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ABSTRACT  

It would be extremely useful to determine if, on a county-size scale, there might be some 

predictability to indoor radon. One approach is to make an application of GIS and 3D 

visualization to explore the radon problem in Fairfax County in northern Virginia, to 

evaluate correlations between indoor radon and geology, elevation, slope, and 

aeroradioactivity. It was found that there is a tendency for indoor radon to be greater in 

some parts of Fairfax County in homes on some geological units, in homes constructed 

on lower slopes, on sites at lower elevations, and in areas of higher aeroradioactivity. 

However, none of these physical variables exhibits a strong enough control on indoor 

radon to be used to construct radon potential maps that carry a high confidence of 

accuracy.  

1. INTRODUCTION 

Exposure to natural sources of radon has become a significant issue in terms of 

radiological protection. The United Nations Scientific Committee on the Effects of 

Atomic Radiation (UNSCEAR, 2000) reports that nearly half of the total natural 

background dose received from natural sources can be attributed to inhaling radon and its 

progenies present in dwellings. It is estimated that nearly 1 out of every 15 homes in the 

U.S. has excessive elevated radon levels (USEPA, 2007). Moreover, it is recognized that 

very significant amounts of radon accumulates in some homes in the Appalachian 

Mountain System (Mose et al., 1992).  

The American Association of Radon Scientists and Technologists (AARST) estimates 

10 million homes in America have indoor radon in excess of 4 pCi/L, the USEPA’s 

recommended maximum when buying a home. This estimate is growing by about 75,000 

homes per year, since new homes are built constantly. Concerns about indoor radon 

emanation from soil have led to an increased focus on comparisons between radon 

concentrations in the soil and in dwellings constructed on these soils (USEPA, 2007). 
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Soil-to-indoor comparisons have been made in attempts to create radon potential maps. 

These maps seek to reduce the lung cancer hazard by alerting concerned homeowners. 

Some radon potential maps show that very high indoor radon concentrations may be 

correlated with uranium found in soil over uranium enriched crystalline rock units or over 

locally fractured rocks (Oliver and Kharyat, 1999, 2001; Swako et al., 2004; 

Krivoruchko, 2005; Mose et al., 1992), but sometimes the high radon homes are simply 

over soils that have higher permeability. To verify these determinations, GIS 

comparisons of geotechnical factors with the spatial variation of indoor radon is essential 

(Oliver and Kharyat, 1999; Lacan et al., 2006).  

The primary goal of the following study was to evaluate the radon risk potential of all 

of Fairfax County in northern Virginia. Fairfax County has a large land area (over 

250,000 acres) and a large number of homes (population is over 1,000,000 people), and 

over 1,000 homes have already been sampled for indoor radon, using a series of four 3-

month measurement intervals.  

1.1 Causes of Indoor Radon  

Many regional studies have examined the temporal variation of indoor radon (Denman et 

al., 2007; McNeary and Baskaran, 2007; Magalhaes et al., 2003). Studies have addressed 

the decreased health risk obtained from using radon reduction methods (Kitto, 2007). 

Others examined the association between some geological units and indoor radon (Mose 

et al., 2006b; Siaway et al., 2006), and the association between indoor radon and surficial 

gamma radiation (Kline and Mose, 1990; Mose et al., 2005). 

Other recent studies have successfully quantified radon levels in dwellings  

(Ioannides et al., 2000). Others have focused on the spatial distribution of residential 

radon (Franco-Marina et al., 2003; Lacan et al., 2006), on the exhalation rates of radon 

levels in prevailing building materials (Jong et al., 2006), and on quantifying seasonal 

variations and depth dependence of soil radon concentration levels in different geological 

formations (Al-Shereideh et al., 2006; Lu and Zhang, 2006; Magalhaes et al., 2003). 

Some investigators have focused on quantifying the amount of natural radioactivity in 

building materials (Ahmad, 2007), on evaluating radon emanation from soil gas 

(Malczewski and Zaba, 2007; Zunic et al., 2006), and on assessing factors that underlie 

radon emission (Barros-Dios et al., 2002). Still other investigators have evaluated radon 

concentrations in soil and groundwater (Mose et al., 2006a), examined seasonal indoor 

radon variations related to precipitation (Mose, et al., 2006b), and assessed differences in 

indoor radon emanation due to soil chemistry, home heating systems and precipitation 

(Siaway et al., 2006; McNeary and Baskaran, 2007).    
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2. RESEARCH OVERVIEW 

2.1 Hypotheses to Test: 

2.1.1 Radon verses Geology 

Geostatistical techniques are commonly used to map a range of environmental variables, 

particularly to generate probability maps that delineate areas that exceed a health-based 

threshold value. However, very few case studies in which indoor radon measurements 

have been investigated using geostatistical techniques have been published (Dubois et al., 

2007). In northen Virginia, due to the numerous universities and to the numerous state 

and federal geological survey scientists in the area, abundant geotechnical data and radon 

data are available, and might be used to make radon potential maps. It has been suggested 

that soils above some particular geologic units in northern Virginia may be associated 

with elevated indoor radon concentrations (Mose and Mushrush, 1997; Mose et al., 2005; 

Siaway et al., 2006; Mose et al., 2006a, b, c).  

2.1.2 Radon verses Slope and Elevation 

The location of a home may also be important. It seems likely that homes constructed on 

hillsides (homes on greater slopes) and hilltops (homes with higher elevations) might 

tend to have more indoor radon because these soils are more permeable, allowing greater 

movement of radon in soil gas (Mose and Mushrush, 1997; Siaway et al., 2006). This 

could be attributed to the permeability of the soils.  Factors that could contribute to high 

radon concentrations in high slope and high elevation areas include the possibility that 

uranium-rich rocks underlie these areas. It may also be that these areas have thin soils and 

bedrock close to the surface, and may have permeable fractured rocks (Otton and 

Gunderson, 1991).  Shashikumar et al. (2008) found variations of radon concentrations in 

the soil-gas under dry and wet conditions at different depths, so perhaps high slope and 

high elevation homes more often have dry-soil conditions which could allow greater and 

faster transport of soil-gas radon into homes. 

2.1.3 Radon verses Soil Radioactivity 

Appleton (2007) suggested that on-the-ground direct sampling of soil radioactivity (as 

opposed to airplane measured radioactivity) could be used to map radon potential maps. 

However, on-the-ground sampling of soil and making radioactivity measurements of each 

sample is expensive, so the measurements are often not numerous. Aerial radiometric 

data have been used to quickly quantify the radioactivity of large areas of rocks and soils 

(Schumann, 1995; Appleton, 2007). Uranium and radon soil measurements are estimated 

by measuring the gamma-ray emission of Bi
214

, a radioactive decay product of radon. 

Consequently, it seems reasonable that an aeroradioactivity map could be a good 

indicator for homes with radon.  
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2.2 Radon Measurements and Geotechnical Database 

Most new homes in Fairfax County have no pre-occupancy radon test, and most older 

homes have never been tested. For this investigation, data were obtained from over 1,000 

homes that were tested for indoor radon using winter, spring, summer and fall 3-month 

intervals. The measurements were examined to see if they exhibit a non-homogeneous 

pattern. If they did, this pattern could possibly be related to non-homogeneous 

geotechnical parameters, such as the distribution of geological units, the slope under 

homes, the elevation of homesites, and the distribution of high- and low-aeroradioactivity 

soil. 

The variation in indoor radon was visually examined, and from this examination a 

non-homogeneous pattern appeared likely, so a hypothesis was advanced that indoor 

radon in the central part of Fairfax County is higher than indoor radon in the western and 

eastern sides. To evaluate this hypothesis, indoor radon data were subjected to a 

directional distribution analysis (i.e., standard deviational ellipse and trend tools).  

A standard deviational ellipse was calculated, which describes the distribution of the 

indoor radon measurements in homes in northern Virginia. It measures the distribution of 

data values around the statistical mean. The ellipse method allows one to see if the 

distribution of indoor radon measurements is not uniform throughout Fairfax County, but 

instead, if contoured as in topographic mapping, has a particular orientation.  

A trend analysis was also used to provide a three-dimensional perspective of the data. 

In the case of this radon study, home locations were plotted on an x, y plane. Above each 

home location, the indoor radon measurement was given by the height of a “stick” in the 

z dimension. In this fashion, new data were created, which are points above a plot of the 

study site, at a height of the z values. The tops of the "sticks" are then projected onto the 

x, z plane and the y, z plane to form scatter plots. If the surface defined by the projected 

points is flat, no trend exists. If the curve through the projected points is not flat, it 

suggests a trend in the data. In this fashion, the standard deviational ellipse (also referred 

to as a “directional distribution”) measures whether a distribution of features exhibits a 

directional trend. In Fairfax County, the ellipse showed that indoor radon decreases from 

the center of the county to the northeast and to the southwest.  

2.3 Spatial Autocorrelation 

Spatial autocorrelation is a method that can be used to measure the magnitude of trends. 

Spatial autocorrelation can show the extent to which the value of one attribute (i.e., 

indoor radon measurements) changes when the value of another attribute (i.e., slope, 

elevation, aeroradioactivity) changes. If we can correctly identify some attribute that 

influences indoor radon, we might get a better understanding of how to predict indoor 

radon. This might be done by using the null hypothesis method for spatial autocorrelation 

analysis. For example, we can use a null hypothesis which states that comparisons we can 

measure occur randomly across the study area. 

It also allows for the detection of clusters of similar radon measurements and 

quantifies the extent to which clusters are clustered. In this case, a cluster refers to a 

grouping of similar indoor radon at homesites that are close together. A “cluster of 
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clusters” could come from a study area which has clusters of radon measurements, and 

many similar clusters occur near each other. Departures from randomness happen when 

clusters have geographic trends. If we are studying the distribution patterns for indoor 

radon at homesites, groups of similar clusters (“clustering of clusters”) in the distribution 

pattern occur when there is some broad area that has higher than average seasonal indoor 

radon and some other area with lower than average radon. This is called a positive spatial 

autocorrelation. That is, positive spatial autocorrelation has similar radon values 

appearing together, while negative spatial autocorrelation has dissimilar radon values 

appearing in close association. 

The special autocorrelation investigation using special autocorrelation on winter 

indoor radon measurements showed that with 99 percent certainty, the clustered 

distribution pattern for indoor radon at homesites could not be the result of random 

chance. This means there is less than one percent likelihood that the cluster pattern could 

be the result of a random chance. Said still another way, based on the pattern of winter 

indoor radon measurements, it is possible to reject the null hypothesis that winter indoor 

radon measurements are evenly distributed and have a random pattern across the study 

area. A similar conclusion was found for the spring, summer and fall indoor radon 

measurements. By inference, there must be some cause for this trend. To make predictive 

maps, tests were made to determine if indoor radon concentrations are dependent on any 

or all of these four available and well documented geotechnical factors: geology, slope, 

elevation and aeroradioactivity. 

2.4 Indoor Radon Verses Geology 

The first goal of the research was to compare, by using a Geographic Information System 

(GIS), the distribution patterns of indoor radon verses geology.  In nature, some 

geological units and the soils produced over these units are richer than others in uranium, 

which produces the radon. Similarly, the soils of some types of rocks are more permeable 

(more sandy) and allow more rapid radon movement through soil and facilitate faster and 

greater entry into homes. Therefore, it was hypothesized that the homes constructed over 

some geological units would have significantly higher indoor radon than homes over 

other units.  

Most of the rock units present in Fairfax County are also found in counties north and 

south of this area. They often have different names, but they are geologic units of similar 

age and composition, found from Maine to Georgia, much like the sand of the modern 

Coastal Plain. A digitized geologic map of Fairfax County was used because the precise 

locations of homes could be placed on this map. 

The eastern part of the study area is called the Coastal Plain, and the dominant 

geologic unit is a thick and wide series of sedimentary strata. The central portion of the 

study area is part of the Appalachian Piedmont Province. These rocks are part of the 

ancient Appalachain Mountains. Piedmont rocks are recrystallized sedimentary and 

volcanic rocks, plus large now-crystallized chambers of formerly molten rock. They were 

uplifted and subsequently worn down, and are now covered along the east side of the 

Piedmont by the modern beach sands of the Coastal Plain and the Atlantic Ocean. The 

Piedmont extends far west of Fairfax County, and as with the Coastal Plain, extends from 
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New England to Georgia. Several chambers of formerly molten rock are in the Piedmont 

in Fairfax County, the largest of which is the Occoquan granite. One of the widespread 

now-recrystallized but formerly sedimentary rock layers in the Piedmont Terrane is the 

Sykesville Formation, a metamorphic rock that formed from a small-to-medium grained 

mixture of clay and sand layers, and now has a quartzofeldspathic matrix that contains 

quartz “eyes” and a heterogeneous suite of pebble-to-boulder size fragments. Another 

large Piedmont unit is the Pope’s Head Formation, a metamorphosed light-gray to 

pinkish- and greenish-gray fine-to-coarse quartzo-feldspathic sandstone. A third major 

metasedimentary unit, only slightly different from the Popes Head Formaaion, is the 

Mather Gorge Formation. The other units in the Piedmont are much less widespread and 

have fewer measurements. In the western part of the Fairfax County Piedmont, there is a 

fault bounded valley called the Culpeper Basin. It contains unmetarmophosed 

sedimentary strata that were deposited after the metamorphic events that shaped the 

Piedmont. Also present in the Culpeper Basin are unmetamorphosed volcanic strata.  

3. RESULTS 

3.1 Distribution of Indoor Radon Measurements for the Geological Units 

The following sections examine the indoor radon measurements in homes that are built in 

the soil of the three geological units with the largest number of measured homes. These 

are homes over the Sykesville Formation (143 measured homes), the Pope’s Head 

Formation (135 measured homes), and the Mather Gorge Formation (372 measured 

homes). Figures 1-4 are the radon measurements in the Sykesville Formation as 

histograms, 5-8 are the Pope's Head Formation histograms, and 9-12 are the Mather 

Gorge Formation histograms.  

 

 

 

Figure 1. Histogram of Winter Indoor Radon in the Sykesville Formation Homes 
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Figure 2. Histogram of Spring Indoor Radon in the Sykesville Formation Homes 

 
Figure 3.  Histogram of Summer Indoor Radon in the Sykesville Formation Homes 

 
Figure 4. Histogram of Fall Indoor Radon in the Sykesville Formation Homes 
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Figure 5. Histogram of Winter Indoor Radon in the Pope’s Head Formation Homes 

 
Figure 6. Histogram of Spring Indoor Radon in the Pope’s Head Formation Homes 

 
Figure 7. Histogram of Summer Indoor Radon in the Pope’s Head Formation Homes 
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Figure 8. Histogram of Fall Indoor Radon in the Pope’s Head Formation Homes 

 
Figure 9.   Histogram of Winter Indoor Radon in the Mather Gorge Formation Homes 

 

 
Figure 10.   Histogram of Spring Indoor Radon in the Mather Gorge Formation Homes 
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Figure 11.   Histogram of Summer Indoor Radon in the Mather Gorge Formation Homes 

 
Figure 12. Histogram of Fall Indoor Radon in the Mather Gorge Formation Homes 
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Table 1. Winter Indoor Radon 

Geologic Unit # of 

Homes 

Mean 

Radon 

(pCi/L) 

Median 

Radon 

(pCi/L) 

Standard 

Deviation 

(pCi/L) 

95% 

C.L. 

5% 

Trimmed 

Mean. 

IQR 

Sykesville 

Formation 143 3.2 3.0 3.7 

2.5 – 

3.8 2.7 

 

3 

Pope’s Head 

Formation 133 3.1 3.0 2.8 2.6 -3.6 2.9 

 

5 

Mather Gorge 

Formation 372 3.8 3.0 4.8 

3.4 – 

4.3 2.3 

 

5 

Table 2. Spring Indoor Radon 

Geologic Unit # of 

Homes 

Mean 

Radon 

(pCi/L) 

Median 

Radon 

(pCi/L) 

Standard 

Deviation 

(pCi/L) 

95% 

C.L. 

5% 

Trimmed 

Mean. 

IQR 

Sykesville 

Formation 143 2.4 2.0 2.4 

1.9 – 

2.1 2.1 

 

4 

Pope’s Head 

Formation 133 3.4 3.0 4.9 

2.6 – 

4.3 2.8 

 

3 

Mather Gorge 

Formation 372 3.5 2.0 4.5 

3.1 – 

4.0 2.9 

 

5 

Table 3. Summer Indoor Radon 

Geologic Unit # of 

Homes 

Mean 

Radon 

(pCi/L) 

Median 

Radon 

(pCi/L) 

Standard 

Deviation 

(pCi/L) 

95% 

C.L. 

5% 

Trimmed 

Mean. 

IQR 

Sykesville 

Formation 143 2.5 2.0 2.2 

2.5 – 

2.9 2.3 

 

2 

Pope’s Head 

Formation 133 3.1 2.0 3.7 

2.5 – 

3.7 2.6 

 

3 

Mather Gorge 

Formation 372 2.7 2.0 2.8 

2.4 – 

3.0 2.4 

 

4 

Table 4. Fall Indoor Radon 

Geologic Unit # of 

Homes 

Mean 

Radon 

(pCi/L) 

Median 

Radon 

(pCi/L) 

Standard 

Deviation 

(pCi/L) 

95% 

C.L. 

5% 

Trimmed 

Mean. 

IQR 

Sykesville 

Formation 143 3.0 3.0 2.5 

2.6 – 

3.4 2.8 

 

2 

Pope’s Head 

Formation 133 3.5 3.0 3.6 

2.9 – 

4.2 3.1 

 

4 

Mather Gorge 

Formation 372 3.6 3.0 4.2 

3.2 – 

4.0 3.1 

 

5 

3.3 Indoor Radon Compared to Slope  

Soils on land in northern Virginia with greater slope tend to be more permeable because 

they have a higher sand content, and therefore might have a higher probability of greater 

gas flow (Fairfax County GIS, 2006). Consequently, the second hypothesis was 

advanced, that homes with more indoor radon are those that are constructed on land with 

greater slope. In order to investigate this hypothesis, a three-dimensional visualization 
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was prepared of seasonal indoor radon and slope. Since it was found the variation in the 

distributions of indoor radon is about the same for all four seasons, the winter indoor 

radon values are used to visualize the relationship (Figure 13). All the comparisons 

seasonal show that there is a weak tendency for indoor radon to be less in areas with 

higher slope. Consequently, based on these comparisons, the hypothesis that homes with 

more indoor radon are on a surface with higher slope is rejected. In fact, lower indoor 

radon levels tend to occur more often in areas with higher slopes.This “tendency” is not 

strong enough correlation to use in making a high confidence radon potential map, but 

could be used to make a low confidence map.  

2520151050
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12.50

10.00
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5.00
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0.00

S
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O
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E
 (

%
)
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Figure 13. Scatter Plot of Slope and Winter Indoor Radon Measurements 

3.4 Indoor Radon Compared to Elevation 

Areas of high elevation also tend to have more permeable and sandier soils, and gas and 

liquids move faster through such soils (Mose et al., 2006c; Shi et al., 2006) 

Consequently, the third hypothesis was advanced, that homes with more indoor radon 

tend to be on land of higher elevation. 

This observation was tested with data from all four seasons, and as an example the 

comparison between elevation and winter indoor radon is shown in Figure 14. This 

comparison, and all the other comparisons show that there is a tendency for indoor radon 

to be less in areas with higher elevation. 
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Figure 14. Scatter Plot of Elevation and Winter Indoor Radon Measurements 

Although it appears that indoor radon tends to be less in homes of higher elevation, 

this is another weak correlation, and like the discussion about slope, it is a tendency and 

is not a strong enough correlation to use in creating a high confidence radon potential 

map. The lower radon-higher elevation can only be used to create a low confidence radon 

potential map. 

3.5 Indoor Radon Compared to Aeroradioactivity  

It has been theorized that aeroradioactivity (i.e. airplane measured soil aeroradioactivity) 

maps might be a useful way to create indoor radon potential maps (Li et al., 1995; Smith 

and Cowles, 2007; Mose et al., 1992). During the 1970s, airborne gamma-ray spectral 

data were collected throughout the United States along a grid of east-west and north-

south flight lines as part of the National Uranium Resource Evaluation project (NURE) 

(Duval et al., 1989). Because radon-222 is followed closely in the decay path by bismuth-

214, NURE data are also useful in identifying areas more likely to have elevated radon 

levels in soil and rock. 

To collect the NURE aeroradioactivity data, the east-west flight lines were typically 

3-6 miles apart and north-south lines were typically 12 miles apart. The NURE project 

used low and slow flying aircraft with special analytical equipment to detect and record 

the intensity of gamma-ray energy from the decay of bismuth-214 from the uppermost 20 

to 30 cm of the surface of soil and rocks at regular locations along each flight line. The 

aircraft flew several hundred feet above the surface and measurements were collected, on 

average, a little more than 100 feet apart along the flight lines. Estimates of the soil and 

rock uranium content at each location, in parts per million, were calculated using the 

gamma-ray data that were collected. This technique assumes that uranium and its decay 

products are in secular equilibrium. These estimates are designated by the abbreviation 

eU (equivalent uranium) to distinguish them from a conventional chemical analysis of 
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uranium. The estimates are possible because bismuth-214 is one of the radioactive decay 

products for uranium-238, and the amount of bismuth-214 is proportional to the amount 

of uranium-238 (and total uranium) present in the rock or soil. Detailed compilation of 

aeroradioactivity data is addressed in USGS Open File Report/OFR 02-0361 (USGS, 

2001). 

As the aircraft flew over the initial checkpoint, the Doppler navigation system 

recorded the aircraft positions in terms of along-track and across-track distances relative 

to the initial checkpoint and the predetermined heading. The ground data consisted of 

longitude and latitude of initial checkpoint, longitude and latitude of the end or the 

closure point, and the recorded across-track values associated with each point. The 

ground data (radiation-channel observation) was then associated with its measurement 

site (longitude and latitude) so they can be plotted together on a map. In theory, areas 

with soils showing above average radioactivity will probably be areas with above average 

indoor radon (Mose, 2005). The fourth hypothesis was advanced, that high 

aeroradioactivity could be used to locate homes with high indoor radon. The homesites 

where seasonal indoor radon was measured were plotted on an aeroradioactivity map to 

test this hypothesis. 

The pattern of comparisons between aeroradioactivity and indoor radon for all of the 

three geological units was similar for all four seasons, so only comparisons for the winter 

data are shown. Figure 15 presents the comparison for the Sykesville Formation homes, 

Figure 16 is for the Pope’s Head Formation homes, and  Figures 17 is for the for Mather 

Gorge Formation homes. All show that in homes located where the aeroradioactivity is 

between about 200-350 cps, indoor radon was usually less than 5 pCi/L in all the 

measured homes. However, between about 350-600 cps, some radon measurements 

exceeded 5 pCi/L.  

In summary, these comparisons all suggest that indoor radon tends slightly to increase 

with aeroradioactivity. However, aeroradioactivity cannot be used to identify areas of 

high (or low) indoor radon potential sufficiently well to be used to create high confidence 

radon potential maps. It could, at best, be used as a trend in predicting indoor radon.  

4. DISCUSSION 

GIS is used to digitize, process and integrate a variety of data, such as geological maps, 

radon concentrations and aeroradioactivity values associated with house locations. 

Geostatistical techniques are commonly used to map a range of environmental variables, 

particularly to generate probability maps that show where variables exceed a given 

threshold. The approach taken in this research was to examine comparisons between 

indoor radon data and location, and with geotechnical data. The results were used to 

determine if there is a relationship between indoor radon and geology, slope, elevation, 

and aeroradioactivity, and to determine if these geotechnical data could be used to create 

indoor risk maps.  
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Figure 15. Scatter Plot of Indoor Winter Radon and Aeroradioactivity for Sykesville Formation Homes 
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Figure 16. Scatter Plot of Indoor Winter Radon and Aeroradioactivity for Pope’s Head Formation Homes 
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Figure 17.  Scatter Plot of Indoor Winter Radon and Aeroradioactivity for Mather Gorge Formation Homes 

 

A standard ellipse and trend analysis of all the measured homes in Fairfax County 

revealed a trend in indoor radon measurements, best described as a tendency for indoor 

radon measurements to be highest in the center of the county (the Piedmont area). This 

tendency for indoor radon to be greater in the center of Fairfax County was investigated 

by comparing indoor radon in homes on three different geological units in the Piedmont, 

on different slopes, at different elevations, and over areas of different aeroradioactivity.   

The radon verses geology study focused on examining the indoor radon 

concentrations in homes constructed over the Piedmont’s Sykesville Formation, Pope’s 

Head Formation and Mather Gorge Formation, selected because they have many indoor 

radon measurements. A statistical analysis of the distribution of measurements in these 

units showed that there is considerable overlap, and that a radon risk map of high 

confidence could not be based on the location of these geological units.  

The next study was made to evaluate the possibility that slope and elevation influence 

indoor radon. It was found that indoor radon levels tend to be higher in homes built on 

lower slope and in homes at lower elevations. Unfortunately, these were weak 

correlations and a radon risk map of high confidence could not be based on the homesite 

slope or elevation.  

The fourth study was made to evaluate the possibility that aeroradioactivity could be 

correlated with indoor radon. It was found that aeroradioactivity tends to be only slightly 

greater in areas with greater indoor radon, so a radon risk map of high confidence could 

not be based on aeroradioactivity. Indoor radon only has a weak positive correlation with 

aeroradioactivity.  
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5. CONCLUSION 

The relationships between indoor radon concentrations and geology, slope, elevation and 

aeroradioactivity were made to target resources into high-risk areas and to encourage 

builders of new homes to avoid areas with high radon potential. Conversely, if it is 

necessary to build new homes in areas of high indoor radon potential, it is hoped that the 

results of this study would encourage builders to use radon resistant building methods. 

This is becoming an established practice in many countries (Synnott and Fenton, 2005).  

The body of techniques embodied in geostatistics (Johnston et al., 2001, Mitchell, 

2005) that were used in this study provided the tools requisite to determining the structure 

of the spatial variation and to evaluate geotechnical information to estimate indoor radon 

concentrations. This research sought to evaluate the possibility that on a county-size 

scale, there might be some predictability to indoor radon. In northern Virginia, Fairfax 

County was used, because there are more radon measurements available for one county 

than in any other county in North America. 

Exposure to indoor radon as a result of soil gas ingress into buildings is the most 

significant contributor of radiation dose to members of the public (Baixeras et al., 2001). 

Many countries have carried out radon surveys to establish the extent of this problem. In 

some cases, these resulted in radon potential maps, but in the present study, it did not.  

The investigation showed that there is only a tendency for indoor radon to be greater 

in some parts of Fairfax County in homes on some geological units, in homes constructed 

on lower slopes, on sites at lower elevations, and in areas of higher aeroradioactivity. 

However, none of these physical variables exhibits a strong enough control on indoor 

radon to be used to construct radon potential maps that carry a high confidence of 

accuracy. That is, results showed that indoor radon only has a weak positive correlation 

with geology, slope, elevation and aeroradioactivity. 
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