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An asymmetric dynamic struggle between pirates and

producers.

Abstract

The purpose of this paper is to contribute to our understanding of the dynamics of struggles over

resources by studying a game between a producer that can guard and buy fortifications and a pirate. It

is assumed that the returns from defence and raiding depends on the ratio of the resources spent on

each activity and that all produced goods can be stolen. It attempts to characterise the trajectory of the

resources and the defence and raiding activities of the pirate and producer. I show, among other things,

that the pirate’s strategy is to farm the producer and that the pirate’s raiding activities and resources will

decline as the productive capacity of the producer increases. I also show that a flexible guarding strategy

may be preferred to fixed fortifications if the producer’s resources are low at any time.
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An asymmetric dynamic struggle between pirates and

producers.

1 Introduction

Social scientists have begun to pay increasing attention to the problem of understanding struggles over

resources and to the effect of these struggles on the development and growth of economies and firms.1

The most straightforward of these struggles is that between producers and pirates or raiders. In the real

world, of course, many struggles, such as those resulting from predators attacking firms in order to steal

goods, or market shares, or returns from innovation tend to be more complicated than simple raiding. It

might be the case, for example, that the pirate piggy backs on the producer and, at some point, begins

to simultaneously develop its own production or sales capacity. Nonetheless, an element of direct piracy

might be common to all these, more complicated, cases. It might be hoped, therefore, that a better

understanding of questions about the dynamics of raiding might throw some light on a broader range of

situations. This paper deals with some of these questions.

The problem is that, even though the existing theoretical literature gives some help in understanding

raiding and other forms of struggle over resources, and we have some idea about how they might be

modelled, there is still a way to go in trying to completely understand the dynamics of these conflicts.

The literature has so far mostly concentrated on either static or discrete models in which strategies are

not fully dynamic. This gap has often been noted [8], [2], [13]. In response there have been some recent

attempts to develop more dynamic approaches [6] [13]. For reasons discussed below, these leave questions

about the dynamics of raiding unanswered.

The specific purpose of the paper is to make a start on filling this gap by analyzing the dynamics of a

simple model of struggles between a producer and a pirate in which all produced goods can be stolen. I

treat the amount stolen as a function of the ratio between stealing and defence.

The idea that the amount stolen depends on the ratio between resources devoted to stealing and effort

devoted to defence has already been extensively developed in the literature in the well known Hirshleifer

type approach [8] [2],[13]. It is discussed and justified in general terms by Hirshleifer [8]. This paper

1See the bibliography for some selected works
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departs from Hirschleifer’s in allowing all goods to be stolen. Some of the other differences between my

paper and other work that has sought to develop the dynamics of this approach are noted. Maxwell

and Reuveny’s [13] work on the dynamics of a Hirschleifer type of model stays close to the original and

deals with questions about struggles between producers with a common good rather than with the case

of raiding by pirates and a situation where all goods can be stolen. In addition their analysis is not fully

dynamic since players are assumed to be myopic whereas I allow player to optimize across the complete

time period. Hausken [6] has also written a dynamic model that follows this approach. This looks at the

dynamics produced by the effect of population change on fighting ability and rather than the resources

put into raiding and defence. A paper which also uses proportional returns and asks similar questions to

these is that of Grossman and Kim [2]. This also uses but differs from the present work in using a two

stage static framework.

Although not related to the proportional returns approach, a paper by Sethi [18] comes closer to the

raiding problem by considering the problem of a continuous dynamic thief. It differs from my approach

in that it does not involve strategic interaction.

One drawback in modelling conflict in terms of proportional returns to effort is that it gives a non-

linear differential game which is difficult to analyse without simplifying in other respects. In fact one of

the barriers to work in this area is the analytical difficulty of the problem.2 Although it would be possible

to specify the game in a more tractable form, I believe that the analysis of this type of return function

is sufficiently worthwhile to justify any other losses.

Among the simplifications is the assumption that consumption is not a strategic variable and that the

producer does not steal from the pirate. Non-stealing can be justified on the grounds that the raider does

not have anything to steal. This point is made, for example, in Mann’s study of the conflict between the

Huns and the Roman Empire and can be generalized across the range of conflicts that are of interest [12].

Treating consumption as a fixed portion of resources greatly simplifies matters and is not implausible. A

less satisfactory simplification is that the analysis is restricted to open loop information. I do not see a

practical way of dealing with closed loop information in asymmetric models based on proportional returns.

Moving in the direction of more complexity, the defensive activity of the producer is treated as a

combination of resources spent on guarding and of expenditure on fortifications such as walls, moats, and

electronic surveillance devices. Although the model is not intended to be realistic, it should somehow

capture essential elements of struggles and this complication is justified on the grounds that fortification

is a common and important element in real attempts to defend possessions. Fortifications have also been

studied in [2] in a static setting. I deal with technological redundancy in fortifications by using a fixed

time horizon.

Among the specific questions of concern are the following. (i). What are the dynamics of the reources

for the producer and pirate? (ii). What is the relation between productivity, the resources put into

2Hirsch says, for example, that the dynamic case poses a ’fearful analytical problem’ ([8], 31).
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defence and the activities of pirates? (iii). What is the relation between expenditure on defence and

raiding? (iv). How does expenditure on fortifications change with resources? (v). What happens to

expenditure on fortification and guarding as the price of fortification changes? These parallel some of the

questions in ([2], 1286-7).

Briefly, the overall story is that the pirate optimizes by farming the producer. The pirate takes fewer

resources early and increases its take as the game continues. If the producer is not very productive, the

pirate’s resources increase over time while the producer’s decline. If the producer is sufficiently productive

and wealthy, however, the pirate’s raiding activities and resources will decline as productivity increases.

This is the reverse of an expected rob from the rich strategy. I also show that a flexible guarding strategy

may be preferred to fixed fortifications if the producer’s resources are low at any time. I give a more

detailed summary in the conclusion.

I set out the paper as follows. The model is constructed in §.2 and the dynamics of the system are

analysed in §.3. I consider the special case where the parameters of production and stealing are equal in

§.3 since this can be fully analysed. I consider the case where they are unequal in §.4. I conclude in §.5.

2 The Model.

Set up for the model.

The system is made up of a society, or a firm, that produces a material good that is an input to its

own production and a pirate or exploiter that relies on raiding and each player derives a payoff from the

amount of the good it holds over time. The payoff might be thought of as coming from consumption

of resources left over after costs of defence or stealing. Since the main aim is to study the dynamics of

this system under the optimal choice of effort devoted to buying fortifications, guarding and raiding, it

is assumed that consumption is a constant proportion of the good. To allow concentration on essentials,

the fixed proportion of consumption is ignored without loss of generality. It can be re-introduced without

difficulty. The producer has two choices. It can spend an amount of its initial endowment of the good

on buying fortifications such as walls, forts electronic devices and the like. It can also devote some of its

resources to guarding. The pirate decides on the amount of resource to devote to raiding. It is assumed

that resources and effort put into guarding and raiding consume some of the good and also require other

inputs such as extra effort, increased risk and reduction of leisure. It follows that guarding and raiding

reduce growth and the payoffs to the players.

The game is given a finite time horizon. This allows us to take into account the fact that changes

in the technology of fortifications will bring about redundancies For example, medieval high walled forts

were made redundant by cannons and cannon forts by long range artillery and so on. If the time period

were infinite we would have to complicate the issue by allowing continual reinvestment. A fixed time

period can also be thought of in other ways. Each generation might make decisions about expenditure on

fortifications and guarding and attach some value on what it bequeaths to subsequent generations. The
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pirate may also face redundancy in equipment or may wish to either pass on the enterprise or sell it as a

going concern. Alternatively pirates might only raid for a finite time and shift targets in order to avoid

provoking an extermination campaign. Consideration of time also raises questions of discounting. For

simplicity I consider the game without discounting since the qualitative properties are the same when

this is taken into account.

The produced good held at t is written x1(t) and the good held by the pirate is written x2(t). Reference

to time is dropped to simplify notation unless required. Since the model implicitly has some notion of

handing goods over after terminal time the amount of good left at T has a scrap value. For simplicity

this is assumed to be xi(T ) for i = 1, 2. The amount of effort devoted to guarding and raiding at time t

is written u1(t) and u2(t) respectively. These are sometimes referred to as the players controls. The price

of b units of fortification is written p(b) where p is the price function and is increasing and differentiable

in b with dp
db > 0 and d2p

db2 > 0.

Fortification increases the effectiveness of guarding although the precise details are hard to capture

because of possible discontinuities. A slightly higher wall, or better electronic encryption system may

produce large changes in the level of protection. For present purposes I assume that returns are contin-

uous and that total defensive effort takes the form ū1 = u1 + b. An additive function has been chosen

instead of, say, a function where u1 and b are multiplied in some way because it is reasonable to assume

that guarding is effective even in the absence of fortification.

A difficulty in expressing guarding and fortification as additive is that it is possible to set a level of

ū1 > 0 and b such that u1 ≤ 0 and the model needs to specified to prevent this. It would be tempting,

but wrong, to introduce a constraint u1 ≥ 0, but this would force player one to compensate for b being

cheap by increasing u1. The real difficulty is that, although fortification is a substitute up to a point

for positive guarding, it is not reasonable to think that there is any technology of fortification at which

player one can buy enough to set guarding negative. The appropriate way to capture this is to put the

constraint on the amount that can be purchased. It is assumed that

q − b ≥ 0 (1)

where q = q : min u1 = ǫ > 0 where ǫ is some small number. It is important to note that this is an

exogenous constraint on technology and is telling us something about the nature of fortifications. It is

not part of the producer’s optimization programme with respect to u1.

The producer’s good grows at a rate that depends on the amount left over for investment, after

subtracting the amount used for guarding and the amount stolen. The amount stolen is a function of

the ratio of the resources devoted to stealing and guarding including fortifications. Remembering that

we have suppressed the constant for consumption to simplify the notation, the rate of growth is written

ẋ1 = kx1 − u1 − s(
u2

u1 + b
)ax1 (2)
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where a < 1 is a positive constant, k > 0 is a constant that represents the technology of production and

s < 1 is a positive constant that represents the technology of stealing. The constants k and s are referred

to as parameters, or coefficeints, of production or stealing, respectively. The form kx1 − u1 has been

used instead of k(x1 − u1) to simplify the analysis. It must be remembered that equation (2) is the rate

of change in x1. A situation where s( u2

u1+b )
a is large is simply interpreted as a rapid run down of the

available resource. It appears reasonable however to require s ≤ 1 to cover dead weight losses to stealing.

Producer’s and pirate’s problems.

It is now possible to specify the producer’s and the pirate’s problems in more detail. Since the payoff

depends on resources after costs of defensive activities, the producer’s problem is to choose a piecewise

continuous u1 and a b in order to maximize

J1 =

∫ T

0

(x1 − u1)dt − p(b) + x1(T ) (3)

subject to the constraint in equation (1) and the dynamics of the system given in equation (2).

Because the pirate does not produce, the total amount of the good it possesses is the sum of the

amount it has stolen less the amount it has invested in stealing over the time interval and the rate of

growth is

ẋ2 = s(
u2

ū1
)ax1 − u2 (4)

It follows in a similar manner that the pirate wants to choose a piecewise continuous u2 to maximize

J2 =

∫ T

0

(x2 − u2)dt + x2(T ) (5)

subject to equation (4).

It is assumed that the producer and the pirate have complete knowledge of initial resource holdings,

the dynamics of the system and the payoff functions. They use this to formulate their guarding and

raiding strategies at the beginning of the game and stick to these strategies for all time.

3 The general case.

1. Necessary conditions for guarding and raiding

The optimal expenditures on defence for the producer and raiding for the pirate are established in

Appendix 1 for the case where players’ use their Nash equilibrium strategies. These are

ū1 = asx1ᾱ1(
ᾱ2

ᾱ1
)a and u2 = asx1ᾱ2(

ᾱ2

ᾱ1
)a (6)

where αi(t) for i = 1, 2 are costate variables for the problems in equations (3) and (5) and ᾱ1 = α1

1+α1

and ᾱ2 = α2

1+α2

. This means that
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u2

ū1
=

ᾱ2

ᾱ1

It is also necessary that

α̇1 = −1 − α1(k − s(
u2

ū1
)a) and α̇2 = −1 (7)

These conditions allow us to establish some of the general properties of the differential game. From

equations (6) and (7) it follows that αi does not depend on x1. This means that

∂(u2/ū1)

∂x1
= 0 (8)

and hence u1 and u2 both increase for an exogenous increase in x1 with everything else constant.

It follows from equations (4) and (6) that ẋ2 = s( ᾱ2

ᾱ1

)ax1(1 − aᾱ2). This means that

ẋ2 > 0 (9)

and the pirate’s resources are always increasing for x1 > 0 since a < 1 and ᾱ2 < 1.

This seems to indicate the pirate more or less farms the producer and that it pays it to leave resources

in the early period of the game in order to be able to take more later on. Note that the result is inde-

pendent of the scrap value since ᾱ2 < 1 always.

2. Fortifications.

The necessary condition for the optimal level of fortification is, from Appendix 1, that

∂p

∂b
=

∫ T

0

asα1x1u
a
2 ū1

−(1+a)dt − η (10)

and this immediately gives us the following proposition

Proposition 1. The optimal level of fortification depends only on p, k, s, and T when η = 0.

Proof. Substituting the results from equation (6) into the term under the integral in (10) gives

∂p

∂b
=

∫ T

0

(1 + α1)

where α1 only depends on the parameters k, s and T from equation (7).

¤

Proposition 2 says that the amount of fortification purchased, when the upper limit constraint is not

active, is the same for all values of x1(0). This is something of a surprise since it might have been expected

that fortification would increase if there were more to guard and it can be shown that resources increase

as x1(0) increases. It will be observed that from the proof of this proposition and Proposition 2, however,

that more fortifications will be purchased as the coefficient of production increases for s constant. This
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because α1 increases as k increases. It is also shown that guarding increases with an increase in resources.

It seems, then, that the producer’s optimal purchase of fortifications depends on productivity and that

differences in resources, for the same level of productivity are compensated for by adjusting guarding.

This proposition also tells us that, the longer the time horizon for the technology, the more fortification

is purchased. This time horizon effect may, however, be offset by the possibility that, if the producer’s

resources are decreasing, the inequality constraint may become active and reduce the amount of fortifi-

cation that can be purchased. This point is discussed further below.

For any set of parameters, or initial values of the resource, such that the constraint on fortifications is

active the amount purchased is b = q. For given parameters it follows from (6) that this will occur when

x1 is sufficiently small. This might happen if either x1(0) is small or x1 becomes small at some time as

the result of raiding. In the second case the combination of fortification and guarding is insufficient to

protect the resources and the producer does better by putting most effort into guarding.

3. Conditions on the costate.

Before looking at the details of different cases it is useful to establish the following facts about the costate.

Proposition 2. [a] Suppose k = s. Then αi = T + 1 − t for i = 1, 2;

[b]. dα1

dk ≥ 0.

Proof. See Appendix 2.

This means that for k > s we have α1(k, t) > α1(s, t). It also follows from this proposition and from

equation (7) that, for k − s > −δ for some small δ > 0

α̇i < 0 and αi > 0

for and all t ∈ [0, 1] where i = 1, 2. I deal with this in more detail in the remark to Appendix 2.

I start with the case where k = s since this provides a complete analytical solution. From the con-

straint on feasible values of s we have k, s ≤ 1. I will then concentrate on the case where k > s since this

is the most plausible and the most interesting.

4 Parameters of stealing and production equal. k = s.

1. Trajectories.

The rate of growth from production and the loss to stealing are always equal along the optimal trajectory,

in this case, regardless of the initial values of the resource, and the amount of resources in the system

decreases for all time. Since the producer’s resource is constantly decreasing the amount spent on for-

tifications must become negligible for T sufficiently large. This offsets the tendency to invest more in
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fortification for a larger T noted in the discussion of Proposition 1.

In order to support these assertions, the trajectory for the produced good and the relation between for-

tification guarding and raiding are obtained by substituting the results from Proposition 2 into equations

(2) and (6). This gives

ẋ1 = −u1

where u1 = asx1ᾱ1 − b ≥ 0 and this equation is solved in Appendix 3 to get the explicit trajectory for

x1. See fig. 1. (a). It follows immediately that

ẋ1 ≤ 0 and ẍ ≥ 0

where the second inequality comes from the sign on u̇1. Hence x1 tends to zero for t sufficiently large but

at a decreasing rate. It can also be shown by differentiating the equation for x1 in Appendix 3 that as T

becomes larger x1 converges for different initial values x1(0)

To get the sign on u̇1 note that from equation (6) and Proposition 2 we have u2 = ū1 and differentiating

ū1 gives

u̇i ≤ 0

for i = 1, 2 for all t. It also follows from the fact that ū1 = u1 + b that u1 < u2 for a price p such that

b > 0 along an optimum path.

Since losses to the producer are gains to the pirate there is no conclusion about the trajectory of x2

that follows automatically from the fact that ẋ1 < 0. We know from equation (9) however that ẋ2 > 0

and rewriting ẋ2 = sx1(1 − aᾱ1) gives the additional information

ẍ2 > 0

for all t. This gives a trajectory in phase space something like fig. 1. (b).

Figure 1. Trajectory of resources. (a) For producer. (b) For producer and pirate.

An interesting property of this trajectory is that, since x2 is increasing for all time at an increasing

rate, it never pays the pirate to raid at such a high level that it drives the producer’s resources too small.

It will be noted that raiding activity decreases with time. This might be interpreted as something like
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the pirate farming the producer.

What seems to be happening in this case is that the producer’s productivity is so low that it is too poor

to defend itself sufficiently to stop its resources declining. I consider what happens when the producer is

wealthier and productivity increases in the discussion of k > s.

2. Fortifications.

The fact that x1 is decreasing means that the amount of produced goods will eventually become small.

It follows that the amount of effort put into guarding and raiding also becomes small since x1 → 0 means

that u1 → 0. Because of the technological constraint on fortifications it follows that ū1 → 0 for any

price function p. This means that x1 > 0 for all time regardless of the initial value of x1. It also means

that, for T sufficiently large, the amount of fortifications purchased by the settler becomes negligibly small.

There are at least two ways to look at this result. The first is that, if the initial value of the resource

is low there isn’t much to protect and the settler can’t afford much fortification. The second adds to our

intuition about the technological constraint. It is that, for T large, the amount of the resource becomes

small for some period of time and also u2 → 0. This means that there is a period of time during which

the fixed fortification becomes useless and no longer justifies the initial expense. It follows that the settler

is better off investing in temporary guarding costs which can be wound down as the resource becomes

smaller.

When the technological constraint on fortification is not active the price affects the strategies of both

the settler and the pirate. To understand this the equation for x1 with respect to the price of fortifications

along the optimal path is differentiated in Appendix 3. Using the fact that ∂b
∂p < 0 from equation (10)

gives

∂x1

∂p
≤ 0 (11)

It follows that the producer has less resources at any time if the price of fortifications increases, as might

be expected.

Changes in effort devoted to fortification and guarding are slighly less obvious. It follows from equation

(11) that

∂ū1

∂p
≤ 0 (12)

for i = 1, 2 and hence the total amount of resources devoted to defending and to stealing decrease as the

price of fortifications increases.

In the case of resources devoted to guarding the sign on ∂u1

∂p is given in Appendix 3 by the sign on

(−1 − ᾱ1

ᾱ1(0)
∂b
∂p ). This gives

9



∂u1

∂p

∣

∣

∣

∣

∣

∣

∣

∣

< 0 for all t for ∂b
∂p sufficiently small

> 0 for t ∈ [0, s) and < 0 for t ∈ (s, 1]

> 0 for all t for ∂b
∂p sufficiently large

What the first inequality, and equation (12), tells us is that, if the optimal level of fortifications is not

very sensitive to price, the producer reduces expenditure on fortification and also guards less. In this

case the producer is trying to minimize the loss of fortification by shifting expenditure out of guarding.

Note that, from equation (10), the optimal level of fortifications will not be sensitive to an increase in

price when the quantity of fortifications purchased is not sensitive to price.

In the second and third inequalities the producer is partly compensating for a reduction in the amount

of fortifications purchased by increasing guarding. This also tells us that, if guarding cannot be increased

for all time, an increase near the beginning will have the greatest overall impact on resources.

In order to generalize the analysis, and deal with the case where the coefficient of production changes

relative to that of sstealing, I now consider the case k > s. For k < s it is obvious that the system

contracts for all t.

5 Unequal parameters. k > s.

1. Trajectories.

The rate of growth for the produced good might be expected to increase for k > s, but this is not

guaranteed since the pirate may respond with a greater stealing effort and swamp the gains. Since there

isn’t much hope of getting an explicit solution for α1 in terms of t we have to use the equations in (6) to

analyse the trajectory of the good. Rewriting equation (2) gives

ẋ1 = ϕ(t)x1 + b (13)

where ϕ = k − s( ᾱ2

ᾱ1

)a(1 + aᾱ1) and this is solved explicitly to give

x1(t) = be

∫

t

0
ϕ(s)

(

∫ t

0

e
−

∫

s

0
ϕ(q)

ds + x1(0) − p(b)) (14)

The effect of a change in the parameter of production on ϕ is calculated in in Appendix 4 (a) to give

∂ϕ

∂k
> 0

It is not possible to get a sign for ϕ̇ but it is bounded with | ϕ̇ |< δ( 1
2 ± ǫα̇1) for δ < 1 and some small ǫ.

See Appendix 4 (b).

The possible trajectories for x can now be expressed in terms of k for s fixed as follows.

(i). k ≥ k1 : ϕ > −ǫ for some ǫ > 0 for all t. Then ẋ1 > 0 for all t.

10



(ii). k ≤ k2 : ϕ < −δ for all t for some δ > ǫ. Then for x1(0) sufficiently large ẋ1 < 0 for all t and for an

ǫ : x1(0) < −b
ϕ it is possible ẋ1 > 0. See fig. 2 for an example. The slope of x1 comes from ẍ1 = ϕẋ1+ ϕ̇x1

where ϕ̇ is assumed small.

(iii). k2 < k < k3 : ẋ1 switches signs.

It might help to set out the connection between case (ii) and (iii). Remember from Proposition 2 that

b will depend on k through the inequality constraint u1 − b ≥ ǫ for ǫ > 0 some small number. There are

two possibilities:

(a). k decreasing in case (ii). This means −b
ϕ becomes smaller since ϕ becomes smaller and the line −b

ϕ

in fig. 2 moves down. At some point, the condition x1(0) < −b
ϕ cannot be met and ẋ < 0 always. It will

be noted from the previous section that this occurs when k = s. In this case there is no starting point

below the line −b
ϕ because there is no x1(0) < −b

ϕ such that u1 = asx1α1 − b > 0.

(b). k increasing. This means | ϕ |→ 0 and −b
ϕ becomes arbitrarily large. This means that for b > 0 and

any x1(0) it is possible to find a ϕ < ǫ such that ẋ > 0 always.

Figure 2. Example of dynamics for the produced good for ϕ < 0 and k > s.

Case (iii) takes care of the indeterminacy for ẋ in the intermediate region k2 < k < k3. Since we do not

have a sign for ϕ̇ it is possible that this is either increasing or decreasing. This can be thought of as less

general and, since | ϕ̇ | is small, less important than cases (i) and (ii). I have listed the possibilities in

Appendix 4 (c).

It is more difficult to analyze the trajectories of resources devoted to stealing and raiding than in

the previous section because these depend on the value of x1. In Appendix 4 the equation in (6) is

differentiated to give

sign u̇i = sign (
ẋ1

x1
ᾱi + α̇i ∓

τ

x1
)

for some small τ , for i = 1, 2. It is immediate that, if ẋ1 < 0 we have u̇i < 0, although it is, of course,

more accurate to say that the trajectory ẋ < 0 is the optimal path produced by the optimal contols

u̇i < 0. If ẋ1 > 0 and ẋ1

x1

is sufficiently large u̇i > 0.

2. Fortifications.

The effect of a change in the price of fortifications on the trajectory of the produced good can be obtained

by straightforward differentiation of equation (14). This gives
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∂x1

∂p
≤ 0

and hence from (6) for defence and raiding

∂ū1

∂p
≤ 0 and

∂u2

∂p
≤ 0

which gives similar trajectories to the case where s = k. We also get similar possibilities to the case k = s

for changes in the trajectory of guarding.

Increase in the parameter of production.

The effect of an increase in the coefficient of production is to give the producer more resources and to

increase expenditure on defence for all time. This follows from the equation (14), the fact that ∂ϕ
∂k > 0

and from the first equation in (6) which give

∂x1

∂k
> 0 and

∂ū1

∂k
> 0

and since ∂(ᾱ2/ᾱ1)
a

∂k < 0 it also follows that the amount of effort put into raiding relative to the amount

of effort put into guarding and fortification decreases as productivity increases. This means that the

proportion of the produced good lost to stealing decreases as productivity increases.

It is more difficult to analyse the effect of an increase in productivity on the pirate’s resources and on

raiding. This is because the pirate gains from having more to steal, but loses because of the increased

effort put into fortifications and guarding by the producer and the outcome depends on the ratio of the

gains from the extra goods to steal and the losses from extra defence. In addition, even if the pirate

increases stealing, it may get less goods owing to the increase in defensive activity.

To begin with it can be shown that the pirate’s resources always increase whenever it is optimal for it

to put more effort into raiding. This is an interesting result because it rules out the possibility that an

increase in raiding is sometimes a purely defensive move designed to reduce losses. It follows from the

fact that the signs on ∂u2

∂k and ∂x2

∂k are given by the sign on

∂x1

∂k
+ ax1

ᾱ1

ᾱ2

∂(ᾱ2/ᾱ1)
a

∂k
(15)

It will be noted, from equations (7) and (14) that ∂ᾱ1

∂k is independent of x1 and ∂x1

∂k only depends on

x1(0) but is positive for x1(0) = 0. This means that we can make rewrite equation (15) and alter ∂x1/∂k
x1

without changing ∂ᾱ1

∂k . For ∂x1/∂k
x1

sufficiently large

∂u2

∂k
> 0 and

∂x2

∂k
> 0

with the reverse inequalities for ∂x1/∂k
x1

sufficiently small. This says roughly that, for any period during

which the rate of change in the amount of the resource, relative to the existing amount is large, the pirate

12



does better by increasing its stealing effort.

Since ∂x1

∂k > 0 always there is some x1 sufficiently small that ∂u2

∂k > 0. Consider what happens as k

increases. For k sufficiently large it is possible that there is some k = κ such that raiding would always

decrease for k > κ. In this case we could have the interesting possibility that the pirate initially becomes

better-off as the producer gets more productive and wealthier, but at some point starts to becomes poorer.

See fig. 3 for an example. Note from equation (9), however, that, even though the pirate’s take decreases

with k, it continues to increase throughout the game.

How is a decrease in raiding and in the pirate’s resources with an increase in the wealth of the producer

explained? There are two intuitions at work in this case. The first is that a fatter target would attract

more, rather than less, piracy because there is more to steal. The second is that a fatter target can afford

more defence and has sufficient resources to make raiding prohibitively expensive. In this regard, there

are many historical examples where pirates prevail when their targets are poor but get put out of busi-

ness when their targets can afford enough deterrence. A good illustration of this is the demise of piracy

and white slavery in the Atlantic and Mediterranean [14]. A more contemporary example comes from

individuals or firms that are able to use threats of litigation to prevent raiders moving in on established

markets.

Figure 3. Relation between productivity and resources put into raiding.

Although the second intuition gives some of the explanation it is important to emphasise that simply

being rich isn’t enough. An increase in wealth alone will not explain the change in raiding because it was

shown in equation (8) that raiding and defence increase in proportion for an exogenous increase in the

producer’s resources. It is wealth together with an increase in productivity that makes it optimal for the

producer to spend enough to force the pirate to reduce raiding.

6 Conclusion.

This paper has studied the dynamics of struggles over resources in a model of producers and pirates

that may go some way to explaining the dynamics of a firm, or economy, under continuous attack from a

raider and help in understanding some of the strategic issues. The specific results are summarised with

reference to the questions in the introduction.

13



(i). The pirate’s optimum strategy is to more or less farm the producer so that it takes less near the

beginning of the game and increases its take continually. This dynamic is maintained even when the

take per unit of time is reduced owing to an increase in productivity. This sort harvesting relation-

ship is probably typical of a far-sighted predator. It indicates that a producer pirate system based on

optimizing behaviour does not cycle in the same manner as the Lotka-Volterra predator-prey relation.

The trajectory of the producer’s resources depend on its productivity and the initial value of its resources.

(ii). If the parameter for production is smaller than the parameter for stealing the producer’s resources

decline and resources put into defence and raiding decrease. If the producer’s parameter of production is

increasing, however, and it has sufficient wealth, it can buy enough defence to force the pirate’s raiding

and resources to decline as productivity increases. These results extend the argument in [2] that security

of possessions increases as the ratio of the effectiveness of stealing to effectiveness of guarding declines.

In addition to putting the problem in a dynamic setting, I derive the relative effectiveness of stealing and

defence from changes in productivity, rather than assuming them directly.

(iii). Resources put into defence are almost always greater than resources put into raiding. The amount

of fortifications depends on the parameters of production and stealing and is either constant for all initial

values of the resource, or is determined by the lowest level of resources.

(iv). Investment in fortifications may become negligible if there is only a small amount of resources

available at any time. One example of this would be where resources are declining and there is a large

time horizon. In this case it pays to invest in the flexible guarding technology that can be wound down as

resources decrease. This explains why groups that are not productive enough to ensure resource growth

in the long run may do better by choosing a flexible guarding strategy. It is not that they cannot afford

fortifications, but that the cost does not repay the return.

(v) As the price of fortification increases, less resources are put into fortification and the producer is

worse off as expected. Resources put into guarding will also decrease if fortification is not very sensitive

to price, but may otherwise increase.
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Appendix 1.

The Lagrangian for the producer’s problem is

L = x1 − u1 + α1(kx1 − u1 − (s
u2

u1 + b
)ax1) + η(q − b)

where α1(t) is the costate variable and η(t) is a multiplier with η(t) ≥ 0 and η(t)(q − b) = 0. The

Hamiltonian for the pirate problem is

H2 = x2 − u2 + α2(s(
u2

u1 + b
)ax1 − u2)

where α2(t) is the costate variable. From the Pontryagin principle, the necessary conditions for the ex-

istence of a set of Nash equilibrium controls are that there exist piecewize continuous u1 and u2 that

satisfy ū
(1+a)
1 = asua

2x1ᾱ1 and u
(1−a)
2 = as x1

ūa

1

ᾱ2 where ᾱ1 = α1

1+α1

and ᾱ2 = α2

1+α2

.

For the level of fortification to be an internal optimum we require ∂(L−p)
∂b = 0.

Appendix 2.

Proof of Proposition 2. [a]. Suppose αi(t) = ψ(t) for i = 1, 2. Now substitute for (u2

ū1

)a expressed in

terms of α1 and α2 into (7) to give α̇1 = −1 = α̇2 and solving this gives ψ(t) = 2− t and this is sufficient

for the proof from the uniqueness of the solution to the differential equation.

[b]. The idea is to start at t = 1 for α1(1) = 1 and then complete the proof for all t by backward induction.

Let ḱ > k. The rhs derivative at t = 1 is just dα̇1

dk = −α1 < 0. This means that α̇1 is becoming more

negative and α1(ḱ) > α1(k) in some interval (1− ǫ, 1] by the continuity of α̇1. Hence dα1

dk > 0 in (1− ǫ, 1]

and . Now differentiate α̇1 at t = 1 − ǫ. This gives

dα̇1

dk
= −

dα1

dk
(k − s(

ᾱ2

ᾱ1
)a) − α1(1 + as(

ᾱ2

ᾱ1
)a−1

dᾱ1

dk ᾱ2

ᾱ2
1

)

where dᾱ1

dk =
dα1

dk

(1+α1)2
> 0 since α1(ḱ) > α1(k) at 1 − ǫ. This means the second term on the rhs is less

than zero. Since dα1

dk > 0, k > s and ᾱ2

ᾱ1

< 1 at 1− ǫ the first term on the rhs is also less than zero. This

means that dα̇1

dk < 0 evaluated at 1 − ǫ and hence α1(ḱ) > α1(k) in some interval (1 − 2ǫ, 1] and dα1

dk > 0

in this interval. This is all that is needed to complete the induction.

Remark. It might be expected that α̇1 < 0 always. To see that this cannot be guaranteed consider

k = 0. This gives α̇1(1) = −1 + α1s(
u2

ū1

)a = −1 + s < 0 since α1(1) = 1 for i = 1, 2 and hence (u2

ū1

)a) = 1.

For t < 1 we have αi(1) > 1 and (u2

ū1

)a > 1. This means that it is not possible to exclude α̇1 ≥ 0 for some

s sufficiently large at t < 1.

Appendix 3

Solving ẋ1 = −u1 gives x1 = b
asᾱ1

+ke−as
∫

t

ᾱ1 where ᾱ1 = T+1−t
T+2−t and k = (x1(0)−p(b)− b

asᾱ1(0)
)(−T −

2)as. This gives

x1(t) =
b

asᾱ1(t)
+ (x(0) − p(b) −

b

asᾱ1(0)
)e−ast(

(T + 2)

(T + 2 − t)
)as

Differentiation gives ∂x1

∂p = ∂b
∂p ( 1

asᾱ1

− 1
asᾱ1(0)

q) − q where q = e−ast( (T+2)
(T+2−t) )

as. Since ˙̄α1 < 0 and hence

max ᾱ1 = ᾱ1(0) we have 1
asᾱ1

≥ 1
asᾱ1(0)

. In addition dq
dt < 0 and max q = q(0) = 1. From equation (10)
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∂b
∂p < 0 in equilibrium. Hence ∂x1

∂p ≤ 0.

Appendix 4

(a). ∂ϕ
∂k = 1 + as(( ᾱ2

ᾱ1

)a−1ᾱ2(1 + asᾱ1) − s( ᾱ2

ᾱ1

)a) ∂α1/∂k
(1+α1)2

where ∂α1

∂k > 0 from proposition 2. Multiplying

the term in brackets through by ( ᾱ2

ᾱ1

)−a gives (ᾱ1)
−1(1 + asᾱ1) − s > 0 since s < 1 and ᾱ−1

1 > 1 and it

follows that ∂ϕ
∂k > 0.

(b). ϕ̇ = −as( ᾱ2

ᾱ1

)a((
˙̄α2ᾱ1−

˙̄α1ᾱ2

ᾱ2ᾱ1

)(1+asᾱ1)+ ˙̄α1) where as( ᾱ2

ᾱ1

)a < 1. A little work gives | (
˙̄α2ᾱ1−

˙̄α1ᾱ2

ᾱ2ᾱ1

)) |<

δ | −1 − α̇ | for some small δ > 0 and the whole term inside the brackets following as( ᾱ2

ᾱ1

)a can be

approximated by q ± ǫα̇1 for q < 1
2 and ǫ small.

(c). The possibilities for | ϕ̇ |6= 0 are:

ϕ(0) < 0

ϕ̇ > 0 it is possible that ẋ1 changes sign from positive to negative.

ϕ̇ < 0 it is possible that ẋ1 changes sign from negative to positive.

ϕ(0) > 0

ϕ̇ > 0 it is possible that ϕ changes signs from positive to negative and ẋ1 changes sign from positive to

negative.

u̇1 = ˙̄u1 since b is fixed. Note that u̇1 and u̇2 will be similar except for the αi for i = 1, 2 terms and

their signs will be covered by the same arguments. ˙̄u1 = as( ᾱ2

ᾱ1

)a(ẋ1ᾱ1 + α̇1x1 + α1x1a( ᾱ1

ᾱ2

)(
˙̄α2ᾱ1−

˙̄α1ᾱ2

ᾱ2ᾱ1

)).

Dividing by x1 and remembering that the last term in the expression is small by the previous argument

gives sign u̇1 = sign ẋ1

x1

ᾱ1 + α̇1 ∓ τ for some small τ .
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