case there will be abatement defined by μ = ε̄ − ε∗ even in the absence of a carbon

policy. We define MAC to be zero (rather than negative) for abatement levels less

than this. The MAC is the change in abatement cost per unit change in abatement.

The MAC is central to addressing some of the questions in this research because the

optimal behavior of a firm is to choose its level of abatement so that the marginal

abatement cost is just equal to the carbon tax. To illustrate this further, consider

a firm with an abatement-dependent profit function, π(μ), such that π0(μ) < 0 and

2



π00(μ) < 0.1 Without regulation, the unrestricted emissions level is ε̄ such that μ = 0,

and π(μ) ≤ π(0) for all μ, since ε̄ or μ = 0 maximizes the firm’s profit. Thus, the

firm’s abatement cost consists of any costs incurred at reducing emissions and this is

captured by the change in the profit,

c(μ) = π(0)− π(μ) (1.1)

Taking first and second order derivatives of (1.1), we have

c0(μ) = −π0(μ) > 0 (1.2)

c00(μ) = −π00(μ) > 0 (1.3)

where c0(μ) is the marginal abatement cost, and according to (1.3), the abatement

cost is convex and increasing in abatement. Now, suppose an emissions tax, t is

imposed on emissions, the firm will choose an abatement level that minimizes the

total cost,

min
μ

c(μ) + t(ε̄− μ) (1.4)

The first order condition for (1.4), c0(μ) = t, implies that the firm chooses an opti-

mal abatement level, μ∗, that equates the tax with the marginal abatement cost as

illustrated in Figure 1.1.

Now we illustrate that how technical change is modeled matters by considering

an example of technical change that pivots down the cost curve. Consistent with any

reasonable theory of technical change, the thick line in the left panel of Figure 1.2

shows that the cost of abatement, c(μ) is everywhere lower after technical change.

This is because a firm, or society, could always choose to discontinue use of a new

1Here, we suppress output and input choices on the assumption that the level of outputs and
inputs are optimally chosen.
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0                              µ* µmax

M arginal Abatement Cost

abatement                 

$

t                

Figure 1.1. Marginal abatement cost curve.

technology if it increased costs. Thus with the same carbon tax, the firm will abate

more after technical change than before technical change. Alternatively, a given level

of abatement will cost less after technical change than before. The right panel of

Figure 1.2 illustrates the associated MACs2 where this property of abating more is

carried over–since the MAC is simply the slope of the abatement cost curve, the

MAC is also everywhere lower for this type of technical change representation. If the

firm chooses its abatement level optimally by equating its marginal abatement cost

with the tax, then for a given tax, t, optimal abatement level is higher after technical

change, μ2 > μ1.

This illustration illuminates the importance of technical change representation in

modeling because it has far reaching consequences on outcomes. Thus, how technical

change influences this curve is crucial to answering some of the key questions we are

addressing in this research.

2We have linear MACs here given assumption of a quadratic cost function.
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Figure 1.2. Illustrating the significance of technical change representation. The left
hand panel shows the cost of abatement before and after technical change that pivots
the cost curve to the right. The right hand panel shows the associated MACs.

1.2 Motivation

Some of the key points of interest in the arena of environmental economics include

defining how an environmental policy induces technical change, what criteria defines

an appropriate environmental policy, and how should investments in innovative alter-

natives be allocated given uncertainties in policy, marginal damages and technological

success. However, researchers in this discipline have placed less emphasis on–or have

outrightly ignored–a number of significant factors which are crucial to the determi-

nation of the optimal responses to these questions and others alike. The identified

deficiencies in this literature include: (1) The representation of technical change as

it affects the marginal cost of abatement is incomplete. This shortcoming, when

considered, has the potential to influence the outcome of the relative ranking of regu-

latory tools or policies with regards to their incentives to firms to invest in innovation;

(2) The role of uncertainty in a future carbon tax policy in shaping the investment

decision of a firm has not been investigated under an act-learn-act continuous-time

model with specific focus on non-fossil technologies. The way uncertainties in future
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carbon tax affect investment decisions has been modeled to target emissions reducing

technologies, but we are not aware of any targeting non-fossil cost-reducing R&D

programs; (3) The study of the effect of a random carbon tax on R&D spending

has only considered stand-alone technologies, but not a portfolio of likely responsive

technologies. The effect of the interaction–if it exists–between the programs in a

portfolio, can only be identified in a portfolio setting. This dissertation focuses on

these missing links and aims to cover these loopholes.

Therefore the motivation for this dissertation includes: (1) to influence the way

that induced technical change is modeled by including multiple representations of

technical change; (2) to provide an investment guiding template to firms on the

best response to uncertainty about a future carbon tax policy; and (3) to inform

policymakers of a robust climate technology policy.

1.3 Dissertation objectives

It is in view of the global need for the development of new technologies that

understanding the array of effects technical change has on the marginal abatement

cost is pertinent to understanding the implications of regulation. Thus, the objectives

of this research are as follows:

1. The first general objective is to show that how technical change is modeled

matters. This general objective can be broken down into the following specific

objectives;

(a) To show that technical change has the potential to increase the marginal

abatement cost. It is widely implied in literature that technical change al-

ways reduces the marginal abatement cost and this has been the foundation

for several key results including the outcomes of policy evaluations. The

justification for this behavior is that some improvements in certain tech-

6



nologies are economically competitive at low level of emissions reduction,

but become economically redundant when significant levels of emissions

reductions are desired.

(b) To identify how the ranking of environmental policies is impacted given

this previously unidentified characteristic.

2. Given that how technical change is modeled matters, the second general objec-

tive is to investigate a firm’s optimal investment in a portfolio of technologies,

each with different impacts on the MAC. The specifics of this objective include;

(a) To provide insights into what happens to the overall investment in R&D

as the carbon tax increases.

(b) To know what happens to the individual proportions of investment levels

in the different technologies in the portfolio as the carbon tax increases.

(c) To know the impacts of increasing risk in the carbon tax on portfolio

investments.

3. Policy uncertainty in climate change modeling will influence the determination

of near term investments in innovations and even the choice of an optimal tech-

nology policy. However, the outcomes of the effects of uncertainty are embedded

in indistinct interpretations because in some instances, uncertainty increases

near term R&D spending and in some others, it discourages it. Thus under a

continuous time act-learn-act model of a firm’s discounted cash flow, the specific

objectives here include;

(a) To determine the optimal investment in a continuous time model where

there is an option to invest after learning.
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(b) To determine the paths to the optimal capital stock in cost reducing al-

ternative non-fossil technology given information about the firm’s initial

capital.

We examine these two objectives under the scenarios of tax magnitude and timing

uncertainties existing individually, and we leave the insight into the simultaneous

presence of these two uncertainties for future work.

1.4 Dissertation outline

The rest of this dissertation is outlined as follows. In Chapter 2, we present a com-

prehensive, but focused review of related work exploring the background and setting

up the overall scope for this research. In Chapter 3, we show that it can happen for

innovation to increase the marginal abatement cost. We illustrate that this matters

through an example of innovation that increases marginal abatement costs over high

abatement levels. Chapter 3 also shows the policy implications of such technologies

by revisiting the seminal work of Milliman and Prince (1989) in a re-examination of

the incentives to promote innovation, diffusion, and optimal agency response under

five regulatory policies. Chapter 4 provides the theoretical framework for the rep-

resentation of a set of four broadly defined R&D programs, and performs portfolio

analysis. This chapter describes the levels of investments in each of the technologies

in this portfolio and the overall investment under an uncertain carbon tax. Chap-

ter 5 presents a continuous-time optimal control model to investigate the effect on

a firm’s investment of, first, uncertainty in tax magnitude, and second, uncertainty

in tax timing. This chapter includes a numerical framework that is employed with

the aid of computational tools for solving optimal control problems to illustrate the

impacts of uncertainty in a carbon tax policy on a firm’s level of capital stock and

R&D spending. Chapter 6 concludes by providing a summary of the implications of

8



the results in this dissertation on environmental policy. It also describes the overall

contributions to the literature, and enunciates the avenues for future studies.

9



CHAPTER 2

RELATED WORK

There are three focal research interests in this dissertation. First, establishing

a seminal and widely unnoticed significance of the effect of technical change repre-

sentation on the marginal abatement cost; second, showing the impact of different

representations of technical change on investment decisions under an increasing car-

bon tax; and third, with a target on alternative technology, show how investment

responds to uncertainties in a carbon tax. In this chapter, we shape the scope of this

dissertation by reviewing a number of the relevant, background studies in these areas,

and then focus more on the specifics.

2.1 Endogenous technological change literature

In the context of climate change, there are several studies on endogenous tech-

nological advance, and this literature encompasses policy-induced technical change.

This literature shows that technology development and deployment should be a crit-

ical part of climate change policy evaluation. In general, two approaches can be

identified: the modeling and empirical approaches. In the modeling literature, Goul-

der and Schneider (1999) investigate the impact of the levying of carbon taxes on

the level of R&D efforts in a setting of endogenous technological change. They find

that induced R&D lowers the cost of achieving a given abatement target, but also in-

creases the gross costs of the carbon tax. They conclude that the cost of achieving any

given level of abatement is lower when induced innovation is included in the model.

In a macro-economic model, Goulder and Mathai (2000) assess the implications of
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implementing endogenous technological change regarding the timing of greenhouse

gas (GHG) abatement. They make a comparison of endogenous technological change

through the simulation of explicit R&D activities with learning by doing where the

stock of knowledge is a function of the cumulative level of abatement. Nordhaus

(2002), in an updated version of the globally aggregated DICE model, analyses the

timing and costs of climate change mitigation, and he concludes that induced innova-

tion is important for reducing GHG emissions. Buonanno et al. (2003) use the RICE

model to show that technological change is able to significantly lower abatement costs.

The empirical literature includes Newell (1997) and Newell et al. (1999). Newell

(1997) shows, in an empirical framework, that an effect of changing energy prices

on the direction of technological change can be derived from a model of the firm’s

optimal investment in research. Newell et al. (1999) further formalize the Hicksian

notion of induced innovation to investigate whether government regulations have af-

fected energy-efficiency innovation. They find evidence that both energy prices and

government regulations have an effect on the energy efficiency of the models of general

household items.

These and other related studies1 find that the inclusion of endogenous techno-

logical change is important, and they also indicate that how technological change is

endogenized–either through R&D channels or learning by doing–may have different

implications for optimal environmental policies. This is because these two effects of

achieving technical change lead to different interpretations on the optimal level of

emissions reduction. For example, Goulder and Mathai (2000) show that when tech-

nical change comes by learning by doing, then near-term optimal abatement might be

lower or higher depending on the specifications. However, when technical change re-

sults from R&D, then the presence of the option to induce more technical change than

1Aoki (1991), Jaffe and Palmer (1997), van der Zwaan et al.(2002) , Sue Wing (2003), and Popp
(2004, 2006).

11



would otherwise be the case unambiguously calls for lower near-term abatement along

with R&D expenditures. In general, the presence of endogenous technical change and

assumptions about it can have implications for the optimal policy instrument (see

Milliman and Prince (1989) and Montero (2002)).

2.2 Innovation and marginal abatement cost

The relationship between environmental policy and technical change has been the

focus of the literature on endogenous technological change for quite some time. The

strength of a given policy at inducing technical change is dependent on the response

of the technology options available, and different technologies respond differently to

a given policy. Thus researchers have developed different representations of technical

change. For example, Baker, Clarke and Shittu (2008)2 review a variety of approaches

from the literature, and show that these representations have quite different, and

sometimes surprising, effects on the marginal costs of pollution reductions. They

demonstrate that theoretical and aggregate-level applied models have, indeed, used a

number of different formulations for technical change.

For specific representations, Baker, Clarke, and Weyant (2006) consider three for-

mulations of technical change that vary by how they impact the abatement cost curve:

technical change that shifts the curve down, that pivots it down, and that pivots it

to the right. They show that different representations of technical change have very

different effects on the optimal societal investment in climate change technology R&D

in the face of uncertainty. However, the empirical basis for this aspect of technical

change–how it effects marginal abatement costs–has been largely overlooked in the

development of these models.

2This paper is partly based on the work in this dissertation.
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An underlying assumption throughout the theoretical economic literature on en-

vironmental innovation is that innovation reduces the marginal costs of emissions

abatement (see, for example, Downing and White (1986), Fischer (2003), Jung (1996),

Milliman and Prince (1989), Montero (2002), Parry (1998)). It is straightforward,

however, to demonstrate examples where this is not true–where technical change

aimed at reducing pollution and absolute abatement costs, may increase the marginal

abatement cost (MAC). The purpose of Chapter 3 is to highlight this possibility and

to demonstrate the potential for changed policy implications.

2.3 The basis for technology portfolio

An important policy implication based on the emerging dynamics and different

directions of the development of energy systems, as observed by Gritsevskyi and Na-

kicenovic (2000), is that future research, development, and demonstration efforts and

investments in new technologies should be distributed across “related” technologies

rather than directed at only one technology from the cluster, even if that technol-

ogy appears to be a “winner”. In their approach, they represent the development

of energy systems through a dynamic network. In this network, energy transforma-

tions correspond to energy technologies. They compare 520 alternative technological

dynamics, which comprise 250 realizations or scenarios each. With an assumption

of specific distribution functions for uncertainties, they find that approximately 10%

of the alternative emergent dynamics are optimal in the sense that they meet de-

mands at the lowest expected costs. In general, the results suggest that future energy

research should aim at diversification.

Evidently, having a portfolio of R&D projects can minimize the adverse effects

of GHG emissions because of the several potential ways that these projects aim at

ameliorating the negative impacts on climate change. The portfolio decision considers

both success in research and success in emissions mitigation irrespective of the regula-
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tory policy in place, thus, the degree of technical success of a given R&D project can

be taken as a measure of either the level of decline in emissions or as a measure of the

decline in the demand for carbon, which could have resulted from the substitution of

demand to non-carbon or non-fossil3 inputs or an improvement in energy efficiency.

In addition to this front end objective are the cost-related perspectives. For example,

in the examination of several technologies in the context of a global integrated as-

sessment model (IAM) of energy, agriculture, land-use, economics, and carbon cycle

processes, Edmonds et al. (2004) discuss the significance of the development of an

expanded suite of technologies including carbon capture and disposal, hydrogen sys-

tems and biotechnology because they hold the potential to dramatically reduce the

cost of stabilizing GHG concentrations. Similarly, Baker, Chon and Keisler (2007)

derive marginal abatement cost curves under different solar technologies using the

IAM. Using an array of elicited expert definitions of technical success, they show that

different technologies, if they achieve success as defined, have different impacts on

the marginal cost of abatement. In addition, Fishelson and Kroetch (1989) show the

possibility that the marginal and total costs are changing at different rates for differ-

ent innovations justifies the use of more than one type of the technologies available.

Although their work focuses on R&D into energy storage devices, but this result still

holds in the general climate change arena.

Furthermore, there are ambiguities in the potency of environmental policies to

induce technological innovation. For example, several earlier studies in this literature

(Magat (1978), Downing and White (1986), Milliman and Prince (1989)) argue that

emissions taxes and emissions permits generally provide more incentives for techno-

logical innovation than policies based on standards. On the other hand, and more

recently, some other studies (Montero (2002), Sue Wing (2003)) show that this does

3Non-carbon and non-fossil are synonyms in this dissertation.
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not always hold. We show that this ambiguity in the R&D planning problem arises

because of the different R&D programs under consideration in these studies. For

example, Baker, Clarke and Weyant (2006) point out that a research program to

improve the efficiency of coal-fired electricity generation will create a different abate-

ment cost profile from an R&D program into photovoltaic cells. While the first lowers

the cost for moderate reductions in GHG emissions; the second will lower the costs

of severely reducing emissions. As a consequence, the R&D problem becomes that of

an efficient allocation of investment between a portfolio of available technologies.

2.4 Uncertainty and investment

The literature on firm’s investment response to changes in environmental policy

shows considerable efforts have been geared at this problem (e.g., Xepapadeas (1992),

Kort (1995), Xepapadeas (1997, 1999)). Goulder and Schneider (1999), amongst oth-

ers, show that the impact of carbon taxes in inducing technological change in the

channel of R&D may lead to increased R&D expenditures, which in turn, could pro-

portionally lead to technological progress. Despite this finding, there are no carbon-

related policies at this time to induce technological change, and the anticipation

of a policy in the near future is surrounded by uncertainties–these are uncertain-

ties in climate change damages and technological success. For example, Baker and

Adu-Bonnah (2008) combine uncertain technical change with uncertain damages to

analyze the socially optimal portfolio of technology projects. In their model, they

make R&D investment to impact the probability distribution over the outcome of

technical change. First, they find that the socially optimal investment in alternative

technologies is higher for riskier projects than less-risky projects, where the opposite

is true for conventional technologies. Second, they find that less-risky alternative

technologies and more-risky conventional technologies become more attractive when

climate damages become riskier, in terms of a higher probability of a catastrophe.
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Baker, Clarke, and Weyant (2006) show that the socially optimal investment in

alternative technologies increases with some increases in risk in climate damages,

while the socially optimal investment in conventional technologies decreases. Baker

(2008) builds on the analytical results in the previous paper to show that in many

cases abatement and alternative R&D act as “risk-substitutes”: changes in risk that

induce an increase in one, induce a decrease in the other. Specifically, alternative

R&D tends to decrease in a Mean-Preserving Spread (MPS) that stretches the tail of

the distribution; and increase in an MPS near the mean.

The different dimensions of uncertainty have quantitatively large impacts on op-

timal R&D investment, and qualitatively important impacts, such as reinforcing the

benefits of diversification. In addition, the qualitative impact of uncertainty –

whether optimal investment increases or decreases in uncertainty, for example –

is ambiguous because it may depend on the specification of technical change.

A number of studies4 have considered the general impacts of uncertainty on in-

vestment decisions. However, a few (e.g., Hassett and Metcalf (1999), Farzin and

Kort (2000), Baker and Shittu (2006)) target the question of investment under a tax

policy uncertainty as it relates investment in a given energy R&D. The uncertainty

inherent in the expectation of a future carbon tax is twofold: (1) uncertainty about

the magnitude of the tax; and (2) uncertainty about the timing of the tax. These

uncertainties have been shown to independently influence the level of R&D spend-

ing. For example, Farzin and Kort (2000) model technology as reducing the carbon

intensity of production; otherwise abatement is achieved through output reduction.

This formulation leads to technical change that pivots the abatement cost curve to

the right. They show that an increase in uncertainty about a future tax increase (at

a known time) leads to optimally lower investment in abatement technology. They

4See Abel (1983), Hartman (1972), Pindyck (1988, 1991, 1993), and Dixit and Pindyck (1994).
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also consider the impact of uncertainty about the timing of a (known) tax increase.

Uncertainty about the timing leads firms to increase their investment in abatement

capital. Their work suggests that uncertainty in the magnitude of a carbon tax is

more important than uncertainty about the timing.

Baker and Shittu (2006) have a related model, but allow for substitution among

carbon and non-carbon inputs; and model technical change in two ways–as a re-

duction in the cost of non-carbon inputs or, similar to Farzin and Kort (2000), as a

reduction of the emission intensity of the carbon inputs. They also consider different

types of mean-preserving-spreads in the carbon tax. In contrast to the results above,

they show that firms that can flexibly substitute from carbon to non-carbon energy

may increase R&D into non-carbon technologies when the uncertainty surrounding a

carbon tax is increased. In other cases–if the firm is not flexible, or for technology

that reduces the carbon intensity of output–firms will tend to decrease investment

into R&D in an increase in uncertainty.

These studies indicate that if firms are acting optimally and considering uncer-

tainty in a future carbon tax explicitly, then this will have an impact on their near

term R&D investments. They show that uncertainty can lead to optimally higher

investments in R&D in some cases. Whether this phenomenon is seen in actuality is

an open empirical question that may have important implications for how endogenous

technical change is modeled when environmental damages are uncertain.
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CHAPTER 3

INSTRUMENT CHOICE AND TECHNICAL CHANGE

3.1 Introduction

In this chapter, we present examples of innovations that reduce the total cost of

abatement yet increase marginal costs over some abatement levels. The examples are

drawn from the climate change context, but the observation is general. In general,

technological change can increase the MAC whenever an advance is made in a tech-

nology which will be substituted away from for high levels of abatement. In this case,

the MAC may decrease for lower levels of abatement, but increase for higher levels

of abatement. Investments in such innovations are not irrational, as long as they

decrease the overall cost of abatement. To be clear, we do not argue that innovation

in general will increase the MAC; only that it can happen and it could matter.

To illustrate this, consider the left hand side of Figure 3.1 for technical represen-

tation that pivots right the cost of abatement1. It will cost the firm less, t2 < t1, to

achieve the same abatement level, μ0, after technical change. Notice, however, that

the abatement cost curve is steeper at high levels of abatement. The right panel of

Figure 3.1 shows the MACs, and the MAC after technical change is higher where the

slope is steeper. Thus, the cost of reducing emissions to the next unit, μ0 is higher

after technical change, p2 > p1.

1For this representation, the costs of abatement are everywhere lower after technical change
except at zero and full abatements – this is still consistent with the theory of technical change.
An example of this is improvements in the efficiency of coal-burning electricity production through
increased CO2 emissions capturing capability. This would provide a more efficient performance at
moderate and intermediate levels of abatement, but with no impact at targeting zero emissions
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Figure 3.1. Technical change representation that pivots right the abatement cost
curve. The left hand panel shows the cost of abatement before and after technical
change that pivots the cost curve to the right. The right hand panel shows the
associated MACs.

We also address the policy implications by revisiting the seminal work by Mil-

liman and Prince (1989). They examine the incentives to promote innovation, dif-

fusion, and optimal agency response under five regulatory policies–direct controls,

emission subsidies, emission taxes, free marketable permits and auctioned marketable

permits–under the assumption that innovation would decrease the MAC. We recon-

sider this analysis, assuming innovation increases the MAC. We find that many of

the relative ranking of the policy instruments are changed under the assumption of

increased MAC.

3.2 Can technical change increase the MAC?

In this section we argue that in fact technical change can increase the MAC, that

this is not an anomalous case, but rather is a reasonable representation of many

since this technology would have been switched away from to achieve 100% abatement. This is on
assumption that 100% capturing is impossible.
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improvements to intermediate technologies. We define intermediate technologies as

technologies that have lower emissions than “Business as Usual” technologies, but will

be substituted away from in the case of very low abatement. Examples of such im-

provements are increases in efficiency of coal-fired and gas-fired electricity generators,

carbon capture and sequestration (of less than 100% of emissions), and cost reduc-

tion of efficient gas-fired generators. In the transportation sector, examples would

be better and less expensive hybrid vehicles and bio-diesel. The salient features of

these innovations are that (1) they will be beneficial for small and medium reduc-

tions in emissions, but (2) they will be substituted away from in the case of very high

abatement.

The idea is this: if a firm improves an intermediate technology, say gas-fired

electricity generation, but then wants to achieve an even higher level of abatement,

then the firm will substitute away from the new and improved technology. Thus, the

jump from the gas-fired technology to the very low-carbon technology will now be

higher than it was before. One question that has been asked of Figure 1.2 is: can the

firm (or the economy) simply choose the lower MAC if they end up in a high level

of abatement? The answer is no — this logic can be applied to a cost curve, but not

to a marginal cost curve. The only way to move back to the original MAC would be

to pretend that the intermediate technology had not been improved; and thus ignore

the extra pain of substituting away from it. But this, of course, is not rational.

3.2.1 A simple example

We illustrate this through a very simple electricity-sector, climate change exam-

ple. Assume three electricity technologies are available: a high-emissions technology

(pulverized coal), a moderate-emissions technology (a natural gas combined cycle
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plant), and a no-carbon power plant (nuclear). Table 3.1 shows the levelized cost of

electricity (COE) and CO2 emission rates for these plants.
2

Table 3.1. Parameters for illustrative example

Technology Plant CO2 Levelized COE Total cost per MWh

(kg/MWh) ($/MWh) given tax of 7 c//kg

High-Emissions Plant (coal) 850 24 83.50

Moderate-Emissions 370 57 82.90

Plant (natural gas)

Zero-Emissions 0 74 74.00

Technology (nuclear)

Innovation 1 370 30 55.90

(lower cost natural gas)

Innovation 2 37 66 68.59

(carbon capture and storage)

We consider two forms of technological advance: Innovation 1, a reduction in the

cost of the moderate-emissions technology that makes it a competitive option for

intermediate levels of abatement, and Innovation 2, the development of technology

that will allow for capture of 90 percent of the carbon emissions from the moderate-

emissions, natural gas technology. The cost implications of the two advances are

shown in the table.

For simplicity, we consider only abatement through substitution: we do not con-

sider abatement through demand reduction.3 We model and solve a linear program

using the data from Table 3.1. For the base case, we assume that the first three plants

2The base case and the Innovation 2 data have been extracted from Narula et al. (2002) while
the total cost of producing 1MWh given a tax of .07 $/kg have been calculated using the plant CO2
emissions and the COE.

3Note that this example is meant to be illustrative of a general principle and abstracts away from a
range of issues associated with carbon emissions abatement in the electricity sector, including: issues
associated with the relative cost basis of existing versus new power plants; indivisibility (all plants
are assumed to be available at any size); the reality of a large and heterogenous set of electricity-
generation options including a range of fossil technologies along with renewable technologies such
as wind power, solar power, and biomass electricity; and regional heterogeneity in fuel costs. In
addition, additional, non-climate environmental costs, such as those associated with the nuclear fuel
cycle, are not considered in this illustrative example.
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are available; for the two advanced-technology cases we replace the parameters for

the moderate-emissions plant with the parameters for the respective innovation. We

minimize the cost of electricity in $/kWh subject to a specific limit on output and on

CO2 emissions. In order to derive the cost of abatement curve, we set the combined

power output, P , of these technologies to 1000kWh, and vary the emissions limit, E,

from zero to 8500kg, which represents the maximum level of emissions using the base

case technology. Abatement is measured as the percentage reduction in emissions

below the base case technology. When P = 1000, abatement = (8500 − E)/8500.

The cost of abatement is measured as the cost differential from the baseline cost of

24 $/MWh.

Figure 3.2 shows the absolute (left panel) and marginal (right panel) abatement

costs for the base case and the two advanced-technology cases. In all cases, zero

abatement corresponds to the use of the high-emissions coal technology, and full

abatement corresponds to the use of the zero-emissions nuclear technology.

Prior to innovation, the abatement cost function traces out a changing mix of

the high-emissions and zero-emissions technologies–the intermediate-emissions tech-

nology is not on the efficient frontier. After innovation, the first part, or leftward

part of the abatement cost curve represents the cost of substituting from coal to

the new, improved gas technology; while the second, steeper part of the curve rep-

resents the cost of substituting from gas to nuclear. In both cases of technological

advance, the now-cost-effective intermediate-emissions technology lowers the absolute

costs of abatement, except at full abatement. Hence, innovation can be considered

environmentally-beneficial. In both cases the MAC is initially lower when the new

improved technology is being substituted toward. However, the MAC is higher at

high levels of abatement, when the new improved technology is being substituted

away from. This property will generally hold for any improvement in technology that

will be substituted away from at high levels of abatement. In other words, there is
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Figure 3.2. Impact of technical change on abatement cost

a functional difference between technologies that make partial abatement less costly

and those that make full abatement less costly.

This implies that, for a given carbon tax, emissions may be higher after technical

change than before. Again, we stress that the firm is strictly better off after technical

change, but they may choose to emit more. Consider, for example, a tax of 7c/ per kg

of emissions. The last column of Table 3.1 shows the total cost of producing 1MWh

assuming a tax of 7c/ per kg. The table shows that before innovation the firm would

choose to use the nuclear plant for a total cost of $74 and emissions of 0; after inno-

vation 1 the firm would use the gas plant for a total cost of $55.90 (= 30 + .07 ∗ 370)

and emissions of 370; or after innovation 2, a total cost of $68.59 and emissions equal

to 37. Thus, the total benefit to the firm is positive after innovation; but the firm

will emit more after technical change for a given cost of carbon.

This result holds in more general cases where abatement is achieved through

output reduction as well as substitution; it holds when the technologies are not perfect

substitutes. This will happen any time an innovation is applied to a technology that

will be substituted away from at high levels of abatement.
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This result reiterates the phenomenon of a kinked MAC curve arising in models

where numerous abatement activities can be combined. For example, Fullerton et al.

(1997) discuss the case of electric utilities which use scrubbers, fuel switching, real-

location of production among plants, coal washing, and demand side management to

reduce sulfur emissions. If the marginal cost of one technology depends on another

and the intensity of use, the long run marginal abatement cost curves may exhibit

kinks as above or even jumps as McKitrick (1999) discusses. These kinks hold sig-

nificant implications for policy or instrument choice. Under uncertainty, Weitzman

(1974) shows that the preference for a price-based or quantity-based instrument de-

pends on the relative slopes of the marginal damages and the marginal abatement cost

functions. Thus, if the slope of the MAC curve changes across a range of emissions,

the choice of any instrument would be sensitive to the amount of emissions control

required. For example, for a steeper MAC curve at low abatement levels, Baumol

and Oates (1988) show that the regulator’s choice of instrument will be price-based

(tax or subsidy) control.

3.2.2 Review of past analyses

Very little work has been done to date comparing different representations of

technical change within top-down models. Here we review three papers that indicate

that the representations matter.

Baker and Adu-Bonnah (2008) consider uncertainty in the results of the R&D pro-

grams. They consider three possible outcomes of an R&D program: a breakthrough,

a failure, or an incremental advancement. They investigate, both theoretically and

computationally using a modified version of DICE, how the riskiness of the R&D pro-

gram impacts the optimal level of investment in the program. They find that when

technical change is represented as pivoting the cost curve down, then investment in

a riskier program is considerably higher than in a certain program. When, however,
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technical change is represented as pivoting the cost curve to the right, the optimal

investment is not significantly impacted by the riskiness of the program.

Baker and Shittu (2006) consider firms’ incentives to adopt technologies as a

function of a carbon tax. They compare technical change that reduces the carbon

intensity of the carbon input with technical change that reduces the price of the non-

carbon input. They show that the marginal benefits to adopting the first technology

are proportional to the total carbon tax paid by the firm; the marginal benefits to

adopting the second technology are proportional to the unconditional demand for

non-carbon inputs. These two quantities — total carbon taxes and unconditional

demand for non-carbon inputs — react differently to increases in a carbon tax. The

total carbon tax paid by the firm follows a Laffer curve as the carbon tax increases

— total carbon taxes first increase in an increase in the tax, but as the tax gets very

high the firm substitutes away from carbon energy, and eventually the total tax paid

gets very small. The unconditional demand for non-carbon inputs will monotonically

increase in a carbon tax, as long as carbon and non-carbon are elastic substitutes.

Thus, the incentive to adopt differs by technology.

In the only other work that we are familiar with that compares two representations

of environmental technical change4, Gerlagh and van der Zwaan (2006) compare de-

creases in the cost of non-fossil energy sources with improvements in CCS, represented

as reducing the carbon intensity of fossil fuel. They use a learning curve approach,

so the cost of non-fossil energy and the cost of CCS decrease as more of the tech-

nology gets put into play. They show that the time paths for the two technologies

are qualitatively different, with the share of fossil technology that applies CCS first

increasing and then decreasing to a stable level through time; whereas the share of

4Popp (2004) includes energy efficiency and reduction in the price of a non-carbon technology;
however, the paper does not compare the investment in the two R&D programs. Also, as shown
above, both of these representations lead to a lower MAC.
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non-fossil technology monotonically increases through time. They also point out that

in the absence of a representation for CCS, carbon taxes and fossil fuel taxes have an

identical impact. They do not compare the share of CCS and of non-fossil fuel across

more and more stringent targets.

3.3 Revisiting Milliman and Prince

In this section we present an illustrative example of how policy analysis is cru-

cially impacted by assumptions about the impact of technical change on the MAC.

We recreate the analysis from Milliman and Prince (MP from here on) under the

assumption of increasing MAC, and show that incentives to innovate differ for differ-

ent technologies. We compare a firm’s incentive to innovate and promote diffusion;

non-innovating firms’ incentives to adopt the innovation, and all firms’ incentives

to promote optimal agency response, across five different policy instruments: direct

emissions caps; emissions subsidies; free permits; auctioned permits; and emissions

taxes. We focus on non-patented discoveries5.

Figure 3.3 shows a single firm with an innovation which shifts its marginal cost

curve fromMAC toMAC 0. The new marginal cost curve is lower over some range of

abatement, but is higher at higher levels of abatement. We assume that the overall

cost of abatement is always lower after technical change, thus the area bounded by

εmx is larger than the triangle xMI (note that εm is the business-as-usual emissions

level). If we assume that the initial policy induces an emissions level that is to the left

of the point x then the analysis from MP remains unchanged. Thus we assume that

the initial emissions cap, ε∗ is to the right of x, where the marginal cost of abatement

has been increased by technical change.

5See Baker and Shittu (2004) for details. Also, see the Appendix.
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Figure 3.3. A model of technological change in pollution control

Figure 3.3 can also be interpreted as the marginal cost curves of a large number

of identical firms, before and after the innovation has diffused. MD is the industry

marginal damage cost associated with changes in the levels of emissions. Before

technical change the emissions cap is set at ε∗ and the equivalent tax or permit price

is T ∗. After technical change, but before diffusion, the innovating firm will produce

emissions given either a direct cap of ε∗ or a carbon tax, subsidy, or permit price of

T ∗. After diffusion and optimal policy response the new emissions cap is ε∗∗ and the

equivalent tax or permit price is T ∗∗.

See Table 3.2 for the relative ranking of each instrument from the innovator’s point

of view for each step of the process: the top half of the table reviews the results from

MP; the bottom half shows the results under our assumptions. The ranking of the

instruments with respect to the firm’s incentive to innovate remains unchanged from

MP — direct controls under-perform the other instruments. Under all instruments

except direct controls the firm gains the area within εmx and loses the area within

xfa.
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Table 3.2. Instrument ranking comparison between increasing and decreasing MAC

Direct Emissions Free Auctioned Emissions
MAC Decreasing Controls Subsidy Permits Permits Taxes
Innovation Prom. 5th 1st 1st 1st 1st
Diffusion Prom. 2th 2nd 5th 1st 2nd
Optimal Ag. Res. Oppose Oppose Oppose Oppose Favor
Overall Inno. Gain Uncertain Uncertain Uncertain Gain Gain
MAC Increasing
Innovation Prom. 5th 1st 1st 1st 1st
Diffusion Prom. 1st 1st 4th 5th 1st
Optimal Ag. Res. Favor Favor Favor Favor Oppose
Overall Inno. Gain Gain Gain Gain uncertain uncertain

Next we consider the incentives to promote diffusion for both the innovator and

the non-innovator. MP found that auctioned permits provided the innovator with a

positive diffusion incentive: the auctioned price of permits was lowered through dif-

fusion. In our case, auctioned permits provide the innovator with the most negative

incentive: when diffusion shifts MAC to MAC 0 for all firms, the auctioned permits

increase in price from T ∗ to T 0. This is because, here, technical change increases the

marginal cost of abatement. The other instruments remain in the same order as MP:

taxes, subsidies and direct control have no impact on the incentive; firms are always

worse off after diffusion under free permits. Non-innovators profit unambiguously

from diffusion under all instruments except auctioned permits. It is possible that

the increase in the price of auctioned permits may outweigh the benefit of lowered

abatement costs. This would not necessarily prevent diffusion, however — any indi-

vidual firm, taking the auctioned price as given, would benefit from adopting the new

technology (ignoring the cost of adoption).

Next, we consider the firm’s incentive to promote optimal agency response. We

find that, as noted in MP, the results for optimal agency response are exactly the

opposite here as in MP. Given higher marginal costs, the optimal agency response is

to increase the emissions limit (i.e. make it less stringent, from ε∗ to ε∗∗) or increase
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the tax/subsidy (from T ∗ to T ∗∗). Thus, unsurprisingly, the industry has an incentive

to support optimal agency response in every case except emissions taxes. In MP, when

technical change decreased marginal costs, the optimal agency response is to decrease

the limit or decrease the tax/subsidy, thus the opposite results.

Finally, the 4th and 8th rows of Table 3.2 compare the overall innovator gains from

the entire process of technical change. We find that direct controls, emission subsi-

dies, and free permits guarantee positive gains to innovations that increase marginal

abatement cost; for auctioned permits and emission taxes the result is ambiguous.

This result is in contrast to the result in MP, where auctioned permits and taxes re-

sulted in gains, and direct controls, subsidies, and free permits were ambiguous. The

reason for the difference is that under an increasing MAC technical change reduces the

stringency of the policy for direct controls and free permits, and increases subsidies.

Taxes and auctioned permits, on the other hand, could lead to a loss if the transfer

loss due to higher tax/price outweighs the savings in abatement cost. Note that if the

marginal damages are constant then there is a clear gain for taxes and auctioned per-

mits as well — it requires steeply sloped marginal damages to get a loss. However, all

these calculations are net of the cost of technical change. More generally, this result,

like the result in MP is heavily influenced by optimal agency response. If we only

look at the combined incentives to innovate and promote diffusion, it can be shown

that taxes and subsidies provide the greatest incentive, followed by free permits and

direct controls, with auctioned permits last. In fact, it cannot be guaranteed that

auctioned permits will lead to a gain after diffusion, because the loss from diffusion is

potentially large. Taken altogether the dominant choice is emission subsidies: they tie

for first in all ranking. Emission taxes, however, are not far behind, especially if the

marginal damages are almost flat. In MP, auctioned permits are the dominant choice,

but again, emissions taxes are not far behind. Thus, as long as marginal damages

are not too steep, emission taxes may be the most robust instrument for promoting
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a variety of technologies. An interesting implication of this exercise is that different

policy instruments may provide incentives for firms to move down different paths of

innovation. If a firm faces a choice between two technologies that will lower overall

costs, but one decreases the MAC while the other increases the MAC, then the pres-

ence of emission subsidies may cause firms to choose the technology that increases

the MAC. This illustrates the importance of accurately representing technical change

when evaluating policy instruments.

3.4 Discussion

This chapter has explored the possibility and implications of environmental tech-

nological advance that increases marginal abatement costs for higher levels of abate-

ment. We first illustrated the possibility of such innovation using a simplified electricity-

sector example6. We then considered the implications of such advance using the

framework from MP. Not surprisingly, the analysis indicated that the policy impli-

cations can be substantively different when innovation increases marginal abatement

costs. This indicates that the best framework for analyzing how policy instruments

impact abatement technology and in particular to analyze which instrument is best, is

a framework including a portfolio of technologies. Since different instruments have dif-

ferent incentives for different technologies, using the “wrong” instrument may promote

the “wrong” technology. For example, if the costs of achieving technical change are

similar for an efficiency improvement and cost reduction of non-carbon alternatives,

direct controls may promote efficiency R&D while taxes may promote non-carbon

alternatives. In fact, one interpretation of these results compared to MP is that taxes

and auctioned permits provide more incentives for firms to choose technologies that

6An applied example based on a technologically-detailed integrated assessment model (IAM) can
be found in Baker, Clarke and Shittu (2008).

30



lower marginal cost while direct controls, subsidies, and free permits provide more

incentives for firms to choose technologies with higher marginal cost.

We close here by discussing the requirements for such a situation to occur. First,

innovation must impact technologies associated with less than full abatement. By im-

proving these technologies, the marginal cost of abatement must ultimately increase

at some point as we move toward full abatement. In the climate context, exam-

ples would generally surround the development of new, lower-emissions fossil-based

technologies, or the improvement of existing fossil technologies. In contrast, inno-

vations that reduce the costs of full abatement–for example, lowering the costs of

photovoltaic cells–will decrease the marginal costs of abatement.

Second, the optimal level of abatement must be in the range where marginal

costs have increased. In the case of the carbon-capture example in Section 3.2.1,

this would mean abatement of greater than 90 percent. On the other hand, cost

reductions in intermediate-emissions technologies such as natural gas combined cycles

or the development of integrated gasification combined cycles for coal would need

substantively lower levels of abatement to obtain the increasing marginal cost range.

31



CHAPTER 4

ENERGY R&D PORTFOLIO UNDER UNCERTAIN
CARBON TAX

4.1 Introduction

The negative impact on the climate of Greenhouse Gas (GHG) emissions confronts

decision makers at the firm level, as well as policymakers, with the question of what

steps should be taken to ameliorate this growing concern. On one hand, policymakers

and regulators are wrestling with determining the optimal policy to spur technological

change to improve carbon intensive technologies or develop non-carbon technologies.

On the other hand, decision makers at the firm level are grappling with how to allocate

their research and development (R&D) efforts in the face of several alternatives and

under a future policy that is uncertain, but expected to increase in stringency.

The central theme of this chapter1 is to address the optimal R&D investment re-

sponse of a decision maker–at the firm level with a portfolio of alternative technologies–

to a rising carbon tax. Understanding the optimal allocation of investment in these

technologies is crucial for four reasons; (1) There are many new alternative technolo-

gies and potential improvements to currently economic technologies with different

potentials to reduce GHG emissions. While some of these technologies have zero

emissions, others improve on the current methods by reducing their emissions level.

Thus, knowing which technology is optimally worthy of investment is important. (2)

Like most economic resources, there is a limitation on the investment capabilities of

1This chapter is a version of the paper, under revise and resubmit, in IEEE Transactions on
Engineering Managment.
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a firm to undertake the research efforts on these improvements and innovative efforts.

In addition to this, environmental R&D spending is irreversible. (3) Investment de-

cisions made today have multi-period consequences on the future shape of energy

technologies. (4) policymakers need a yardstick for evaluating the incentive effects,

on firms, of a carbon tax regulation and the overall portfolio of technological change.

Regardless of the domain–product development, environment, or climate change–

portfolio investment decisions do not come easy. For example, Loch and Kavadias

(2002), in their analysis of the dynamic selection of new product development, under-

score the combinatorial complexity of allocating a scarce budget over multiple periods.

This is not just because decisions have multi-period consequences, but it is also due

to the different return functions on the new product lines which are competing for

a common pool of resources and are often interdependent (Dickinson, Thornton and

Graves (2001)). This phenomenon of interdependence and having different return

functions in new product development has similarities with the different ways the

energy technologies influence the level of emissions, their effects on the demand for

alternatives, and ultimately their interactions through complementary or substitution

effects. On the climate change front, having a portfolio of R&D projects is important

because of the several positive ways that each project impacts climate change. The

climate change literature shows that a project portfolio has two advantages: (1) it di-

versifies uncertainty about the outcome of the technologies, and (2) it hedges against

the uncertainty about how high the future carbon tax will be.

Understanding the interaction and interdependence properties between the tech-

nologies is one part of the discussion. The other part is the cost perspective of

reducing GHG emissions by these technologies. For example, in the examination of

several technologies in the context of a global integrated assessment model of energy,

agriculture, land-use, economics, and carbon cycle processes, Edmonds et al. (2004)

discuss the significance of the development of an expanded suite of technologies in-
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cluding carbon capture and disposal, hydrogen systems, and biotechnology, because

they hold the potential to dramatically reduce the cost of stabilizing GHG concen-

trations. Similarly, Baker, Chon and Keisler (2007) derive marginal abatement cost

curves under different solar technologies using the MiniCAM model2. Using an array

of elicited expert definitions of technical success, they show that different technolo-

gies, if they achieve success as defined, have different impacts on the marginal cost of

abatement. Fishelson and Kroetch (1989) show that the possibility that the marginal

and total costs are changing at different rates for different innovations justifies the use

of more than one type of the technologies available. Although their work focuses on

R&D into energy storage devices, this result still holds in the general climate change

arena.

This chapter has two objectives: to determine (1) how an increase in a carbon tax

influences a firm’s optimal energy R&D spending, in terms of overall investment level

and in terms of the type of R&D in the portfolio; and (2) how parameters such as

substitution elasticity and cost of technical change impact the optimal portfolio both

in terms of overall investment size and technology specific investment. In addition, we

explore the impact of riskiness in the carbon tax on the optimal portfolio in order to

get insights into the effects of carbon tax uncertainty on investment. These objectives

constitute a part of an important list of criteria guiding firms on decision making

regarding their investments in response to an increasing carbon tax and uncertainty

about climate policy in the presence of different available energy R&D technologies.

The differences between these technologies have been widely ignored in the theoretical

literature. Therefore, an important motivation is to find out whether the response of

a given R&D program to an increasing carbon tax is independent of the consortium

of options in the energy R&D portfolio. In other words, do the other programs in

2Brenkert et al. (2003) and Edmonds et al. (2004) give a complete description of the model.
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the portfolio exert any influence in defining an optimal investment allocation to that

technology? For example, how is the optimal investment in non-fossil fuel technologies

impacted by the presence of carbon capture and sequestration technologies?

Closely related to this, Baker and Shittu (2006) examine a firm’s profit-maximizing

R&D response to an uncertain carbon tax for two R&D programs: cost reduction of

non-fossil energy technologies and emissions reductions of currently economic tech-

nologies. They consider these different technologies independently, and conclude that

the optimal investment in R&D does not always increase monotonically in a car-

bon tax. This chapter extends that analysis by considering four different energy

R&D technologies in a portfolio setting. A two-stage theoretical model is developed

to explore these issues on the four-project energy R&D portfolio: cost reduction of

non-fossil energy technologies, emissions reduction of currently economic fossil-based

technologies, fossil energy efficiency improvement, and total energy use efficiency pro-

gram. Our model focuses on a firm that invests in technological improvements; for

example, the American Electric Power (AEP), that both produces and uses R&D.

We proceed in Section 4.2 with a review of related literature. In Section 4.3, we

provide the theoretical framework for the representation of a set of broadly defined

R&D programs. Since the demand for energy inputs is central to the relevance of these

technologies, Section 4.3.3 sets the framework for the overall optimal demand for fossil

and non-fossil energy in this four-technology portfolio. Section 4.3.4 introduces the

computational model. Section 4.4 delves further into the analysis of the developed

framework with emphasis on the impact of increasing carbon tax on the levels of

investments in each of the technologies in the portfolio and the overall investment.

In this section, sensitivity analysis is carried out on the effect of R&D cost coefficient

and substitution elasticity between fossil and non-fossil energy on investment. This

section also discusses the impact of risk on investment. Section 4.5 concludes.
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4.2 Background

The portfolio investment allocation problem has received significant research at-

tention in the past because of its importance to managers and decision makers, and

we observe that this problem exists in two relevant literatures–climate change and

product development. We review both but with more emphasis on the climate change

literature. In the climate change literature, the energy portfolio investment allocation

problem is triggered by an exogenous factor–regulatory policy. In this analysis, we

explore the influence of an increase in a carbon tax to spur investment in energy tech-

nologies. The role of policy uncertainty in inducing technological change in climate

control has also attracted considerable research attention3.

4.2.1 Overview of portfolio selection and the role of uncertainty

In the resource and portfolio allocation literature, Roussel et al. (1991) discuss

the importance of portfolio selection for top management in organizations. They

view general managers and R&D managers working as partners to pool their insights

in deciding what to do and why and when to do it, by realistically assessing costs,

benefits, and risk/reward, and they balance these variables within a portfolio of R&D

activity that best fulfills the purposes of the corporation. This emphasizes several

aspects in R&D portfolio management, but a number of papers focus on particular

issues.4 Two case studies, Loch et al. (2001) and Beaujon et al. (2001), describe

the application of models to R&D project selection at BMW and GM, respectively.

3The expectation of a tax policy shapes firms’ investment decisions on energy R&D. Several
earlier studies in this literature ranging from Magat (1978) through Milliman and Prince (1989)
show that emissions taxes and emissions permits generally provide more incentives for technological
innovation than policies based on standards.

4For example, appropriate project sequencing, Granot and Zuckaman (1991); simulating different
portfolios to assess the value of information, Keisler (2004); optimal investment decisions when the
return on investment is random, Berzinsh et. al. (2006).
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Kavadias and Loch (2003) cover a wider range of issues concerning portfolio R&D,

and more recent advances appear in Cooper et al. (1998).

In economics, the study of searching for the best alternative traces back to Weitz-

man (1979) in his focus on sequential investment. This research thrust extends into

the climate change literature and energy technology R&D portfolios. For example,

Gritsevskyi and Nakicenovic (2000) observe that an important policy implication is

that future research, development, and demonstration efforts and investments in new

technologies should be distributed across “related” technologies rather than directed

at only one technology from the cluster. Closely related to this is the impact of R&D

efforts on the cost of reducing GHG emissions, as this is important in determining

the optimal portfolio. For example, Baker, Clarke and Weyant (2006) point out that

a research program to improve the efficiency of coal-fired electricity generation will

create a different abatement cost profile from an R&D program into photovoltaic

cells. While the first lowers the cost for moderate reductions in GHG emissions, the

second will lower the costs of severely reducing emissions. It is clear that having an

energy R&D portfolio is the best strategy, but the question that arises is: in the

face of these different technologies, what is the optimal level of spending on these

technologies under an increasing emissions tax?

Pizer (1999) shows that uncertainty (without learning) is crucial to investment

decisions because it raises the optimal level of emission reductions and leads to a

preference for taxes over rate controls. This suggests that analysis that disregards

the impact of uncertainty is likely to result in inefficient policy recommendations. For

example, Grubler and Gritsevskyi (2002) consider the effects of uncertainties such as

demand, technology costs, and the size of a carbon tax on technology choice. They

find that the entry of an additional source of uncertainty makes the technology port-

folio more diversified. While one group of previous efforts (Dixit and Pindyck (1994),

Caballero (1991)) look at investment decisions by considering how optimal investment
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is impacted by uncertainty in prices or demand, others analyze the same question un-

der technology uncertainty (Bosetti and Tavoni (2007)). Hasset and Metcalf (1999)

argue that random changes in tax policy provide opportunities for firms to wait out

high tax regimes and invest more heavily in low tax regimes. Other papers show how

the optimal R&D investment changes with the risk-profile of the technologies and

with uncertainty about climate damages5.

4.3 Model

We model a firm’s profit maximizing choice of energy R&D in the face of a tax

on carbon emissions. We use a two-period theoretical model. Investments in R&D

are made in the first period in anticipation of a future carbon tax. For simplicity,

we ignore production in the first period. Optimal production is chosen in the second

period after the firm learns about the carbon tax and technical change has been

achieved, leading to a second period profit function. We take the market structure for

output to be exogenous–the firm faces a known downward sloping demand curve. In

the following subsections, we define the details of the model used to derive the optimal

demand for the energy inputs, and then show how the marginal profit is influenced by

investments in energy technology. We then present our computational model–with

model parameters–using the defined representations of technical change.

4.3.1 Second period profits and optimal energy demand

The firm uses three inputs–non-energy inputs x, fossil energy inputs, εc and non-

fossil energy inputs, εnc. Let εc be normalized so that, using the current technology,

one unit of fossil energy produces one unit of emissions. Then the total firm-specific

price paid for fossil energy is the cost of the fuel, Pc, plus the price of the carbon

5For a detailed review of uncertainty and investment in the context of climate change, see Baker
and Shittu (2008).
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emitted, equal to the carbon tax t. Assume that, under the current technology, non-

fossil energy is more expensive than fossil energy: the firm-specific price of non-fossil

energy equals Pc + η. The price of non-energy inputs is w. We consider a firm with

a nested constant elasticity of substitution production function to produce output

y. Thus, in the absence of technical change, the firm chooses the profit-maximizing

inputs by solving

π = max
εc,εnc,x

yp(y)− ((Pc + t)εc + (Pc + η)εnc + xw) (4.1)

such that y = (xρ + (εγc + εγnc)
ρ
γ )

1
ρ

where p(y) is the output price, ζ ≡ 1
1−ρ is the elasticity of substitution between energy

and non-energy inputs and σ ≡ 1
1−γ is the elasticity of substitution between fossil and

non-fossil energy inputs. We assume the firm is facing a constant elasticity demand

with inverse demand curve, p(y) = Ay−
1
b , where A is a constant and b is the price

elasticity of demand. The solution to this problem (see the Appendix for details)

gives the unconditional demand for fossil energy input and non-fossil energy input,

ε∗c and ε∗nc, respectively, as

ε∗c = P
1

γ−1
c P

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)−1
ρ

µ
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A

¶−b
(4.2)

ε∗nc = P
1

γ−1
nc P

γ−ρ
γ(ρ−1)

h
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ρ
ρ−1 + P

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)−1
ρ

µ
b

b− 1
1

A

¶−b
(4.3)

where P = P
γ

γ−1
c + P

γ
γ−1
nc .

4.3.2 Portfolio profit function

Now, we consider the firm’s investment in technical change in the first period. We

represent technical change as having an impact on the firm-specific cost of energy

inputs such that the effective cost is reduced after technical change. Let technical
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change, −→α , represent a vector of cost improvements in the technologies in the portfolio.

For each technology, we have 0 ≤ α < 1, with cost reduction in the inputs maximized

as α tends to 1. The the firm’s second period profit function, assuming that the carbon

tax, t, is known, is π
¡
w,Pc + t, Pc + η;−→α

¢
. Let g

¡−→α¢ represent the cost vector of the
R&D programs aimed at achieving technical change of −→α . We assume that the cost

of technical change goes to infinity as −→α approaches 1: lim−→α→1
g(−→α ) =∞. We assume

that g
¡−→α¢ is increasing and convex in each argument. Thus in the first period, the

firm chooses −→α , the level of technical change, when the carbon tax is still unknown

by solving

max−→α
−g
¡−→α¢+ Et π ¡w,Pc + t, Pc + η;−→α

¢ −→α = αA, αC , αE, αF (4.4)

where the subscripts, A, C, E and F represent non-fossil, carbon capture and seques-

tration, energy efficiency, and fossil energy efficiency programs, respectively; and Et

refers to the expectation over the uncertain tax. The first order conditions for each

αi are

g0 (αi) = Et

∙
∂π

∂αi

¸
∀i = A,C,E, F (4.5)

It is clear that the optimal level of R&D spending increases if the right-hand side of

(4.5) increases; this in turn depends on the probability distribution of t. Thus we

will focus, computationally, on how a change in the probability distribution over the

carbon tax, t, impacts the optimal investment in each technology in the portfolio. In

particular, we will focus on how an increase in t impacts ∂π
∂αi
.

4.3.3 Representations of technical change

In this section, we show how we represent each type of technical change in the

portfolio through their effects on the cost of inputs; and thus on the profit function of

the firm in the second period. We use these definitions in a framework that captures

the entire portfolio of technical change in the profit maximization problem. We
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define energy efficiency improvement as technical change that leads to a higher level

of output for the same level of energy input. This in turn leads to a reduction in the

effective price of both fossil and non-fossil energy inputs, per unit output. Examples of

energy efficiency-improving R&D are general improvements in electricity generation,

transmission and distribution efficiencies. We model this technical change such that

both the cost of fossil and non-fossil energy inputs are effectively reduced by (1− αE).

After technical change parameterized by αE the second period profit function becomes

π [w, (1− αE)(Pc + t), (1− αE)(Pc + η)] .

Fossil fuel R&D reduces the price of fossil energy by (1 − αF ) by increasing the

per unit efficiency of fossil fuel use. For example, an increase in efficiency of a coal

fired generator such that more output is produced per unit input. The reduction

in the price of fossil energy as captured by this technology gives a second period

profit given by π [w, (1− αF )(Pc + t), Pc + η] . The representations of R&D into non-

fossil fuel technology and carbon capture and sequestration (CCS) technologies follow

directly from the work by Baker and Shittu (2006). They model non-fossil fuel R&D

as reducing the premium on non-fossil energy from η to (1 − αA)η. This program

could represent, for example, a firm’s research into minimizing the cost of their wind

turbines or the development of less expensive solar power, which are non-fossil energy

alternatives. They model CCS as reducing the carbon intensity of a unit of fossil

energy from 1 to (1− αC). Thus the price of fossil energy is effectively reduced from

Pc+ t to Pc+(1− αC) t. This program represents an investment into technology that

will capture a fraction αC of the firm’s fossil emissions. Under non-fossil fuel R&D

and CCS, the second period profit functions are π [w, (Pc + t), Pc + (1− αA) η] and

π(w,Pc + (1− αC) t, Pc + η), respectively.

Thus the firm’s overall portfolio problem is
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max−→α
−g
¡−→α¢+Et π [w, (1− αE)(1− αF )(Pc + (1− αC) t), (1− αE)(Pc + (1− αA) η)]

(4.6)

4.3.4 Computational model

In this section, we describe the computational method applied. For a firm facing

a constant demand elasticity with inverse demand curve defined in Section 4.3.1, the

profit function follows

π = Ay
∗( b−1b )−(1−αE)(1−αF )(Pc+(1− αC) t)ε

∗
c−(1−αE)(Pc+(1− αA) η)ε

∗
nc−wx∗

(4.7)

where A is a constant and b is the price elasticity of demand; and asterisks denote

the quantity is optimal. We maximize the firm’s profits less overall cost of technical

change, g(−→α). In order to get computational results, we need to make an assumption

about the cost of R&D. We represent the total cost of technical change as follows:

g(−→α) =
X

i∈{A,C,E,F}

κiα
2
i

1− αi
(4.8)

We have made the simplifying assumption that all the programs have the same func-

tional form. This functional form has the advantage of simplicity, exhibits decreasing

returns to scale in R&D, and ensures that R&D will not bring about zero-cost full

abatement.6 It also assumes that the technologies are not complements in terms of

R&D programs. The R&D cost coefficients, κi, are subject to sensitivity analyses to

determine their influence on the optimal levels of R&D. These programs are effec-

tively different in the way they affect the abatement cost curve. Putting (4.7) and

(4.8) into (4.6), we solve the deterministic maximization problem to determine the

maximizing levels of αi in each technology under different tax levels.

6In each case, if αi = 1 then emissions would be zero at the profit maximizing point.
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Table 4.1. Model parameters

Parameter Symbol Value
Price of carbon inputs Pc 1
Premium on non‐carbon  inputs 1
Price of non‐carbon  inputs 2
Price of non‐energy inputs  w 1
Output price coefficient A 1
Demand price elasticity  b 1.1
Elasticity of substitution between energy 
and non‐energy inputs

0.75

Elasticity of substitution between carbon 
and non‐carbon energy inputs

1.5; 6

Coefficient of investment cost 1

ζ

κ

σ

η
η+= cnc PP

4.3.5 Model parameters

In this section, we state our key assumptions and present the base-case values for

model parameters. We start by assigning equal weights to the cost of technical change

such that technology i has a cost coefficient κi = 1. This assumption presents an

unbiased measure of the response to increasing tax of the demand for each technology

in the portfolio. We also assume that the prices of the inputs are fixed.

Table 4.1 summarizes the baseline values assigned to the parameters. The as-

sumptions about the prices of carbon and non-carbon inputs in this table make fossil

and non-fossil technologies become economically equivalent when the tax is 1.

The elasticity values are converted to the parameters in the functions using ζ ≡
1
1−ρ and σ ≡ 1

1−γ . Popp (2004), in his climate economy model including endogenous

technological change, has calibrated the short-term elasticity of substitution between

fossil and non-fossil energy as 1.6, implying that they are substitutes, but not very

close substitutes. If we consider electricity generators, then in the long run, fossil

and non-fossil energy are perfect substitutes. Goulder and Schneider (1999), in their

analytical and numerical general equilibrium models in which technological change

results from profit-maximizing investments in R&D, used 0.9. For non-electricity

sector firms, we argue that substitution elasticities are even higher because an alter-

native to their energy supply is electricity which is readily obtainable. We present
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the following observations under two measures of elasticity of substitution between

fossil and non-fossil energy inputs–a high value of 6 to represent the long term high

substitutability between different sources of electricity generation, and a low value of

1.5, in the range of Popp’s estimate.

4.4 Results of illustrative scenarios

In this section, we explore how a firm’s optimal investments in these technologies

respond to an increasing carbon tax under specific parameter values in order to illus-

trate general ideas. We discuss the experimental design steps required to understand

the behavior of investments in these technologies, and we present results through

the lens of how optimal investment in individual technologies respond to changes in

parameters. We start by exploring the optimal portfolio reaction to an increasing

tax under two specific estimates of the elasticity of substitution between fossil and

non-fossil energy inputs–high and low. For each level of flexibility, we assume two

types of distributions on the cost coefficients of the technologies. The first is uniform

cost coefficients across the technologies, and the second is giving higher costs to the

efficiency-improving technologies.

4.4.1 High elasticity of substitution

Using the parameters described above, the left hand side of Figure 4.1 shows the

profit-maximizing response of total investment in the technologies to different levels

of a carbon tax. The right hand panel shows the breakdown of individual investments

across the four technologies in the portfolio. In these figures, the price elasticity of

demand is 1.1, the elasticity of substitution between energy and non-energy input is

0.75, and between carbon and non-carbon energy is 6.

The total investment graph shows that the total optimal R&D investment first

increases, then decreases, and finally flattens as the tax increases. The figure on the
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right shows how this breaks down technology by technology. We see that investment

in all the programs increase in the tax when the tax is low. However, two of the

programs–fossil fuel efficiency and CCS–decrease after the tax hits about 0.5 and

0.75, respectively. Energy efficiency and non-fossil fuel investments remain relatively

high and unchanging at the high tax levels. To understand these patterns, consider

how a carbon tax will effect the firm’s demand for fossil and non-fossil inputs. As a

carbon tax increases, the demand for fossil inputs will unambiguously decrease. The

demand for non-fossil inputs, however, are more ambiguous. The substitution effect

will lead to an increase in demand for non-fossil as the carbon tax increases. The

output effect will lead to a decrease. It is clear that the demand for energy inputs

changes with a carbon tax and drives the optimal level of R&D.

R&D spending in energy efficiency is higher than for other programs because

investment in technology that improves on overall efficiency has a double-edged effect,

as it affects the prices of both energy inputs simultaneously. Optimal investment in

this technology is stable at high levels of the tax. This is because at high levels of the

tax the firm will substitute away from fossil fuel energy inputs and rely mainly on

non-fossil inputs. Once a firm has substituted completely away from fossil inputs, the

carbon tax is no longer relevant. Thus, a firm that anticipates a high future tax must

focus on technologies that use non-fossil inputs. Like energy efficiency, investments in

non-fossil fuel technologies monotonically increase as the carbon tax increases. These

results reflect the fact that firms substitute toward non-fossil technology as the tax

increases; and therefore, invest more in improving non-fossil technologies. This will

be true as long as the substitution effect is stronger than the output effect.

Investment in fossil fuel efficiency and CCS improvement programs first increase,

and then decrease as the tax increases. The investment increases in the tax when

the tax is small, because as long as the tax is small, fossil inputs are less expensive

than non-fossil, and the firm will tend to use very large amounts of fossil fuel energy.
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Figure 4.1. The left hand panel shows the response of total investment in the
technologies as carbon tax increases. The right hand panel shows the breakdown of
individual investments across the four technologies in the portfolio. In these figures,
the price demand elasticity is 1.1, the elasticity of substitution between energy and
non-energy input is 0.75, and between carbon and non-carbon energy is 6.

The R&D takes the edge off the carbon tax in reducing the carbon emissions per unit

output. However, as the total price of fossil fuel rises further, and the firm substitutes

away from fossil fuel, the benefits of fossil technology programs start to get small. It

is interesting to note that the tax level, tax = 0.5, at which investments in fossil fuel

efficiency program begin to decrease, is equivalent to the point when non-fossil fuel

technology comes on stream.

A comparison of CCS and fossil fuel efficiency programs with non-fossil fuel R&D

shows that initial investments are higher in fossil technologies–as the tax gets high,

however, firms substitute more toward non-fossil energy, therefore investment in tech-

nologies that improve non-fossil energy become more attractive. Therefore, the eco-

nomic interpretation of overall investment first increasing and then decreasing in the

carbon tax is that investment appears to be highest when the carbon tax is high

enough to provide incentives for using CCS, but not so high that firms start to sub-

stitute away from fossil energy significantly. The value of technologies which improve

non-fossil increases as the carbon tax increases. For technologies that improve fossil
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Figure 4.2. High cost efficiency programs / High elasticity of substitution: In these
figures, cost coefficient, κ on efficiency programs is higher than for the non-efficiency
improving programs. The elasticity of substitution is 6. The other parameters remain
as presented in Table 4.1.

fuel technology (CCS and fossil fuel efficiency), the value of the technology follows a

Laffer curve–first increases, and then decreases. For CCS in particular, the firm has

no incentive to invest when the tax is zero, or when the tax is extremely high.

So far, we have assumed that the R&D cost coefficient, κ is equal across the tech-

nologies. In Figure 4.2, we explore the impact of having a high cost of investment in

the efficiency programs. Here, we assume that the cost coefficients for both efficiency

programs is a hundred times that of the other two programs. We see that in this

case, the overall spending in the portfolio increases monotonically in a carbon tax.

This is because the increase in the non-fossil program dominates the decrease in CCS

and fossil fuel efficiency programs. It is evident here that as the carbon tax increases,

the substitution effect driving the demand for fossil and non-fossil inputs mentioned

earlier is transferred to CCS and non-fossil programs to act as substitutes. The inter-

play between CCS and non-fossil technologies acting as substitutes under increasing

policy stringency increases the level of total investment and the optimal allocation

of investments depends significantly on this interaction. Furthermore, the relatively
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high costs of R&D into the efficiency programs implies these programs have no ob-

servable influence on the substitution effect between CCS and non-fossil technologies

because this interaction did not change.

4.4.2 Low elasticity of substitution

In this Section we present the results using a low value for the elasticity of substi-

tution, σ = 1.5, with all other parameters as in Table 4.1 to gain further insights into

the interactions between these technologies. The left hand panel of Figure 4.3 shows

that in this case the overall investment increases in a carbon tax; this is in contrast

to the results in Figure 4.1. Using the right hand panel of Figure 4.3, we focus on the

drivers of this result. First, the optimal investment in non-fossil programs is relatively

flat. This is because under the assumption of low substitutability between the energy

inputs, the substitution effect is smaller and the output effect is larger than what

we saw above. The firm doesn’t increase the demand for non-fossil inputs to a great

degree under an increasing carbon tax, therefore the optimal investment in non-fossil

technology is also not very responsive. Second, investments in overall efficiency im-

provement program follow a pattern very similar to above, increasing steadily with a

carbon tax. This is because it effects both technologies, and given low substitutabil-

ity, this is of great benefit. Third, although the demand for CCS technology shows

increasing investment, that of fossil fuel efficiency improvement is relatively stable

and fairly higher. These three factors add up to cause the overall increase in total

investment. Note that eventually output will decrease with the tax, leading to overall

lower investment in technology. This effect will not be seen, however, until a very

high carbon tax.

Now we use the same low elasticity, but different R&D cost coefficients to show

the influence of the cost coefficients on investment decisions. Figure 4.4 illustrates an

example of this with the total investment increasing in tax. In this figure, the cost
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Figure 4.3. In these figures, the elasticity of substitution between fossil and non-
fossil energy is 1.5 and the relative cost coefficients are equal.

coefficients for both efficiency programs (κ = 100) are higher than for the other two

programs (κ = 1). We see that overall investment is increasing in the tax, similar to

the results in Figures 4.2 and 4.3. A comparison of Figures 4.2 and 4.4 with Figures

4.1 and 4.3 shows that overall investment is lower when efficiency programs are costly.

In a similar manner, a comparison between Figures 4.1 and 4.2 with Figures 4.3 and

4.4 show that the overall level of spending is significantly higher when elasticity is

higher. Firms that are flexible (i.e. have a high elasticity) can substitute toward low

carbon inputs as the carbon tax increases. But firms that are less flexible do not

have this option, therefore an increasing carbon tax leads to reduced output. This,

in turn, means that firms optimally invest less in any technology.

4.4.3 Observations

These specific examples imply two findings. First, the qualitative response of the

optimal investment in a portfolio of technologies to an increasing carbon tax depends

on the relative costs of the individual programs and the elasticity of substitution

between fossil and non-fossil energy inputs. Second, non-fossil and CCS programs

act as substitutes, with the investments in CCS first increasing in a carbon tax until
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Figure 4.4. In these figures, the elasticity of substitution between fossil and non-
fossil energy is 1.5 and the cost coefficients of the efficiency and fossil improvement
technologies are 100 times the other programs.

the investment benefit is outweighed by the increasing tax. Beyond this threshold, it

decreases in tax, and non-fossil increases at a more rapid rate, as the firm substitutes

away from the use of fossil technology toward one that uses non-fossil input.

We capture investment behavior in these programs with the following propositions.

In the first we show that, as long as the cost of R&D is equivalent for all programs, the

investment in energy efficiency programs will always be higher than in fossil efficiency,

which in turn will be higher than CCS.

Proposition 1 Assume a portfolio of technologies with equal cost coefficients, κ,

includes efficiency programs, fossil-fuel improvement, and CCS technologies (as de-

fined in Section 4.3.3), and assume that the marginal cost of investment is finite at

maximum abatement g0 (1) < ∞; then the following relation holds between the opti-

mal levels of R&D in energy efficiency, fossil fuel efficiency and CCS technologies;

α∗E ≥ α∗F ≥ α∗C for all t.
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Proof. Note that the following identities hold at the optimal investment levels

assuming there is no corner point solution. From the first order conditions7 in (4.5):

g0 (α∗E) = Et [(Pc + t) ε∗c + Pncε
∗
nc] (4.9)

g0(α∗F ) = Et [(Pc + t) ε∗c ] ; g
0(α∗C) = Et [tε

∗
c ] (4.10)

g0(α∗F )− g0(α∗C) = Et[Pcε
∗
c ] ≥ 0 and g0(α∗E)− g0(α∗F ) = Et [Pncε

∗
nc] > 0 (4.11)

which implies that g0(α∗E) ≥ g0(α∗F ) ≥ g0(α∗C) ∀t. This implies α∗E ≥ α∗F ≥ α∗C .

If there is a corner point solution, i.e., g0(α) <RHS when α = 1, the same result

still holds.

This result is consistent with our earlier observation that under equivalent cost

structures for the technologies, it is optimal to target investments at efficiency pro-

grams. This is even more relevant if there is a limitation on investment budget. In the

next proposition we show that optimal investments in non-fossil and CCS technologies

are equal when the carbon tax is equal to the premium on non-fossil inputs.

Proposition 2 Assume that the cost coefficient is the same across the technologies

and the tax level, t is known. Then the optimal R&D investment in non-fossil and

CCS technologies are equal when η, the premium on non-fossil energy, is equal to t.

Proof. From the first order conditions in (4.5) and with known t:

g0 (α∗C) = tε∗c and g0(α∗A) = ηε∗nc (4.12)

If t = η, then ε∗c = ε∗nc; and the Right Hand Side of both equations in (4.12) are equal;

implying, α∗C = α∗A.

7See Baker and Shittu (Baker & Shittu 2006) for details of the first order conditions.
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4.4.4 Design of experiments

The above analysis suggests that the qualitative impacts of an increase in the

carbon tax on the overall portfolio depends precisely on the values of the parameters.

Thus, in this section, we present an in-depth analysis of how the parameters influence

the results. We vary five parameters, using a design of experiments approach: the

R&D cost coefficients ki of the four technologies, and the elasticity of substitution

between fossil and non-fossil energy inputs. Each parameter has two levels, and thus,

we have 25 = 32 experiments. We create a design of experiments matrix for these

factors. For the two levels of the cost coefficient factors, we use a high coefficient of

100 and a low coefficient of 1. For the two levels of elasticity, we use 1.5 for low and

6 for high.

Figure 4.5 show the results for the four programs in response to the experimental

trials. For each experimental run, we find the percent change in optimal R&D in-

vestment given a change in the known tax from 0.5 to 1.5: α∗(1.5)−α∗(0.5)
α∗(0.5) , where α∗ (t)

is the optimal level of R&D given tax, t. In the figure we show this quantity under

a high elasticity on the vertical axis, and the quantity under a low elasticity on the

horizontal axis. Each point represents a particular combination of cost coefficients.

There are 16 possible combinations of high and low cost coefficients. Each of the

panels shows these results for a different R&D program. These can be interpreted

as follows. A point in the upper left hand corner of one of the graphs implies that

the optimal investment increases significantly in a carbon tax when the elasticity is

high, but has a small increase when the elasticity is low; and a point in the lower

right hand corner implies that the optimal investment increases more in a carbon

tax under low elasticity, but has a small increase when elasticity is high. Note that

some of the scales are in the negative range, implying that in some cases the optimal

investment decreases in the tax. Moreover, the range of the scales are quite different,

providing information on which technologies are most strongly effected by changes
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Figure 4.5. Percent increase in optimal investments. We use a high cost coefficient
of 100 and a low of 1. For the two levels of elasticity, we use 1.5 for low and 6 for
high.

in parameters. In particular, note that the highest percentage increases are seen for

non-fossil R&D when the elasticity is high followed by CCS R&D when the elasticity

is low. The biggest decreases are seen for fossil efficiency R&D when the elasticity is

high followed by CCS R&D when the elasticity is low.

The axes in the energy efficiency graph in Figure 4.5 indicate that the percentage

increase is always higher when the elasticity is low than when it is high. The intuition

for this is that energy efficiency program is valuable when the tax is high and the

flexibility is low since it reduces the cost of both inputs. This figure shows four

distinct clusters. The two clusters on the left side represent cases where the increase
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in R&D investment is relatively higher under a high elasticity; the clusters on the

right represent cases where the increase in R&D investment is relatively higher under

a low elasticity. The points in the two clusters on the left all have a low R&D cost

for energy efficiency technologies. An increase in the R&D cost of energy efficiency

technologies leads energy efficiency R&D to be more responsive to an increase in

the tax when elasticity is low; but less responsive when elasticity is high. Optimal

investments in energy efficiency R&D increase most strongly with an increase in the

tax when the cost of the R&D program is high, and firm flexibility is low.

As mentioned earlier, the non-fossil fuel graph on the top right of Figure 4.5 shows

a significant increase in optimal investment in this technology when the firm is highly

flexible; this is most pronounced, interestingly, when the R&D costs of fossil efficiency

programs are low (the two clusters of black points). When fossil fuel efficiency is low

cost, the investment in non-fossil is crowded out when the tax is low; when the

tax increases fossil fuel efficiency investment drops off quickly, and is replaced by

large investments in non-fossil. The R&D costs of energy efficiency influence the

investment in non-fossil fuel program when substitution elasticity is low–leading to

a larger increase when the cost of energy efficiency improvement is high–but not

when elasticity is high.

The lower left panel shows that CCS has the greatest sensitivity to the elasticity,

with significant increases in the tax when the elasticity is low, and large decreases

in the tax when the elasticity is high. This can be explained as follows. When the

firm is not flexible, it implies that they have a very hard time substituting away from

fossil energy, even as the carbon tax gets very high. This makes CCS a very nice

alternative as the tax gets high, allowing the firm to continue to use large amounts

of fossil energy without paying the tax. On the other hand, when the firm is flexible,

it will optimally substitute away from fossil toward non-fossil as the tax gets high.

Thus, R&D into CCS gets less appealing with a very high tax. The two clusters
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that can be observed in the CCS graph of Figure 4.5 are differentiated by the R&D

cost coefficient for energy efficiency technology. When energy efficiency R&D is more

expensive (and flexibility is low), CCS is an even more attractive investment as the

tax gets high. Comparing the CCS graph with the non-fossil graph, we see that

an increasing tax is an incentive for investment in non-fossil fuel technology when

input substitution is high, whereas it favors improvements in CCS technology when

flexibility is low.

The fossil fuel efficiency graph in the bottom right of Figure 4.5 shows that a

high elasticity generally reduces investment as the tax increases for this technology.

On the other hand, optimal investment response is ambiguous when the elasticity is

low: when the cost of the energy efficiency program is high, optimal investment in

fossil fuel efficiency is increasing in tax; otherwise it decreases. Thus, fossil fuel R&D

increases in a tax only when the firm is less flexible and the R&D cost of general

energy efficiency is high.

The foregoing show that the key drivers of investment behavior are the elasticity

of substitution and the R&D cost of the energy efficiency program, followed by the

R&D cost of the fossil fuel efficiency program. The relative costs of non-fossil and

CCS R&D programs have very little effect on the impact of an increasing carbon tax.

When the cost of an energy efficiency program is low, then we are always on the left

side of the graphs, meaning that when elasticity is low, all of the programs are more

responsive to an increase in the carbon tax than if the cost of an energy efficiency

program is high. In the case of the energy efficiency program, this can be explained

by the relatively small investment into energy efficiency when the cost coefficient is

high and the tax is low. Therefore, there is a large percentage increase when the tax

goes up. For the other technologies, it is a substitution effect: when the R&D cost of

energy efficiency is low, it makes up the bulk of R&D spending; when it is high, the

other technologies can take up some of the slack.
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All programs increase in a carbon tax when elasticity is low and the cost of energy

efficiency is high, with CCS having by far the largest percentage increase. When elas-

ticity is high, then CCS and fossil fuel efficiency decrease in a carbon tax, regardless

of the relative cost coefficients. Energy efficiency improvement and non-fossil fuel

technologies both increase more when fossil efficiency is expensive. However, when

elasticity is low, investments in CCS and fossil fuel efficiency programs both increase

more when energy efficiency program is costly.

4.4.5 R&D investments and increasing risk

In this section, we briefly discuss the effect of increasing risk on optimal invest-

ment. We define an increase in risk to be a mean-preserving spread (MPS). In Figure

4.6, we compare the optimal investment levels in each technology under a certain

tax of 1 with the optimal investment levels given a probability of 0.25, 0.5, 0.25 over

taxes of 0, 1, and 2, and given a 50− 50 chance of a carbon tax of 0 or 2. The first

situation is least risky, the last, most risky. Rothschild and Stiglitz (1970) show that

any increase in risk can be obtained by a sequence of such mean-preserving spreads.

In the figure, the slices show the percentage of the total investment that is in

each technology; and the values in italics refer to the absolute amount invested in

that technology. For these particular MPS, total optimal investment decreases with

increasing risk under the set of parameters in Table 4.1 with elasticity equal to 6. The

investment in the non-fossil fuel program, however, increases in risk, both in terms

of the proportion of the total investment, and in terms of the absolute amount of the

investment. All the other technologies decrease in absolute value in investment; with

CCS decreasing the most. However, while the absolute value of the energy efficiency

program decreases, its proportion of the portfolio becomes larger, mostly replacing

CCS.
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Figure 4.6. The left hand side shows the optimal investment distribution in the
technologies at a tax of 1. The middle panel is an MPS of 0.25, 0.5, 0.25 over taxes
of 0, 1, and 2 respectively. The right hand side is an MPS of 50-50 chance of tax=0
and tax=2. The elasticity of substitution between fossil and non-fossil energy is 6,
while between energy and non-energy inputs is 0.75. The price demand elasticity is
1.1.

The effect of uncertainty depends on the elasticity of substitution. In Figure

4.7 we show the effect of risk on optimal portfolio investment for low elasticity, and

observe that the optimal investment level in energy efficiency program is relatively

flat riskiness, in contrast to higher proportional increases under a high elasticity

in Figure 4.6. Similarly, in Figure 4.7, optimal investment in fossil fuel efficiency

improvement increases slightly along with the non-fossil program under increasing

risk. Only investment in CCS reduces in risk under low flexibility, but less than

under high flexibility. It is also evident from these examples that risk has a much

smaller overall effect on the optimal investment when the elasticity of substitution is

low, than when it is high. This is because a firm that is less flexible is already confined

to whatever technologies exist in its portfolio and thus there is a weak influence of tax

uncertainty on the investment levels in the portfolio. However, this result assumes

equal cost coefficients for the technologies.
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Figure 4.7. Effect of increasing risk on optimal portfolio investment. All parameters
have same values as Figure 4.6 except substitution elasticity between fossil and non-
fossil fuel is low here, 1.5.

In order to understand the impacts of risk, consider the shapes of the curves in

Figures 4.1 - 4.4. Recall that the expected value of a concave function decreases in

risk, while the expected value of a convex function increases; if a function is neither

concave nor convex then the expected value will increase for some increases in risk

and decrease for other decreases in risk (see Rothschild and Stiglitz (1971)). Note

that in Figures 4.1, 4.2, and 4.4, overall investment is mostly concave in the tax, thus

we would expect most MPS to lead to a decrease in investment. Similarly, all the

programs with the exception of non-fossil fuel program are all mostly concave. Non-

fossil fuel technology, however, is S -shaped, with a convex region between 0 and 1.

This is what leads to the higher investment under uncertainty. Thus an MPS around

a tax of 0.75 leads to an overall increase in investment, since the overall investment

is convex in that region.
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4.5 Conclusion

We consider a portfolio of R&D options in terms of reducing the effective cost of

inputs. We distinguish between the R&D programs based on their influence on the

demand for inputs, which in turn drives the effective price of inputs, and thus the

optimal investment level in each of them. We find that R&D investment behavior

is influenced by the relative cost of R&D programs into efficiency programs and the

firm’s flexibility in substituting between fossil and non-fossil energy inputs.

One of the key drivers of investments in these technologies are the costs of energy

efficiency and fossil fuel efficiency programs. For example, when the cost of energy

efficiency program is low and elasticity is low, the impact of an increasing tax is small.

Moreover, we show that increasing tax is an incentive for investment in non-fossil fuel

technology when firms are flexible, whereas it favors improvements in CCS technology

when firms are less flexible. Overall investment appears to be highest when the carbon

tax is high enough to provide incentives for using CCS, but not so high that firms

start to substitute away from fossil fuel energy significantly.

The elasticity of substitution between energy inputs is crucial in determining the

optimal investment profile. For a firm with a high substitution elasticity between

fossil and non-fossil energy, the optimal investment in non-fossil and CCS programs

exhibit ambiguous traits–initially, the investments in CCS exceeds that of non-fossil

at low tax levels, but at higher levels, the converse is true. This ambiguous response

in investment can be attributed to a number of factors. For example, investment in

the CCS program increases in a carbon tax to offset the influence of the tax, but at

high tax levels, these investments reduce since it is more economical to focus solely

on non-fossil programs that are not influenced by the carbon tax.

On the other hand, when short term elasticity of substitution between fossil and

non-fossil energy inputs is low, the carbon tax does not significantly influence the in-

vestment level in non-fossil energy programs. Overall portfolio investment reduces in
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the tax when the firm’s ability to substitute away from fossil related inputs is limited.

Uncertainty in the tax decreases the overall optimal investment in the portfolio for

a firm with enough flexibility in its use of fossil and non-fossil energy–as observed

with non-fossil technology substituting for CCS at considerably high tax levels. Sur-

prisingly, an increase in risk has a much smaller effect on firms that are less flexible

than highly flexible firms.

In summary, the contribution of this chapter is two-fold. First, it provides some

insights to firms in terms of R&D investment in energy technologies. (1) Investments

in efficiency that are independent of fuel type are the best. (2) In the case where ef-

ficiency is very expensive to attain, overall energy R&D investments should be fairly

low when the expected tax is low, and only become very large as the expected tax gets

large (in terms of making non-fossil fuel competitive with fossil energy. (3) Given the

current uncertainty about a future tax, it looks like optimal R&D investments should

be relatively small. However, it appears that non-fossil fuel program can be a hedge

against uncertainty, and so more attention should be spent on this technology than

would be under uncertainty. Second, this analysis provides insights to policymak-

ers concerned about setting a carbon tax and crafting R&D policy. It appears that

reducing uncertainty will increase investment. Also, it suggests that understanding

the distribution of the elasticities of substitution within a firm that meets its energy

demands from several sources may be very useful for predicting endogenous technical

change in response to a carbon tax.
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CHAPTER 5

OPTIMAL INVESTMENT DECISIONS UNDER
RANDOM CARBON TAX AND TIMING

5.1 Introduction

In the previous chapter, we show that the key drivers of investments in energy

technologies–at the firm level–are the relative costs of the technology options, the

flexibility of the firm to use carbon and non-carbon energy inputs, and the size of

the carbon tax. For example, when the cost of the energy efficiency program is low

and elasticity is low, the impact of an increasing tax is small. However, we show that

increasing tax is an incentive for investment in non-fossil fuel technology when firms

are flexible, whereas it favors improvements in CCS technology when firms are less

flexible. Overall investment appears to be highest when the carbon tax is high enough

to provide incentives for using CCS, but not so high that firms start to substitute

away from fossil fuel energy significantly. Thus, optimal investment in non-fossil can

increase under some increases in uncertainty. In contrast, Farzin and Kort (2000)–

in a model with end-of-pipe carbon capturing technology–show that an increase

in uncertainty in the carbon tax at a known future time leads to optimally lower

investment in abatement technology. In addition, they show that uncertainty about

the timing of a known future tax increase increases a firm’s investment in abatement

capital. In concise form, uncertainty about the quantitative impact of a future tax

influences a firm’s level of R&D spending in a given technology.

Thus, there exists a significant difference in the prescription for optimal invest-

ment. This difference is underscored by the modeling approach. In the previous
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chapter, we assume that investment is made in the first stage preceding the advent

of the tax change, while Farzin and Kort (2000) allow for investment before and af-

ter the tax change. This observation is crucial in setting up and understanding the

results in this chapter.

This chapter explores this domain further and offers a different approach for three

reasons. First, we consider the impact of carbon tax uncertainty under a two-stage

continuous-time optimal control model on R&D spending that aims to lower the cost

of non-carbon energy inputs. This differs from the previous chapter because we are

only looking at one technology, and in an optimal control framework where we allow

for R&D investment before and after the tax is realized. Second, we are adding to

this literature the impact of technical change through input substitution, in addition

to the existing output reduction. The incentive for this addition to the literature is

from the results in Chapter 3 where we show that representing technical change in

different ways can lead to different impacts and results. Third, we use a numerical

approach to determine factors which influence investment behavior given uncertainty

in the magnitude of a future tax. In particular, how is the result from the literature–

that investment in an emissions abatement technology reduces with uncertainty in

the carbon tax–different when consideration is given to R&D spending, strictly, to

reduce the price of a non-carbon input under an uncertain carbon tax?

In this micro-economic framework, the analysis is based on two-stage optimal

control techniques solved under cash flow discounting. In the first stage, the carbon

tax is known and there is a probability distribution over the carbon tax for the second

stage. We investigate what impact uncertainty about the second stage tax has on

optimal abatement investment in the first stage. We find that, in this two stage

model, R&D spending into non-fossil energy technology decreases as uncertainty in

the future tax increases. This is in contrast to our findings in the previous chapter, in

which R&D spending increased with some increases in uncertainty. Intuitively, this
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is due to the downward pressure on investment in this two-stage model allowing for

near-term investment to be held back prior to the resolution of the future tax.

The rest of this chapter is organized as follows. In Sections 5.2 and 5.3, we present

the basic model without and then with an adjustment cost on investment. In Section

5.4, we employ the numerical tools of solving optimal control problems to illustrate

the impacts of uncertainty in tax magnitude on the firm’s level of R&D spending.

We conclude the analysis in Section 5.5 by exploring the effects on investment in

non-fossil energy technology of uncertainty in the timing of a future carbon tax.

5.2 Basic model — no adjustment cost

In this model, we consider a monopolist that uses two energy inputs to produce

its output. These energy inputs are carbon and non-carbon energy inputs. The firm

utilizes these energy inputs in a production function with the form:

y = f(ec, enc; ρ) (5.1)

where:

ec represents carbon energy inputs,

enc represents non-carbon energy inputs,

ρ is the substitution parameter between carbon and non-carbon energy inputs,

y denotes output.

The emissions level, E, of this production process is proportional to the carbon

energy input,

E = γec

where γ is emissions per unit input of carbon energy.

In this basic model, we assume the tax, τ ≥ 0, is known and is constant over

time. Therefore, the firm’s total tax payment on emissions at any given time is τγect.

We assume that the firm can reduce emissions at any given time, t, through input
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substitution and output reduction. The firm makes investments over time, It ≥ 0,

aimed at reducing the cost of non-carbon energy inputs by (1−αt) where αt is the level

of improvement in the technology that uses non-carbon energy such that 0 < αt < 1.

The investment, It, impacts improvements in non-carbon technology, but we assume

that the capital stock has a constant depreciation rate of δ over time. The differential

equation for the capital stock of R&D, dK
dt
is

dK

dt
= K̇ = It − δKt; K(0) = K0 ≥ 0 (5.2)

where:

δ is the nonnegative depreciation rate of capital stock,

Kt is the capital stock in time t

It represents the investment in time t

Integrating (5.2) shows that the stock of abatement capital follows:

K(t) = e−δtK0 +

Z t

0

e−δ(t−v)Ivdv (5.3)

The level of technical change in non-carbon technology is dependent on the capital

stock such that

lim
Kt→∞

α(Kt) = θ (5.4)

where θ is a nonnegative boundary less than 1 and α(0) = 0 with α0(Kt) > 0 and

α00(Kt) < 0.

The firm seeks to maximize the present value of its cash flow over an infinite plan-

ning horizon by determining its investments in the non-carbon technology according

to:

max
It

Z ∞

0

[πt(τ , α(Kt))− It] e
−rtdt (5.5)

s.t. K̇ = It − δKt, K(0) = K0 (5.6)
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where r is the firm’s discount rate and assumed to be constant, and πt(τ , αt) is the

firm’s profit function given as

πt(τ , αt)) = P (y∗)y∗ − Pce
∗
ct − (1− αt)Pnce

∗
nct − τ tγe

∗
ct (5.7)

where Pc and Pnc are the prices of carbon and non-carbon energy inputs respectively.

For a monopolist with a nested constant elasticity of production defined as

(eρc + eρnc)
1
ρ = y (5.8)

with output price defined as P (y) = Ay−
1
b , the optimal demand for carbon and

non-carbon energy inputs are as follows

e∗ct = (τγ + Pc)
1

ρ−1

h
(τγ + Pc)

ρ
ρ−1 + ((1− αt)Pnc)

ρ
ρ−1

i−1−b(ρ−1)
ρ

∙
b

A(b− 1)

¸−b
(5.9)

e∗nct = ((1− αt)Pnc)
1

ρ−1

h
(τγ + Pc)

ρ
ρ−1 + ((1− αt)Pnc)

ρ
ρ−1

i−1−b(ρ−1)
ρ × ... (5.10)∙

b

A(b− 1)

¸−b

where A is a constant, b is the price elasticity of demand and ρ is the parameter of

substitution between carbon and non-carbon energy inputs.

5.2.1 Model Analysis

We define the Hamiltonian as

Ht = (πt(τ , αt)− It)e
−rt + λt(It − δKt)

where λt is the present value multiplier associated with the constraint relating the

capital stocks between any two time intervals, for example,Kt andKt+1 in the discrete
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model. λt gives the marginal value of relaxing the constraint in (5.6), in other words,

it is the marginal impact of an exogenous increase in capital at time t on the lifetime

value of the firm’s cash flows discounted to time zero. We define μte
−rt = λt and we

re-write the current value Hamiltonian, Hc
t . μt thus shows the value to the firm of an

additional unit of capital at time t dollars

Hc
t = πt(τ , α(Kt))− It + μt(It − δKt) (5.11)

The profit function is convex in the price of the outputs; but following the Mangasar-

ian (1966) and Arrow and Kurtz (1970), the Hamiltonian must be concave in K for

the necessary and sufficient conditions to hold. So, we assume that the Hamiltonian

is concave in K, otherwise, the firm would choose an infinite investment, and this

does not seem a likely outcome. Thus, Hc is concave in K and the state equation is

linear in K; therefore, the following necessary conditions are also sufficient to solve

(5.5); first the derivative of the current value Hamiltonian with respect to the control

variable satisfies, Hc
I = 0, implying that

μ∗(t) = 1 (5.12)

μt is the shadow price of the investment in technical change in non-carbon technology.

We interpret this as the value to the firm of acquiring additional unit of capital,

which is fixed at 1 in this case. This shows that if there are no adjustment costs

to capital stock acquisition, then the value of additional units of capital is fixed and

does not depend on future marginal revenue or user costs. In other words, there are

no opportunity costs to investing now. In the next section, we show the significance

of investment adjustment costs which emphasize the real value of the capital.

The other necessary conditions that define the maximum principle are:
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d(μte
−rt)

dt
= −Hc

Ke
−rt (5.13)

μ̇te
−rt − rμte

−rt = −
µ
∂πt(τ , α(Kt))

∂Kt
− μtδ

¶
e−rt (5.14)

μ̇t = −∂πt(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt
+ (r + δ)μt (5.15)

Hc
μ ⇒ K̇ = It − δKt (5.16)

and the transversality condition is

lim
t→∞

μte
−rt = 0 (5.17)

where (5.13) and (5.17) govern the path of the costate variable which defines the rate

of decrease of the shadow price over time toward the steady state. In (5.14), ∂π(τ,α(Kt))
∂Kt

is the marginal contribution of the investment capital stock to the current profit, and

(r+δ)μt is the rate of depreciation of the cost of acquiring extra units of capital. The

condition defined by equation (5.12) shows that at any time t the value of additional

unit of capital investment in technical change in non-carbon technology is constant

just as the change in the firm’s marginal profit is constant to changes in investment

capital which, as shown in (5.18), is equal to the sum of the firm’s discount rate and

capital stock depreciation; since μt = 1, then μ̇t = 0. Thus, from equation (5.16) we

have

∂π(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt
= (r + δ) (5.18)

If we let I0 = K∗, i.e. the initial investment be the optimal capital outlay that satisfies

(5.18), then the isocline at K̇ = 0, using (5.16) leads to,

I∗t = δK∗
t (5.19)

Thus, the optimal investment path to the steady-state consists of either an initial

lump sum investment to get to the optimal capital K∗ if K0 < K∗ or not making
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any investments if K0 > K∗; then after that simply investing at the depreciation

rate to maintain K∗. The economic intuition of this solution is that in order for

the firm to maintain the optimal profit level toward the steady state capital stock,

instantaneous investments must be made just at the depreciation rate of the initial

capital to maintain stability and this depends on the relationship between K0 and

K∗. This is essentially a bang-bang solution, and it is the result of not implementing

adjustment costs or having a linear adjustment cost.

5.3 A model with adjustment costs

Some studies have highlighted the concept of adjustment costs in energy R&D

investment theory (see Bohringer and Rutherford (2006)). The key assumption is

that capital inputs are adjustable, but this adjustment comes at an expense, the

adjustment cost. In the previous section, we assumed that a firm’s level of investment

does not influence the cost of investment. The problem with this assumption is that

the model does not identify any mechanism through which expectations influence

investment demand, whereas in practice, expectations about demand and costs are

central to investment decisions. For example, the capital stocks of a producing firm

are expected to expand under increasing sales with low costs of capital, and they are

expected to contract with falling sales with high capital cost.

In the adjustment cost theory, developed by Eisner and Strotz (1963), Gould(1968),

Lucas (1967), and Uzawa (1969), investment function is viewed as the demand func-

tion for capital accumulation of the users of capital. In this theory, increasing marginal

costs of investment influences the rate at which the firm wishes to accumulate capital

— investment costs rise with investment levels — and this justifies the need to modify

the model in order to obtain a reasonable picture of actual investment decisions.

However, Mussa (1977) shows that these costs come in two forms, internal and

external. Internal adjustment costs arise when firms face direct costs of changing
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their capital stocks as in Eisner and Strotz (1963), Gould(1968), and Lucas (1967).

The emergence of these costs is due to installation of new machinery, training workers

to operate new alternative production methods, and reorganization of production line

which could lead to temporary decreases in productivity. External adjustment costs

arise when a firm faces a perfectly elastic supply of capital, but where the price of

capital goods relative to others adjusts such that investment or disinvestment are not

plausible options the firm wants to consider.

Here, adjustment costs are assumed to be internal because these costs influence the

demand for and use of alternative energy inputs. The internal cost of adjustment will

be treated as a function of gross investment. Thus we set the adjustment cost as C(It),

where It represents the gross investment. In addition to introducing nonlinearities in

the differential equations, it costs more for a small firm to invest It than for a large

firm to act equally. Thus, the adjustment cost follows C(It) > 0, C 0(It) > 0 and

C 00(It) > 0 for all It > 0 and C(0) = 0.

A critical issue is determining the functional form of the adjustment cost. Here we

follow the Uzawa (1969) specification as applied in Bohringer and Rutherford (2006);

C(It) = It

µ
1 +

φIt
2Kt

¶
(5.20)

where φ is the adjustment cost parameter to investment in the abatement program.

In this representation, the cost has an edge over the usual generalized quadratic

adjustment cost function since it depends on the relative rate of expansion rather

than the absolute rate of expansion as defined by the quadratic function.

Given an adjustment cost, the basic model is reworked by solving (5.5) subject to

(5.6), but replacing the investment It with C(It) as follows;

max
It

Z ∞

0

[πt(τ , α(Kt))− C(It)] e
−rtdt (5.21)
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s.t. K̇ = It − δKt, K(0) = K0 (5.22)

Here, the necessary and sufficient condition, Hc
I = 0, implies

μ(t) = C 0(I(t)) (5.23)

At any time t, along the optimal investment path, (5.23) shows that the optimal

shadow value of capital will be changing over time, implying that the optimal in-

vestment path is such that the marginal value of investment is just equal to the

marginal cost of investment. The firm behavior is such that a higher marginal cost

of investment leads to a lower optimal investment.1 In other words, if the marginal

cost is higher, then the firm will stop investing when the marginal value is higher; the

marginal value is usually higher at a lower investment. Thus μ(t) is increasing in It
2.

The other conditions are

μ̇ = −∂π(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt
+ (r + δ)μt (5.24)

Hc
μ ⇒ K̇ = It − δKt (5.25)

Therefore, the equation of motion for net investment can be derived by taking the

time derivative of (5.23), substituting into (5.24), and reduce to

İt =
1

C 00(It)

µ
(r + δ)C 0(It)−

∂π(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt

¶
(5.26)

1This is analogous to Romer (1996) that a direct economic interpretation of this is that a firm
will increase its stock of capital if the market value of capital is at least what it costs to aquire it.

2Since C(It) is increasing in It
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Thus, at the steady state with K̇ = 0, the unique saddle point, K∗ resulting from

I∗t = δK∗ implies that İt = 0. From (5.26), we have

∂π(τ , α(K∗))

∂α(K∗)
· ∂α(K

∗)

∂K∗ = (r + δ)C 0(δK∗) (5.27)

This illustrates that at the steady state, the marginal profit on abatement capital

is constant and it strongly depends on the discount rates and the marginal cost of

adjustment. It is useful to note that we can express the value of capital, μt, in terms

of the future marginal revenue. Using (5.24), and an integrating factor e−(r+δ)t, we

have,

e−(r+δ)t (μ̇− (r + δ)μt) =
d

dt

¡
μte

−(r+δ)t¢
= −

µ
∂πt(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂K

¶
e−(r+δ)t (5.28)

i.e.,

d

dt

¡
μte

−(r+δ)t¢ = −µ∂πt(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂K

¶
e−(r+δ)t (5.29)

Taking the integral of both sides from t = s to t = ∞, with the transversality

condition lim
t→∞

μte
−rt = 0, we have

μ(t) =

Z ∞

s=t

µ
∂πs(τ , α(Ks))

∂α(Ks)
· ∂α(Ks)

∂Ks

¶
e−(r+δ)(s−t)ds (5.30)

This implies that, on the optimal path, the value of a unit of capital is equal to the

discounted value of its future marginal revenue. This result stimulates the discussion

surrounding the significance of the cost of adjustment. In essence, the firm will

increase its capital stock if μ(t) is high, and reduce it if it is low. The value of capital,

μ(t), is analogous to Tobin’s q (Tobin 1969)—the ratio of the market value to the

replenishment cost of capital.
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Figure 5.1. The time-path of capital stock

The steady state behavior of this model is similar to our discussion in Section 5.2,

but here, the K̇ isocline slopes upwards from left to right since It = δKt and there

are no bounds on the investment level. Figure 5.1 illustrates the path of the capital

stock through time depending on the relationship between the initial stock and the

optimal stock at the steady state. If K0 < K∗, It is positive and it approaches the

steady state such that I∗ = δK∗. This is attributed to the cost of adjustment–as the

capital stock increases, the cost of investing gets smaller. However, ifK0 > K∗, μ(t) is

zero, implying that no investment is made. However, at the steady state, investment

becomes positive and equal to the value of capital depreciation. We sum up these

results in the following;

Proposition 3 For a given tax rate, τ , the optimal level of investment in alternative,

non-carbon energy input technology only depends on the capital stock. If K0 > K∗,

then the firm will not make any investments to improve on the technology. IfK0 < K∗,

the firm will make incremental investment in the technology.
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5.4 Uncertainty in the tax at known future time

We now extend this analysis by introducing uncertainty in the magnitude of the

tax. While assuming that there is perfect information about the timing of the tax

policy, i.e. the initial tax, τ is constant until a known time, T , but thereafter takes a

jump, dτ, following

dτ =

⎧⎪⎨⎪⎩ 0 at t 6= T

τ̃ at t = T
(5.31)

where τ̃ represents the random magnitude of the tax change and follows a probability

distribution. Now, given the randomness in the tax, the firm’s objective function

originally defined in (5.5) becomes that of maximizing the expected discounted value

of the stream of profits from investment net the investment cost defined as

max
It

µZ T

0

(πt(τ , α(Kt))− C(It))e
−rtdt+Eτ̃

Z ∞

T

(πt(τ̃ , α(Kt))− C(It))e
−rtdt

¶
(5.32)

s.t. K̇ = It − δKt, K(0) = K0

Applying the recursion of dynamic programming to this problem makes the solution

approach to be time-phased, i.e., the problem is two-stage since we consider how the

post time T value of investment impacts on the investment decisions prior to time T .

We start by solving the sub-problem defined over the interval t ≥ T where

V (K(T )) = Eτ̃F (KT , τ̃) (5.33)

is the firm’s expected payoff after period T given the randomness in the tax, and

assuming optimal investment thereafter. Now given that the realized tax is τ̃ = τT ,
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for this interval, we seek to solve for the optimal decision on abatement investment

in alternative cost improvement through

F (KT , τT ) = max
It

Z ∞

T

(πt(τT , α(Kt))− C(It))e
−r(t−T )dt (5.34)

s.t.K̇ = It − δKt, K(T ) = KT ≥ 0 (5.35)

The maximum conditions for (5.34) are the same as we derived earlier in (5.23)—

(5.25), and the same dynamic defined by (5.26). Similarly, at the steady state, i.e.

İ = K̇ = 0, there exists a unique path towards that optimal steady state (I∗, K∗).

However, the path to this point depends on the relationship between the initial capital

stock, KT and the steady state capital stock, K
∗. If KT < K∗, the capital stock

will increase towards the steady state through increasing investment. If KT > K∗,

investment will be zero, but depreciation in the capital stock over time will bring

the capital stock down to the the steady state value. This is true for T < t < ∞.

Intuitively, we expect that if the tax is much lower than expected then it may be true

that KT > K∗. Whereas if the tax is much higher than expected we may expect the

opposite, KT < K∗.

We now focus attention on first period behavior in which the firm’s problem is to

solve the following problem given this investment path knowledge about post time T ,

max
It

Z T

0

(πt(τ , α(Kt))− C(It))e
−rtdt+ e−rTV (K(T )) (5.36)

s.t. K̇ = It − δKt, (5.37)

K(0) = K0
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For the problem structured as above, we follow Arrow and Kurz (1970) in the following

propositions3.

Proposition 4 (Pontryagin Maximum Principle). Let I∗(t) be a choice of invest-

ment levels (0 5 t 5 T ) which maximizes
R T
0
(πt(τ , α(Kt))−C(It))e−rtdt+e−rTV (K(T )),

subject to the conditions,

1. K̇ = It − δKt, some constraints on the choices investments, and initial condi-

tions on the state variables. Then there exist auxiliary variables, functions of

time, μ(t), such that, for each t,

2. I∗(t) maximizes H((π(t)− c(I(t)), I(t), μ(t), t) where

H((π − c(I)), I, μ, t) = πt(τ , α(Kt))− C(It)) + μt(It − δKt)

and the functions μt satisfy the differential equation

3. μt = −∂H
∂K
, evaluated at K = K(t), I = I∗(t).

The optimal path is the solution of the differential equations stated in conditions

1-3 above.

Proposition 5 (Transversality conditions). The solution to Proposition 4 also sat-

isfies the condition, μ(T ) = ∂V (K(T ))/∂K(t)

3This proposition only differs from the preceeding analysis because it resembles a problem with
random scrap value.
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Using these propositions, we have,

Hc
t (τ , α; It) = πt(τ , α(Kt))− C(It) + μt(It − δKt)

μ(t) = C 0(I(t)) (5.38)

μ̇ = −∂πt(τ , α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt
+ (r + δ)μt (5.39)

μ(T ) = e−rT
∂V (KT )

∂KT
(5.40)

(5.38) implies that the optimal investment is such that the shadow price μ(t) is equal

to the current value of the marginal cost of investment at time t.

We can determine the effect of uncertainty by looking at equation (5.40). An

increase in uncertainty will change the value of V ; this in turn will impact the optimal

value of the shadow price μ at time T ; which will impact the path up to that point. If

the marginal change in value increases in uncertainty, then the RHS of (5.40) increases

in uncertainty, implying that the path up to this point must lead to a higher shadow

value at time T . Since this is not an equilibrium condition, an increase in marginal

value increases the shadow value which will lead to increased investment.

In the following subsections, we investigate the impact of increasing uncertainty.

First, we determine the trajectory of the optimal investment path as the derivative

of V with respect to KT increases; that is, under increasing
∂V (KT )
∂KT

, by implementing

a numerical example using well-defined functional forms in Section 5.4.2. Second, we

determine whether ∂V (KT )
∂KT

increases or decreases in increases in risk. We do this by

investigating whether it is concave or convex in the random variable, τ̃ .

5.4.1 Effects of uncertainty

One of the central questions of this chapter is: how does uncertainty in the tax

influence investment? In a three-step approach, we begin with the first step of de-

termining the derivative of (5.33) with respect to KT . Any change in the distribution
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of the tax, τ̃ that causes the right-hand side of (5.41) to increase will increase the

marginal firm value;

∂V (KT )

∂KT
= Eτ̃

∙
∂F (KT , τT )

∂KT

¸
(5.41)

Does this the right-hand side of (5.41) increase or decrease in risk? To know this

we need to determine if the amount inside the expectation is convex or concave (or

neither) in τ̃ . According to Rothschild and Stiglitz (1971)–if it is convex then it

increases in risk; if it is concave, then it decreases in risk; and if it is neither then

it increases with some increases in risk and decreases with other increases in risk or

vice-versa. Thus, we would like to sign the second derivative of ∂F (KT ,τT )
∂KT

with respect

to τ . We start by looking at the first derivative using the expression in the brackets

in equation (5.41) after substituting (5.34), we have,

∂F (KT , τT )

∂KT
=

Z ∞

T

e−r(t−T )
∂

∂KT
[πt(τT , α(K

∗
t (KT , τT )))] dt

=

Z ∞

T

e−r(t−T )
∂πt(τ̃ , α(K

∗
t (KT , τT )))

∂K∗
t (KT , τT )

∂K∗
t (KT , τT )

∂KT

=

Z ∞

T

e−r(t−T )
£
α0(K∗

t (KT , τT ))Pnce
∗
nct

¤ ∂K∗
t (KT , τT )

∂KT
dt (5.42)

In the second step, we seek to know how the marginal firm value, or specifically, the

derivative of the value function with capital at T changes with tax. We find the

derivative of (5.42) with respect to τT ,

∂2F (KT )

∂KT∂τT
=

Z ∞

T

e−r(t−T )
∂

∂τT

µ
α0(K∗

t (KT , τT ))Pnce
∗
nct

∂K∗
t (KT , τT )

∂KT

¶
dt

=

Z ∞

T

e−r(t−T )Pnce
∗
nct × (5.43)⎛⎜⎝ ∂α0(K∗t (KT ,τT ))

∂K∗t (KT ,τT )

∂K∗t (KT ,τT )

∂τT

∂K∗t (KT ,τT )

∂KT
+

α0(K∗
t (KT , τT ))

∂K∗t (KT ,τT )

∂KT ∂τT

⎞⎟⎠ dt

By the definition from Section 5.2, on the right hand side of (5.43), the upper expres-

sion inside the brackets (before the +) is positive. This is because the first fraction
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of the upper expression is negative, the second fraction is also negative and the third

one is positive. The lower expression (after the +) has the first partial positive, but

there is insufficient knowledge about the sign of the fraction.

Therefore, the third step–finding the derivative of (5.43) with respect to the tax

that explicitly describes the effect of uncertain tax change on the marginal value of

the firm value through capital stock changes–is difficult to characterize even when

completely derived. In order to get more insights, we apply numerical examples in

Subsection 5.4.2.2. We use Rothschild and Stiglitz (1970) mean-preserving spread

definition4 to analyze how an increase in the riskiness of the carbon tax impacts

near-term investment.

5.4.2 Numerical Approach

This section is motivated by the complexity of the preceding analytical approach.

The traditional techniques of analyzing the problem with the aid of phase diagrams

rely on differential equations, which in this model have forms with limited information

about the paths that constitute a phase diagram. However, numerical methods are

not restricted by this limitation provided functional forms that represent the basic

characteristics of the model parameters are defined.

The cases presented in Section 5.4 show that the initial boundary condition lies

on the capital stock, while the terminal boundary condition is for the flow variable–

investment. We adopt the following functional forms with their corresponding deriva-

tives to form the basis of the examples in this numerical approach.

The impact of capital stock on technical change is represented as

4The expected value of a convex function increases in risk; the expected value of a concave
function decreases in risk.
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α(K(t)) = θ(1− e−c1K(t))

⇒ α0(K(t)) = c1θe
−c1K(t) (5.44)

π(.) = ph(.)− pcec − (1− α(K(t))Pnce
∗
nc − τγe∗c

⇒ ∂π

∂α
= pnce

∗
nc (5.45)

The cost of investment, following the definition in Section 5.3, is defined as

C(I(t)) = I(t)

µ
c2 +

φI(t)

c3K(t)

¶

which at optimality implies

μ(t) = c2 +
2φI(t)

c3K(t)
(5.46)

Thus, substituting (5.44) and (5.45) into (5.39), we have

μ̇ = (r + δ)μt − pnce
∗
nc · c1θe−c1K(t) (5.47)

Likewise, solving for I(t) in (5.46) and substituting into (5.37) yields;

K̇ =
c3K(t)

2φ
(μ(t)− c2)− δK(t) (5.48)

In order to solve the problem defined by (5.47) and (5.48), we apply the fourth-

order Runge-Kutta algorithm in a Visual Basic Application as illustrated in Naevdal

(2003). The procedures follow the shooting algorithm5. In this method, with known

boundary values, guesses are made for unknown initial starting values, and the differ-

ential equations are solved from a given initial time, t0 to a given final time tf using

Runge-Kutta solver iteratively.

5Refer to Goffe(1993) for a guide to the numerical solution of two-point boundary value problems.
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For this analysis, the iterative procedure starts at t = 0, K(0) = K0 and is

bounded by (5.40). We obtain estimates for K(t +∆), and this estimate is used to

obtain an estimate for K(t + 2∆) and so on, where ∆ is a small step increment in

time. Similarly, we estimate μ(t + ∆). The formulae for estimating K(t + ∆) and

μ(t+∆) are given by

K(t+∆) = Kt +
∆

6
(x1 + 2x2 + 2x3 + x4) (5.49)

μ(t+∆) = μt +
∆

6
(y1 + 2y2 + 2y3 + y4) (5.50)

where xi is given by;

x1 = f(t,Kt, μt)

x2 = f(t+∆/2,Kt + x1∆/2, μt + y1∆/2)

x3 = f(t+∆/2,Kt + x2∆/2, μt + y1∆/2)

x4 = f(t+∆, Kt + x2∆, μt + y1∆)

and yi is given by (5.47)

y1 = g(t,Kt, μt)

y2 = g(t+∆/2, Kt + x1∆/2, μt + y1∆/2)

y3 = g(t+∆/2, Kt + x2∆/2, μt + y1∆/2)

y4 = g(t+∆, Kt + x2∆, μt + y1∆)

where the functions, f and g follow from (5.48) and (5.47) respectively, i.e.,

f(·) =
c3K(t)

2φ
(μ(t)− c2)− δK(t)

g(·) = (r + δ)μt − pnce
∗
nc · c1θe−c1K(t)
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5.4.2.1 Example 1: Effect of second stage expected firm value on optimal

capital stock

In this Subsection, we investigate the effect on investment before time T of in-

creases in the right hand side of (5.40) at time T . To do this, we calibrate the endpoint

boundary condition and give a means to observe it as an increasing function. We put

a multiplier, β, on KT through an assumed value function defined by

V (KT ) = (βKT )
n

such that the firm marginal value function post time T increases in KT as β is

increased,

∂V (KT )

∂KT
= nβnK

(n−1)
T

The optimal paths generated by (5.49) and (5.50) in Figure 5.2 show that the trajec-

tory of capital accumulation in the first period is everywhere increased with increasing

marginal firm value function post time T .

Thus, tying this back with Section 5.4.1, if uncertainty increases the expected

marginal value, it will increase first stage investment; if uncertainty decreases the

expected marginal value, it will decrease first stage investment.

5.4.2.2 Example 2: Effect of tax uncertainty on firm value

In this example, we apply the original problem defined by (5.33)—(5.35) to the nu-

merical framework. Using the functions defined in Section 5.4.2, we solve the control

problem by assigning values to the tax–the tax ranges from 0 to 8 with increment

of 2. For each of these tax values, the capital stock, KT is varied incrementally from

1 to 5 to determine the optimal firm value (the optimal F given KT and given a tax

τ) for each capital starting at the initial time. The left panel of Figure 5.3 shows the

effect of an increasing tax on the profile of the optimal marginal value of the firm

given the starting capital, that is, how a given tax impacts ∂F
∂K
. This figure projects
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Figure 5.2. Here increasing firm marginal value is captured by the multiplier onKT

with increments of 0.5 from a low of 1. Thus, any change that increases the marginal
firm value in the second period leads to an increase in the optimal capital stock
everywhere in the first period.
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Figure 5.3. The left panel is the response of firm value to changes in initial capital
under different tax expectations. The right panel is the derivative of firm value with
respect to initial capital under increasing tax expectations.
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two results: First, an increasing tax reduces firm value. The tax policy lowers the

firm’s profits, and thus, the value of the firm. The second result shows firm value

increasing in the capital stock at time T , but at a decreasing rate. The interpretation

here is that there is diminishing marginal firm value to capital stock accumulation by

a firm. The right hand panel of Figure 5.3 illustrates how ∂F
∂K
changes with tax–we

have plotted the slope of the curves in the left panel against the tax. This shows that

having a high capital stock at time T makes the firm robust to changes in the tax.

Note that when the capital stock starts very high, like in Interval 4-5, the slope does

not change in the tax, implying robust (in this sense). On the other hand, when the

capital stock starts low, Interval 1-2 curve, ∂F
∂K

is concave in the tax. This implies

that the expected value of ∂F
∂K
decreases in risk.

5.4.3 Useful insight

The examples above expose an interesting insight. For example, if the capital stock

is already high, then uncertainty will have very little effect on optimal investment in

the second period. This is because optimal investment is already zero. On the other

end of the spectrum, however, is a more interesting observation that if the initial

capital stock is low, then the firm may or may not invest. Therefore, uncertainty plays

a role–in this case, the optimal investment will decrease in risk. These show that

there are marked differences in optimal investment in response to the capital stock

level, and thus, raises the question: why does this happen? Revisiting our investment

cost function–in Section 5.3–shows that these differences exist because investment

cost is a decreasing function of the capital stock. In explicit terms, investment is very

costly when the capital stock is low, and it costs less when the capital stock is high.

In a future work, we will investigate the possibility of a turn around if the investment

cost was very high.
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In Chapter 4 and in Baker and Shittu (2006), we showed that optimal investment

in non-carbon technology can increase in risk. Here, we have added another issue–

second period investment. Clearly, these analyses have a push-pull interaction because

of the possibility of investment in both stages versus the one-period investment in the

previous works. Our numerical example show that the possibility of being able to

invest in the future puts a downward pressure on near-term investment. Thus, the

firm will benefit from the inherent advantages of the option value that comes with

waiting before getting to invest after the tax level has been resolved.

In the next section, we focus on the effect of carbon tax timing uncertainty on

investment decisions in this technology.

5.5 Random timing of a known tax change

We start this section by referring to our earlier two-stage problem defined in

Section 5.4. However, we begin with the case with certainty in the timing of an

upward and known tax increase. We analyze the impact of two scenarios; short and

long term horizons under timing certainty before the tax change. We re-write the

problem in (5.32) without uncertainty in the tax post time T as;

V (K0) = max
It

⎛⎜⎝ R T
0
(πt(τ 1, α(Kt))− C(It))e

−rtdt+ ...R∞
T
(πt(τ 2, α(Kt))− C(It))e

−rtdt

⎞⎟⎠ (5.51)

s.t. K̇ = It − δKt, K(0) = K0 (5.52)

where τ 1 and τ 2 are the tax values before and after time T . Thus, in this base case,

in addition to a known time, T , we assume that τ 1 < τ 2 with a boundary and simple

case that τ 1 = 0. Transforming this problem for solution ease, we define the second

stage cash flow stream as,
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F (KT ) = max
It

Z ∞

T

(πt(τ 2, α(Kt))− C(It))e
−r(t−T )dt (5.53)

s.t.K̇ = It − δKt, K(T ) = KT ≥ 0 (5.54)

so that (5.51) becomes,

V (K0) = max
It

Z T

0

(πt(τ 1, α(Kt))− C(It))e
−rtdt+ e−rTF (KT ) (5.55)

subject to (5.52). It should be noted that this is different from (5.36) because here

there is no expectation due to either a random tax or random time on the value

function, F (KT ). However, transferring the characteristics of the solution to (5.34)

from Section 5.4 to describe (5.53), and using Proposition 4 to solve (5.55), the firm’s

first period investment path can be described. This solution, where it exists for I∗(t)

must satisfy the differential equation,

İ∗(t) = (r + δ)
C 0(I∗t )

C 00(I∗t )
− πK(τ 1, α(Kt))

C 00(I∗t )
(5.56)

μ̇ = (r + δ)C 0(I∗t )− πK(τ 1, α(Kt)) (5.57)

where πK(τ 1, α(Kt)) =
∂πt(τ1,α(Kt))

∂α(Kt)
· ∂α(Kt)

∂Kt
. (5.57) is bounded by μ(T ) = e−rT ∂F (KT )

∂KT
.

Now, we use this boundary to characterize the terminal condition at time T of the

optimal first period investment plan of the firm as follows;

lim
T→∞

μ(T ) = 0 (5.58)

lim
T→0

μ(T ) =
∂F (K0)

∂K0
(5.59)

(5.58) says that if the expected time to a tax increase is infinitely distant, then the

shadow value of optimal investment is zero. Therefore, there is no investment–

implying that the tax change does not matter if it is in the future, and has no effect
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on the firm’s level of investment. On the other hand, (5.59) shows that if the tax

change is now, the marginal value of investment is positive and it depends on the

current capital stock in the technology. Combining these boundary conditions with

the dynamics of investment in (5.57), the firm’s optimal investment behavior under

timing certainty depends on the initial capital stock, K0 and the timing of the tax

change, T .

The firm’s initial capital stock (if it exists) does not change for a tax change that is

expected in the distant future because the marginal value of investment is zero, while

the firm’s capital stock follows Figure 5.1 towards the steady state capital stock for a

near term tax change depending on the relationship between the starting capital, K0

and the steady state capital, K∗.

5.5.1 Effects of uncertain timing

Now we explore when the time, T is a random variable with a known probability

distribution. In this case, V (T )–the present value of the cash flow when the tax in-

crease occurs–is also random. We cannot discuss the maximization of V (T ) because

it will be different for every random variable T . This is peculiar to most problems

under uncertainty and thus, we adopt the expected value function hypothesis. The

firm will choose an investment profile which will make the expected value of V (T )

greatest. The generic present value of the cash flow for a given T is

V (T ) =

Z T

0

(πt(τ1, α(Kt))−C(It))e
−rtdt+

Z ∞

T

(πt(τ 2, α(Kt))−C(It))e
−rtdt (5.60)

In order to address this timing uncertainty, we define p(T ) as the firm’s subjective

probability density function of the random time such that T ∈ (0,∞). We re-cast

(5.60) as follows
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E [V (T )] =

Z ∞

0

p(T )

⎛⎜⎝ R T
0
(πt(τ 1, α(Kt))− C(It))e

−rtdt+ ...R∞
T
(πt(τ 2, α(Kt))− C(It))e

−rtdt

⎞⎟⎠ dT (5.61)

Letting Wi = (πt(τ i, α(Kt)) − C(It)) for i = 1, 2, and using these definitions, (5.61)

can be reduced to

E [V (T )] =

Z ∞

0

p(T )

µZ T

0

W1e
−rtdt+

Z ∞

T

W2e
−rtdt

¶
dT

=

Z ∞

0

Z T

0

p(T )W1e
−rtdtdT +

Z ∞

0

Z ∞

T

p(T )W2e
−rtdtdT (5.62)

We define

Ω(t) =

Z ∞

t

p(s)ds (5.63)

as the probability that the tax increase only happens after time t ∈ [0,∞) such that

p(t) = −Ω̇(t). When T is a random variable which assumes values in the interval

[0,∞] and it follows a probability density function p(t), with properties p(t) ≥ 0 for

all t, and
R∞
0

p(t)dt = 1. By reversing the order of integration with notable changes

in the limits in (5.62), and using (5.63), we have

E [V (T )] =

Z ∞

0

W1e
−rt
µZ ∞

t

p(T )dT

¶
dt+

Z ∞

0

Z ∞

T

p(T )W2e
−rtdtdT

=

Z ∞

0

Ω(t)W1e
−rtdt+

Z ∞

0

W2e
−rt
µZ t

0

p(T )dT

¶
dt

=

Z ∞

0

Ω(t)W1e
−rtdt+

Z ∞

0

W2e
−rt
µZ ∞

0

p(T )dT −
Z ∞

t

p(T )dT

¶
dt

=

Z ∞

0

Ω(t)W1e
−rtdt+

Z ∞

0

(1− Ω(t))W2e
−rtdt

=

Z ∞

0

[Ω(t)W1 + (1− Ω(t))W2] e
−rtdt (5.64)

As long as the timing of the increase in tax is uncertain, the problem becomes that

of choosing the investment path that maximizes the expected present value of the
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cash flow. Thus, re-inserting the profit less cost of investment function into (5.64),

we have

max
It

E [V (T )] =

Z ∞

0

⎡⎢⎣ Ω(t)(πt(τ 1, α(Kt))− C(It)) + ...

(1− Ω(t))(πt(τ 2, α(Kt))− C(It))

⎤⎥⎦ e−rtdt (5.65)

subject to (5.52). The admissible I∗(t) for this problem where it exists must satisfy

the differential equation6,

İ∗(t) = (r + δ)
C 0(I∗t )

C 00(I∗t )
−

⎛⎜⎝ Ω(t)πK(τ1,α(Kt))
C00(I∗t )

+ ...

(1− Ω(t))πK(τ2,α(Kt))
C00(I∗t )

⎞⎟⎠ (5.66)

μ̇ = (r + δ)C 0(I∗t )− [Ω(t)πK(τ 1, α(Kt)) + (1− Ω(t))πK(τ 2, α(Kt))](5.67)

Comparing (5.67) with the case without uncertainty, (5.57), the squared brackets on

the right-hand side is a weighted average over the marginal profit of the firm. (5.67)

reduces to (5.57) if the probability that the tax change will not occur before any time

t, Ω(t), is 1–in other words, the tax will not change, but remains at the current

value, τ 1, for all t ∈ [0,∞). This implies that the firm’s optimal capital stock, K∗
1 ,

follows the solution to (5.56) when Ω(t) = 1. On the other hand, the marginal profit

due to the new tax replaces that due to the old tax if the probability that the tax

change will occur corresponds to Ω(t) = 0 implying that the firm’s optimal capital

stock, K∗
2 , results from the solution to (5.66) when Ω(t) = 0.

Comparing the investment paths under certainty in the timing of tax change with

the uncertainty case, we explore the key optimality condition at the steady state.

First, rewriting (5.66), and introducing the steady state property, İ = K̇ = 0, we

have

C 0(δK∗
t ) =

Ω(t)πK(τ 1, α(K
∗
t )) + (1− Ω(t))πK(τ 2, α(K

∗
t ))

r + δ
(5.68)

6Applying the faster Euler-Langrange differential equation which yields the same reesult as the
Pontryagin principle.
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The solution to this problem gives the optimal capital stock, K∗ to be achieved under

uncertainty before the new tax comes into effect. We follow this with a description of

the optimal path and a comparison between the certain and uncertain timing optimal

paths.

Under certainty in the timing of the tax increase, the firm will raise its stock of

capital from the optimal low tax level, K∗
1 , before the tax increase to the optimal high

tax level, K∗
2 , after the tax increase has been realized. However, the precise optimal

path of investment between these levels of capital stock is not readily characterized.

Thus, the left hand panel of Figure 5.4 illustrates three postulates of the paths between

the steady state levels of the capital stock. Case (a) illustrates when the path is such

that investment increases to make the steady state optimal capital stock be achieved

at the time of the tax change. This case requires that the increase in investment is

steady to increase the capital stock from K∗
1 to K

∗
2 . In path (b), the marginal increase

in the capital stock is lower. We infer that this case yields more to the influence of

adjustment cost on the level of investment increase. The path described by (c) is a

less likely scenario since a forward-looking firm will not wait to realize the tax before

increasing the capital stock. This path may not be optimal because the value to early

investments in the technology is lost and the influence of adjustment cost will make

achieving the steep gradient7 in investment difficult to realize. In the next section,

we hypothesize on the path represented by (a).

Uncertainty in the timing leads to the optimal capital stock, K∗, from (5.68).

This is higher everywhere before the tax increase is realized than the range in the

certainty case–implying higher near-term investments. This is because the steady

state capital stock, K∗, that solves (5.68) is a function of the weighted average over

the marginal profit of the firm while the certainty case corresponds to the transition

7A bound on this path is for the capital stock to exhibit a jump at time T–the vertical long
dash line–to the higher steady state value.
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T1 T2 T3

Figure 5.4. Investment response to timing of an increase in tax. On the left hand
panel are three path postulates toward the steady state for known timing of the tax
change. The right hand panel illustrates how timing uncertainty has the optimal
capital stock path higher.

between K∗
1 to K∗

2 . Thus, the capital stock transition under uncertainty satisfies

the relationship such that K∗
1 < K∗ < K∗

2 . The right hand panel of Figure 5.4

illustrates a particular path to the saddlepoint associated with the high tax. In this

figure, there are three potential possibilities of the time, T1, T2, and T3 when the

tax increase will be realized. In the next section, we hypothesize another possibility

based on the conditional probability of the tax change, (1 − Ω(t)), increasing with

time. This raises the optimal path of the capital stock with the likelihood of higher

jumps in the near term, T1, than later term, T3 of the tax increase. Stated differently,

if–on average–the firm anticipates the tax increase to come sooner, then near-term

investments will be higher.

5.5.1.1 Hypothesis

In this subsection, we hypothesize on the optimal transition between the capi-

tal stock steady states, first, under certainty; and second, under uncertainty. We

use these hypotheses to underline the scope of future work that aims to adequately

support the assumptions guiding these hypotheses.
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We derive the optimal investment path to be followed under uncertainty by using

(5.67) with the transversality condition. Introducing an integrating factor, e−(r+δ)t,

(5.67) becomes

e−(r+δ)t (μ̇− (r + δ)μt) = −[Ω(t)πK(τ 1, α(Kt)) + (1− Ω(t))πK(τ 2, α(Kt))]e
−(r+δ)t

=
d

dt

¡
μte

−(r+δ)t¢
implying that

d

dt

¡
μte

−(r+δ)t¢ = −[Ω(t)πK(τ 1, α(Kt)) + (1− Ω(t))πK(τ 2, α(Kt))]e
−(r+δ)t

Taking the integral of both sides from t = s to t = ∞, with the transversality

condition lim
t→∞

μte
−rt = 0, we have

μ∗(t) =

Z ∞

s=t

[Ω(t)πK(τ 1, α(Kt)) + (1− Ω(t))πK(τ 2, α(Kt))]e
−(r+δ)(s−t)ds (5.69)

This gives the investment path to be followed under uncertainty. We have stated

already that under certainty in the timing of the tax increase, the firm will raise its

stock of capital from the optimal low tax level, K∗
1 , before the tax increase to the

optimal high tax level, K∗
2 , after the tax increase has been realized. The left hand

panel of Figure 5.5 illustrates scenario (a) from Figure 5.4. Our choice of this path–

steady rise in investment–is based on the belief that the sooner the firm raises its

optimal capital stock to the steady state through increased investments at time T ,

the higher is the investment payoff after the tax increase.

Under uncertainty in timing, the optimal capital stock, K∗, is higher everywhere

before the tax increase is realized. However, we hypothesize that the investment path

jumps to the saddlepath described by the certain high tax, τ 2.We argue that the cost

of adjustment to making this jump is lower since the steady state capital stock, K∗,
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Figure 5.5. Hypothesis on optimal paths to the steady state.

prior to the tax change is already high, and the firm realizes higher benefits to early

saddlepath entry. The right hand panel of Figure 5.5 illustrates three possibilities

of this conjecture. Our belief about the conditional probability of the tax change,

(1 − Ω(t)), increasing with time thus raises the optimal path of the capital stock

with the likelihood of higher jumps in the near term, T1, than later term, T3 of the

tax increase–implying that investment will be higher the earlier the uncertainty is

resolved than the later.

The saddlepath to the steady state, characterized by the two horizontal lines in

each panel of Figure 5.5, is conditioned on the nature of the firm’s marginal profit

function due to the capital stock, πK(·)8.

5.6 Conclusion

In this chapter, we consider a continuous-time optimal control model to determine

the effect of tax magnitude uncertainty on a firm’s capital stock and R&D spending

in alternative, cost-reducing non-carbon energy input technology. First, we find that

uncertainty in the magnitude of a future tax reduces near-term investment in non-

8We know that πK > 0 and πKK < 0, but we cannot determine the sign of πKKK that charac-
terizes the nature of πK .
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carbon fuel technology. This result is driven by the trajectory of capital accumulation

in the first period which is everywhere increased with increasing marginal firm value

function post the tax change. Marginal firm value, in turn, depends on the distribu-

tion of the future tax. We note that an increasing tax reduces firm value because the

tax policy lowers the firm’s cash flow. However, firm value increases in the capital

stock, but at a decreasing rate, implying that there is diminishing marginal firm value

to capital stock accumulation by a firm. In our analysis, the expected marginal firm

value in the capital stock is concave in the tax implying that the marginal firm value

decreases in risk. This in turn implies that optimal investment decreases in risk in

the tax. On the other hand, we show that having a high capital stock at the time of

the tax increase makes the firm robust to changes in the tax, since they will not be

investing regardless of the level of the tax.

We contrast this with the result from Chapter 4 where uncertainty in the tax

increases near-term investment in this technology. We argue that the possibility of

investing in both periods puts a downward pressure on near term investment in this

two-stage model. That is, there is an option value to waiting. Waiting for the tax to

be resolved increases the value of information guiding the firm’s investment decision.

We hypothesize that investment lags or delays in observing the effect of investment

may reverse this effect. This is open to future analysis.

We pay close attention to the impact of the cost of investment on the optimal

investment decision. The differences in optimal investment in response to different

capital stock levels also hinge on the definition that the cost of investment is a de-

creasing function of the capital stock–investment is very costly when the capital

stock is low, and it costs less when the capital stock is high.

Second, we extend this analysis by investigating how investment is influenced

by uncertainty in the timing of a future carbon tax. We find that uncertainty in

the timing of a known future tax increase increases near-term investment. In this
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case, the effect of uncertainty on the shadow value of investment, and thus the firm’s

optimal investment, depends on the firm’s belief about the probability of the timing

of the known tax increase. Under uncertainty in the timing of the tax increase, the

firm’s optimal response is to increase its capital stock through higher investments.

We hypothesize that there may be jumps to the saddlepath that lead to the steady

state at the time of the tax change. The nearer the resolution of the tax increase,

the higher the jump to the saddlepath. The saddlepath depends on how the firm’s

relative marginal profits change due to changes in the capital stock level. Future work

will explore more exact characteristics of the optimal paths to a the steady state.

Simplifying assumptions in this analysis include the use of fixed prices. However,

if prices are allowed to increase over time, we expect the results to become more

resounding. An avenue for future work is to consider random or stochastic price paths

in the prices. While this has the tendency to describe, more closely, a firm’s behavior,

we anticipate that the results will not be diametrically different. Also, in our model,

we ascribed to the use of just one variant of a price-based policy–carbon tax–

future work will look at other market-based policies like the current congressional

consideration of a cap-and-price mechanism, subsidies and permit systems. Beyond

this realm are emission standards and other command-and-control policies which are

better suited for some other technologies. Intuitively, we conjecture that given the

same framework of policy uncertainty, the results may be similar.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter summarizes the overall impacts of this dissertation with emphasis

on the conclusions of the three major segments addressed. By extension, it also

discusses the relevant contributions of this dissertation to the discussion on the impact

of uncertainty on environmental policy and investment in technological change. We

conclude this chapter by raising a number of related avenues for future work.

6.1 Summary of findings

In Chapter 3, we explored the possibility and implications of environmental tech-

nological advance that increases marginal abatement costs for higher levels of abate-

ment. Through an illustrated example of a simplified electricity sector, we show the

possibility of such innovation. With detailed consideration of the implications of such

advance using the framework from Milliman and Prince (1989), we observed that

policy implications can be substantively different when innovation increases marginal

abatement costs. This suggests that the best framework for analyzing how policy

instruments impact abatement technology is with a portfolio of technologies–as ad-

dressed in Chapter 4. Since different instruments have different incentives for different

technologies, using the “wrong” instrument may promote the “wrong” technology. In

fact, one interpretation of these results compared to Milliman and Prince (1989) is

that taxes and auctioned permits provide more incentives for firms to choose tech-

nologies that lower marginal cost; while direct controls, subsidies, and free permits

provide more incentives for firms to choose technologies with higher marginal cost.
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However, for innovation to increase marginal cost, it must impact technologies as-

sociated with less than full abatement. By improving these technologies, the marginal

cost of abatement must ultimately increase at some point as we move toward full

abatement. In contrast, innovations that reduce the costs of full abatement–for ex-

ample, lowering the costs of photovoltaic cells–will decrease the marginal costs of

abatement. Also, the optimal level of abatement must be in the range where marginal

costs have increased.

In Chapter 4, we considered a portfolio of R&D options in terms of reducing

the effective cost of inputs. We distinguish between the R&D programs based on

their influence on the price for inputs, which in turn drives the effective demand

of inputs, and thus the optimal investment level in each of them. We find that

optimal R&D investment is influenced by the relative cost of R&D programs into

efficiency programs and the firm’s flexibility in substituting between fossil and non-

fossil energy inputs. In particular, overall investment appears to be highest when

the carbon tax is high enough to provide incentives for using CCS, but not so high

that firms start to substitute away from fossil fuel energy significantly. The effects of

the elasticity of substitution between energy inputs is such that a high substitution

elasticity between fossil and non-fossil energy leads to the optimal investments in CCS

exceeding that of non-fossil at low tax levels, but at higher levels, the converse is true.

The explanatory and logical interpretation is that investment in the CCS program

increases in a carbon tax to offset the influence of the tax, but at high tax levels,

these investments reduce since it is more economical to focus solely on non-fossil

programs that are not influenced by the carbon tax. On the other hand, when short

term elasticity of substitution between fossil and non-fossil energy inputs is low, the

carbon tax does not significantly influence the investment level in non-fossil energy

programs. Overall portfolio investment reduces in the tax when the firm’s ability to

substitute away from fossil related inputs is limited. Uncertainty in the tax decreases
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the overall optimal investment in the portfolio for a firm with enough flexibility in its

use of fossil and non-fossil energy–as observed with non-fossil technology substituting

for CCS at considerably high tax levels.

Thus, given the current uncertainty about a future tax, it looks like optimal

R&D investments should be relatively small. However, it appears that non-fossil

fuel program can be a hedge against uncertainty, and so more attention should be

spent on this technology. In addition, this analysis provides insights to policymakers

concerned about setting a carbon tax and crafting R&D policy because it is evident

that reducing uncertainty will increase investment.

We considered a continuous-time optimal control model, in Chapter 5, to deter-

mine; (1) the effect of tax magnitude uncertainty on a firm’s capital stock and R&D

spending in alternative, cost-reducing non-fossil energy input technology, and (2) how

investment is influenced by uncertainty in the timing of a future carbon tax. We find

that uncertainty in the magnitude of a future tax reduces near-term investment in

non-fossil fuel technology. This result is driven by the trajectory of capital accumu-

lation in the first period which is everywhere increased with increasing marginal firm

value function post the tax change. Marginal firm value, in turn, depends on the dis-

tribution of the future tax. We note that an increasing tax reduces firm value because

the tax policy lowers the firm’s cash flow. However, firm value increases in the capital

stock, but at a decreasing rate, implying that there is diminishing marginal firm value

to capital stock accumulation by a firm. In our analysis, the expected marginal firm

value in the capital stock is concave in the tax implying that the marginal firm value

decreases in risk. This in turn implies that optimal investment decreases in risk in

the tax. On the other hand, we show that having a high capital stock at the time

of the tax increase makes the firm robust to changes in the tax, since they will not

be investing regardless of the level of the tax. We contrast this with the result from

Chapter 4 where uncertainty in the expected tax increases near-term investment in
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this technology. We argue that the value of the option to invest in both periods puts

a downward pressure on investment in this two-stage model allowing for near-term

investment to be held back prior to the resolution of the future tax.

Our analysis indicates that uncertainty in the timing of a tax increases the optimal

near term investment in this technology. Thus, overall uncertainty–about both the

timing and the magnitude–has ambiguous effects on near term optimal investment.

We will investigate this further in the future.

6.2 Contributions

One of the aims of this dissertation is to underscore the crucial relevance of tech-

nical change representation in the modeling of endogenous technological change in

climate change literature. We show that this understanding has far reaching conse-

quences on optimal policies for inducing technological change. In addition, and given

our understanding of the different approaches to representing technological change,

we accentuate the importance of a firm’s investment in a portfolio of technologies.

Although we use an emissions tax as a policy of choice, however, one caveat–which

also simultaneously serves as an advantage for our portfolio analysis–is that it cannot

differentiate between technologies. It is an advantage because using any other price-

based control mechanism may not fully alter the allocation of private investments in

the technologies.

Whether it is in climate damages, costs, or technological advance, uncertainty

has proved difficult to model, especially, its resolution through time, i.e., knowledge

updating. In summary, the contributions to literature include:

1. Sensitize the environmental economics arena that not all environmental techni-

cal change are the same. The impact of different representations of endogenous

technological change has far-reaching consequences on the resolution of policies,

and the inherent uncertainties that come in the climate change context.
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2. Provide a theoretical template for analyzing investment in a portfolio of related

technologies under an increasing and uncertain carbon tax scheme. This is

an extension of related investment analyses which target specific technologies

without provision for possible interactions with related technologies. This is

because the future direction of energy systems is for investments to be targeted

across related technologies.

3. Create a platform for the resolution of uncertainties using a continuous-time

model that uses these uncertainties to determine near-term investment levels

and capital stock accumulation.

6.3 Future Work

The treatment of how uncertainty in environmental policy influences investment

decisions in technological progress is a continuing discussion in the economic arena of

global climate change. While this dissertation has involved extensive and intensive

examination of this interaction, there are still many avenues for future exploratory

analysis. One such avenue is in the analysis of endogenous technological learning in

bottom-up energy systems. Top-down modeling as addressed in this dissertation is

only one window by which decision makers and policymakers get informed on the

optimal profile of policies and investments. However, bottom-up energy systems seek

to provide a more robust interpretation of close-to-reality data-driven studies. The

formulation of the energy landscape problem in an endogenous model of technological

learning is defined by the data regarding consumption patterns of energy use and

conversion processes from the sectors of the world in a regional data. This dissertation

is largely based on analyses that considers decision making at the firm level, however,

under the assumption of a multi-regional world, expanded analysis of the interaction

between regions on energy flow and technology transfer will lead to a more pragmatic
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hold on the direction of investments given the drive to achieve a pegged stabilization

limit in the global carbon footprint.

Another prism for viewing future research work in this arena is through the evo-

lution in the prices of energy inputs following a random walk or pattern. Injecting

inherent uncertainties in the price paths of inputs is as important as the uncertainty

in the guiding policy. To this end, other pertinent questions include; what is the im-

pact of other policies on outcomes–especially non-market based policies? and how

is the optimal investment policy in energy technologies affected when uncertainty in

magnitude and timing are combined?

In summary, my research objective is to inform climate technology policy. Devel-

oping a good technology policy is difficult for a number of reasons including (1) mod-

eling complexities concerning both economic and damage uncertainties as revealed in

some parts of this dissertation; (2) lack of prior knowledge on the cost of R&D efforts;

and (3) the probabilities of success in these efforts are unknown. My research focus

will continue to explore how uncertainty influences optimal technology policy. For

example, with uncertainties in prices, damages, technical success and policy, what is

the socially optimal level of energy R&D investment? Although the climate change

problem can only be ameliorated in the long-run, what are the short-run approaches

that should be implemented toward achieving the long term result? Finally, given

that different sectors and world regions have different contributions to this negative

trend in climate, how should the mitigation efforts be distributed between them?

These points underscore the boundaries of future work. The discussion on the

effect of uncertainties in the crafting of an optimal technology policy is dynamic and

thus, this topic will always be open to future analysis.
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APPENDIX A

MILIMAN AND PRINCE REVISITED

Relative ranking to promote innovation

Table A.1 shows the firm’s initial incentive to innovate. Note that a negative cost

in line 9 of Table A.1 implies a benefit to the firm from innovation; the more negative

the cost, the higher the benefit. The ranking of the instruments with respect to the

promotion of innovation remains unchanged from MP–direct controls under-perform

the other instruments. The only significant difference is that under free permits, the

firm accrues a transfer loss rather than a gain, since the firm chooses to emit more

after technical change.

Table A.1. Firm incentives ranking to promote innovation for discoveries

Pre-Innovation Costs
Direct Emission Free Auctioned Emission
Control Subsidy Permit Permit Taxes

1 Direct Cost emae∗ emae∗ emae∗ emae∗ emae∗

2 Transfer Loss − − − e∗aH0 e∗aH0
3 Transfer Gain − emaT ∗e∗ − − −
4 Total (1+2-3) emae∗ −emaT ∗ emae∗ emaH0 emaH0
Post-Innovation Costs
5 Direct Cost emce∗ emfe0 emfe0 emfe0 emfe0

6 Transfer Loss − − − e0fH0 e0fH0
7 Transfer Gain − emT ∗fe0 −e∗afe0 − −
8 Total (5+6-7) emce∗ −emT ∗f emfae∗ emfH0 emfH0
9 Difference(8-4) cax xfa xfa xfa xfa

−emx −emx −emx −emx −emx
Ranking 5 1 1 1 1
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Innovator and non-innovator ranking to promote diffusion for

non-patented discoveries

Table A.2 shows the incentives to promote diffusion for both the innovator and the

non-innovator. Auctioned permits had the highest diffusion incentives in MP; here

they have the lowest.When diffusion shifts MC to MC 0 for all firms, the auctioned

Table A.2. Firm incentives ranking to promote diffusion for non-patented discoveries

Innovator Costs
Direct Emission Free Auctioned Emission
Control Subsidy Permit Permit Taxes

1 Pre-diffusion Cost emce∗ −emT ∗f emfae∗ emfH0 emfH0
(Line 8 Table A.1)

2 Post-diffusion Cost emce∗ −emT ∗f emce∗ emcJ0 emfH0
3 Cost (2-1) − − caf cfHJ −
4 Ranking 1 1 4 5 1
Non-Innovator Costs
5 Pre-diffusion Cost emae∗ emaT ∗ emae∗ emaH0 emaH0
(Line 4 Table A.1)

6 Cost (2-5) cax xfa cax cJHax xfa
−emx −emx −emx −emx −emx

Ranking 3 1 3 5 1

permits increase in price, in contrast to MP where they decrease in price. This is

because technical change increases the marginal cost of abatement. The other instru-

ments remain in the same order as MP. Note, however, that none of the instruments

offer a positive incentive for the innovator to promote diffusion–at best the inno-

vator loses nothing. Non-innovators profit unambiguously from diffusion under all

instruments except auctioned permits. It is possible that the increase in the price of

auctioned permits may outweigh the benefit of lowered abatement costs. This would

not necessarily prevent diffusion, however–any individual firm, taking the auctioned

price as given, would benefit from adopting the new technology.
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Industry-wide relative ranking to promote optimal agency re-

sponse for non-patented discoveries

Table A.3 shows that, as noted in MP, the results for optimal agency response are

exactly the opposite here as in MP. Given higher marginal costs, the optimal agency

response is to lower the emissions limit (from e∗ to e∗∗) or increase the tax/subsidy

(from T ∗ to T ∗∗). Thus, unsurprisingly, the industry has an incentive to support

optimal agency response in every case except emissions taxes. In MP, when technical

change decreased marginal costs, the optimal agency response is to increase the limit

or decrease the tax/subsidy, thus the opposite results.

Table A.3. Firm incentives ranking to promote optimal agency response for non-
patented discoveries

Pre-Control Costs
Direct Emission Free Auctioned Emission
Control Subsidy Permit Permit Taxes

1 Direct Cost emce∗ emfe0 emce∗ emce∗ emfe0

2 Transfer Loss − − − e∗cJ0 e0fH0
3 Transfer Gain − emT ∗fe0 − − −
4 Total (1+2-3) emce∗ −emT ∗f emce∗ emcJ0 emfH0
Post Innovation Costs
5 Direct Cost emde∗∗ emde∗∗ emde∗∗ emde∗∗ emde∗∗

6 Transfer Loss − − − e∗∗dI0 e∗∗dI0
7 Transfer Gain − emT ∗∗de∗∗ − − −
8 Total (5+6-7) emde∗∗ −emT ∗∗d emde∗∗ emdI0 emdI0
9 Difference(8-4) −e∗cde∗∗ −fdT ∗T ∗∗ −e∗cde∗∗ −dcJI fdIH
Ranking 1− 4 1− 4 1− 4 1− 4 5
Cont. Adjust St. favor favor favor favor oppose

Innovator gains from the entire process of technological change

for non-patented innovation

Table A.4 illustrates that for non-patented innovations that increase marginal

abatement cost, direct controls, emission subsidies, and free permits guarantee posi-

tive gains, while for auctioned permits and emission taxes there is no clear-cut gain.
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This result is in contrast to the result in MP, where auctioned permits and taxes

resulted in gains, and direct controls, subsidies, and free permits were ambiguous.

The reason for the difference is that for direct controls and free permits, technologi-

cal change decreases the direct cost of abatement and reduces the stringency of the

policy. For subsidies, costs are lower and the subsidies are greater. Taxes and auc-

tioned permits, on the other hand, could lead to a loss if the transfer loss due to

higher tax/price outweighs the savings in abatement cost. Note that if the marginal

damages are constant then there is a clear gain for taxes and auctioned permits as

well — it requires steeply sloped marginal damages to get a loss. However, all these

calculations are net of the cost of technical change.More generally, this result, like

Table A.4. Innovator gains from the entire process of technological change for non-
patented discoveries

Direct Emission Free Auctioned Emission
Control Subsidy Permit Permit Taxes

1 Abate. cost emae∗ −emT ∗a emae∗ emaH0 emaH0
(Pre-Inno.)

2 Abate. cost emde∗∗ −emT ∗∗d emde∗∗ emdI0 emdI0
(Post-Inno.)

3 Change in dxk axf dxk kdIH kdIH
abate. cost −kae∗e∗∗ −fdT ∗T ∗∗ −kae∗e∗∗ −emx −emx

−emx −emx −emx
4 Reduced gain gain gain uncer- uncer-
abate. cost tain tain

the result in Milliman and Prince (1989) is heavily influenced by optimal agency re-

sponse. If we only look at the combined incentives to innovate to promote diffusion,

it can be shown that taxes and subsidies provide the greatest incentive, followed by

free permits and direct controls, with auctioned permits last. In fact, it cannot be

guaranteed that auctioned permits will lead to a gain after diffusion, because the loss

from diffusion is potentially large. Taken altogether the dominant choice is emission

subsidies: they tie for first in all permutations. Emission taxes, however, are not far

behind, especially if the marginal damages are almost flat. In MP, auctioned permits
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are the dominant choice, but again, emissions taxes are not far behind. Thus, as

long as marginal damages are not too steep, emission taxes may be the most robust

instrument for promoting a variety of technologies.

105



APPENDIX B

OPTIMAL DEMAND FOR CARBON AND
NON-CARBON ENERGY

First solving the energy sub-problem (let e represent the total energy demand) by

considering the cost minimization problem

minPcec + Pncenc (B.1)

s.t. eγc + eγnc = eγ (B.2)

Taking first order conditions, we get

ec = P
1

γ−1
c

h
P

γ
γ−1
c + P

γ
γ−1
nc

i− 1
γ

e (B.3)

enc = P
1

γ−1
nc

h
P

γ
γ−1
c + P

γ
γ−1
nc

i− 1
γ

e (B.4)

Now consider the original problem

minwx+ Pcec + Pncenc (B.5)

s.t. f (x, ec, enc) = y (B.6)

Rewriting (B.5) by substituting (B.3) and (B.4), we have

minwx+ P
γ

γ−1
c

h
P

γ
γ−1
c + P

γ
γ−1
nc

i− 1
γ

e+ P
γ

γ−1
nc

h
P

γ
γ−1
c + P

γ
γ−1
nc

i− 1
γ

e (B.7)
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= minwx+
h
P

γ
γ−1
c + P

γ
γ−1
nc

i h
P

γ
γ−1
c + P

γ
γ−1
nc

i− 1
γ

e (B.8)

= minwx+
h
P

γ
γ−1
c + P

γ
γ−1
nc

iγ−1
γ

e (B.9)

Now solving the above problem for x and e, using
h
P

γ
γ−1
c + P

γ
γ−1
nc

iγ−1
γ

for the price of

e, we form the optimization problem as

minwx+
h
P

γ
γ−1
c + P

γ
γ−1
nc

iγ−1
γ

e (B.10)

s.t. y = [xρ + (eγc + eγnc)
ρ
γ ]

1
ρ (B.11)

substituting and taking FOCs, we have

x = w
1

ρ−1

"
w

ρ
ρ−1 +

³
P

γ
γ−1
c + P

γ
γ−1
nc

´γ−1
γ

. ρ
ρ−1

#− 1
ρ

y (B.12)

= w
1

ρ−1

"
w

ρ
ρ−1 +

³
P

γ
γ−1
c + P

γ
γ−1
nc

´ρ(γ−1)
γ(ρ−1)

#− 1
ρ

y (B.13)

e =
³
P

γ
γ−1
c + P

γ
γ−1
nc

´ γ−1
γ(ρ−1)

"
w

ρ
ρ−1 +

³
P

γ
γ−1
c + P

γ
γ−1
nc

´ρ(γ−1)
γ(ρ−1)

#− 1
ρ

y (B.14)

substituting (B.14) into (B.3) and (B.4), and letting P̄ = P
γ

γ−1
c + P

γ
γ−1
nc , we have

ec = P
1

γ−1
c P̄−

1
γ P̄

γ−1
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i− 1
ρ

y (B.15)

= P
1

γ−1
c P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i− 1
ρ

y (B.16)
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enc = P
1

γ−1
nc P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i− 1
ρ

y (B.17)

hence, the cost function is

c(y) = y
h
w

ρ
ρ−1 + P̄

γ−1
γ

. ρ
ρ−1

iρ−1
ρ

(B.18)

= y
h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

iρ−1
ρ

(B.19)

Now, considering the monopolist’s profit maximization problem

max yP (y)− c(y) (B.20)

where

P (y) = Ay−
1
b (B.21)

hence, by substituting (B.19) and (B.21) into (B.20), taking FOC and solving for

y

b− 1
b

Ay−
1
b =

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

iρ−1
ρ

(B.22)

y =

µ
b

b− 1
1

A

¶−b h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

iρ−1
ρ
(−b)

(B.23)

=

µ
b

b− 1
1

A

¶−b h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)
ρ

(B.24)

substituting for (B.24) in (B.16) and (B.17), we have

e∗c = P
1

γ−1
c P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i− 1
ρ × (B.25)µ

b

b− 1
1

A

¶−b h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)
ρ

(B.26)

= P
1

γ−1
c P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i− 1
ρ
+ b(1−ρ)

ρ

µ
b

b− 1
1

A

¶−b
(B.27)

= P
1

γ−1
c P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)−1
ρ

µ
b

b− 1
1

A

¶−b
(B.28)
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Similarly,

e∗nc = P
1

γ−1
nc P̄

γ−ρ
γ(ρ−1)

h
w

ρ
ρ−1 + P̄

ρ(γ−1)
γ(ρ−1)

i b(1−ρ)−1
ρ

µ
b

b− 1
1

A

¶−b
(B.29)
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