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Abstract—Increasingly many wireless sensor network
deployments are using harvested environmental energy
to extend system lifetime. Because the temporal profiles
of such energy sources exhibit great variability due to
dynamic weather patterns, an important problem is de-
signing an adaptive duty-cycling mechanism that allows
sensor nodes to maintain their power supply at sufficient
levels (energy neutral operation) by adapting to changing
environmental conditions. Existing techniques to address
this problem are minimally adaptive and assume a priori
knowledge of the energy profile. While such approaches
are reasonable in environments that exhibit low variance,
we find that it is highly inefficient in more variable
scenarios. We introduce a new technique for solving this
problem based on results from adaptive control theory and
show that we achieve better performance than previous
approaches on a broader class of energy source data
sets. Additionally, we include a tunable mechanism for
reducing the variance of the node’s duty cycle over time,
which is an important feature in tasks such as event
monitoring. We obtain reductions in variance as great
as two-thirds without compromising task performance or
ability to maintain energy neutral operation.

I. INTRODUCTION

Wireless sensor networks and embedded systems are
becoming commonplace in many fields of research (e.g.,
environmental monitoring). The spatially distributed na-
ture of such networks often requires that the individ-
ual sensor nodes be powered by batteries. One of the
major limitations on performance and lifetime of such
networks is the limited capacity of these finite power
sources, which must be manually replaced when they are
depleted. Recent work [1]–[4] has explored scenarios in
which nodes can harvest energy from their environment
(e.g., from the sun) and use it to recharge their batteries.
In the absence of such energy (e.g., at night in the case of
solar energy), nodes can then subsist on their replenished
battery supply.

The introduction of energy harvesting capabilities
into wireless sensor networks introduces many design
questions about the construction of such systems. For
example, how can a node use its harvesting abilities
intelligently to increase its task performance and life-
time? Can a node adapt its power consumption profile
online so as to subsist indefinitely on a given energy
source without compromising its task performance? Such
questions have been addressed in recent work [1] which
presents algorithms for dynamically adapting the duty
cycle of a node so as to maximize both lifetime and
performance. The concept of “energy neutral operation”
is also introduced in [1], which informally amounts to a
condition in which the energy consumed by the node is
always less than or equal to the energy harvested from
the environment. It is a non-trivial task to design duty-
cycling algorithms that achieve energy neutral operation,
since the dynamics of the energy sources being harvested
may not be easily predictable.

Existing approaches [1] to the problem of dynamic
duty-cycling of nodes with energy harvesting capabilities
attempt to model the energy source and adjust the node’s
duty cycle in anticipation of expected incoming energy
or lack thereof. These methods also attempt to handle
stochasticity in the energy profile by comparing observed
energy input with expected input (given by the model)
and adjusting the duty cycle accordingly. We present an
alternative, model-free approach to solving this problem
using techniques from adaptive control theory [5] and
show that our system achieves better performance on
a wider class of environmental data sets than previous
approaches. Additionally, our system does this while
making no assumptions about the nature and dynamics
of the energy source, making our approach more easily
implemented in real systems where data about the energy
source may not be available beforehand.

Another contribution of this work is the consideration



of duty cycle stability, which to our knowledge has
not been addressed in previous work on dynamic duty-
cycling algorithms for energy harvesting networks. We
contend that in addition to energy neutral operation, cer-
tain applications which employ sensor networks require
the duty cycling behavior of the node to be as stable as
possible, meaning that it should have low variance over
time. There are a number of reasons why this condition
may be considered important. Nodes involved in event
monitoring tasks must minimize their sleep time in order
to detect fleeting and unpredictable events and report
them with low latency (usually to a central location) [6].
In such cases, one would ideally want the node to be
equally likely to be awake at any given point in time.

The duty cycle of a node is also important for commu-
nication between sensor nodes. For instance, a popular
MAC layer protocol, BMAC [7], uses the characteristics
of a neighboring node’s duty cycle to determine the
length of a packet preamble. With these considerations
in mind, we augment our duty-cycling algorithm with
a parameterized method for reducing the variance of a
node’s duty-cycling profile to varying degrees without
compromising its goals of maintaining energy neutral
operation and maximizing its task performance.

In summary, this work presents the following contri-
butions to research involving adaptive duty-cycling of
energy harvesting sensor nodes:

• Generality: Our approach is model-free with re-
spect to the energy source and thus can be im-
plemented in any energy harvesting system without
the need for a priori information about the source.
We present results for both periodic (solar) and
aperiodic (wind) data sets.

• Computational Efficiency: As we will show, our
algorithm has only constant time and constant space
requirements, making it easily implementable on
many low-power, unsophisticated hardware plat-
forms.

• Adaptivity: Our approach is designed to allow the
system to respond more appropriately in situations
where the battery level happens to get perilously
low. Our algorithm achieves 0% dead time on all
data sets tested in comparison to another algorithm’s
dead times of as much as 16%.

• Tunable Stability: We present a tunable mech-
anism for minimizing the variance of a node’s
duty-cycling profile, an important feature for many
sensor net applications. Our results show reductions
in variance of up to two-thirds using this method.

II. RELATED WORK

Energy-aware tasking protocols for various distributed
applications have been studied extensively in recent
years [8]–[10]. However, these approaches make tasking
decisions based solely on battery level and do not con-
sider the potential of harvesting environmental energy
to supplement battery supply. Other recent work has
explored incorporating energy harvesting techniques into
wireless sensor networks [1]–[3]. Much of this work,
however, has been concerned primarily with design,
simply taking the extra energy provided by the harvesting
system as an overall boost in lifetime and performance.
There is little work studying methods of taking harvested
energy into account when making energy-aware tasking
decisions so as to maximize lifetime and performance.
Two exceptions are [3] and [11], which show that incor-
porating such information into a tasking algorithm can
indeed improve performance and lifetime as compared
to naive approaches. These methods, however, provide
only heuristic techniques for using the harvested energy
efficiently.

Kansal et al. [1] present a more principled algorithm
for dynamically adapting the duty cycle of a node by
observing deviations in energy input from an estimated
model of the harvested energy source. In their approach,
it is assumed that the energy source is periodic and
that the period of the energy profile is known (e.g.,
one day in the case of solar energy). A single period is
discretized into blocks of equal duration, and an estimate
of the expected energy input during that block (given in
average mW per block for their experiments) is learned
from historical data. The estimates are learned using
an exponentially weighted moving average of recorded
energy input rates for a given block on past days.

Energy input is assumed to be constant over the course
of a single block, and the block duration is chosen
to be small enough such that this assumption is likely
to hold. Initial duty cycles are set based on an initial
estimate of the average energy input rates for each of
the blocks, which is assumed to be known a priori from
existing data. Online changes in duty cycle are based on
mismatches between the actual energy received during
a block and the expected energy given by the model
for that block. Surpluses of energy resulting from these
mismatches are utilized by increasing the duty cycle
during future blocks of the current period. Similarly,
deficits are compensated for by reducing the duty cycle
during future blocks accordingly.

Although Kansal et al. formulate their algorithm



within a theoretical framework which they develop and
term harvesting theory, much of the power of their
algorithm comes from a priori information about the
harvested energy source. The theory is used to provide
constraints on the choices of duty cycles for particular
blocks, but the initial choices are made based on existing
data, and subsequent choices are made based on a model
with the assumptions described above. Our approach,
described in the next section, actually takes a step back
from modeling the energy source, using only the current
battery level of the node to make duty-cycling decisions.
However, as we show, our formulation implicitly ac-
counts for the energy harvested from the environment
and makes duty cycling decisions accordingly.

III. ACHIEVING MAXIMUM PERFORMANCE ENERGY

NEUTRAL OPERATION WITH ADAPTIVE CONTROL

In this section we introduce some concepts from
adaptive control theory and outline our architecture for
achieving energy neutral operation (henceforth ENO)
while maximizing task performance. In particular, we
formulate the problem as a linear-quadratic (LQ) track-
ing problem and provide a very simple control law for
achieving both objectives.

A. A Battery-Centric Objective Function

We first propose an objective function for a given node
that is defined only in terms of the node’s battery level
and argue that, if minimized, it achieves both ENO and
maximum task performance subject to maintaining ENO,
the dual objectives of an energy harvesting node. We
term the condition of satisfying both of these goals the
ENO-Max condition. Our informal definition of ENO is
as given in [1]—namely that the energy consumed by a
node is always less than or equal to the energy harvested.

Here, as in [1], we assume that task performance is
strongly correlated with a node’s power consumption
profile. This is a reasonable assumption in most sensor
network tasks, e.g., event monitoring, where maximizing
the awake time of a node (which in turn increases power
consumption) amounts to maximizing its performance.
We also assume that the node has some means of
adjusting its power consumption profile online. This
can be implemented as in [1] by having the node
autonomously set its duty cycle. Alternatives include
autonomous dynamic voltage scaling (DVS).

Denote a node’s initial battery level as B0 ∈ [0, 1]
(i.e., percent full) and the battery level at discrete time
step t as Bt ∈ [0, 1]. We argue that if a node maintains
its battery level such that Bt = B0 ∀t > 0, then the

node satisfies the ENO-Max condition. It is not hard to
see why this is so if we momentarily assume for clarity
that any battery leakage is negligible. Any time at which
Bt < B0 indicates a violation of the ENO condition,
since the node must have consumed more energy than
it has replaced with harvested energy. Thus, as long as
Bt ≥ B0, the node maintains ENO.

Considering next the condition of maximizing task
performance, any situation in which Bt > B0 indicates
that the node has harvested energy it has not yet made
use of. Thus we can say that when Bt ≤ B0, the node
has made efficient use of the energy it has harvested.
Since satisfying the ENO-Max condition requires sat-
isfying both of these objectives, the node must satisfy
(Bt ≥ B0)∧ (Bt ≤ B0) ∀t > 0, which is satisfied when
Bt = B0 ∀t > 0. This is our formal definition of the
ENO-Max condition.

In general it will not be possible for a node to adjust its
duty cycle to maintain the ENO-Max condition exactly
for all t > 0. Thus we define the following cost function
for the node to minimize to obtain an optimal duty-
cycling schedule:

lim
N→∞

1
N

N∑
t=1

(Bt −B0)2. (1)

A node minimizing (1) will minimize the average
squared deviation of the battery from its initial level, and
thus be as close as possible to maintaining the ENO-Max
condition given the dynamics of its environment (which
includes hardware limitations). Note also that removing
the assumption that battery leakage is negligible poses
no problem since we can view any leaked energy as a
corresponding increase in power consumption, for which
the node will compensate when minimizing (1).

B. Optimal Linear Quadratic Tracking

We next present some background on a well-defined
problem in adaptive control theory whose solution we
adapt in the following section to develop an algorithm
for maintaining the ENO-Max condition. Results from
research in adaptive control theory have been in wide use
for decades in many areas of industry for maintaining
optimal control of dynamical systems [12]. One of
the problems addressed by adaptive control theory is
the optimal tracking problem which, informally stated,
attempts to apply external control to a dynamical system
so as to keep some output variable at a desired value or
sequence of values (trajectory) over time. This is done
by minimizing some cost function, which is generally a
function of the error between the output variable and



the target value(s). A more specific definition, which
is the one we address, concerns the case in which the
dynamics of the system are linear in the controls, outputs,
and noise of the system, and the cost function to be
minimized is quadratic in the outputs. This formulation
is referred to as a linear-quadratic (LQ) tracking problem,
for which there exist closed-form optimal control laws.
We additionally concern ourselves with the special case
of this problem in which the desired trajectory of the
output is a constant value.

More formally, we consider a first order, discrete-
time, linear dynamical system with colored noise. Such
a system is assumed to have dynamics that conform to

yt+1 = ayt + but + cwt + wt+1, (2)

where y represents the output of the system, u is the
control, w is mean zero input noise, a, b, c ∈ � are real-
valued coefficients, and all subscripts indicate discrete
time steps. Note that the coefficient c determines the
contribution of previous noise terms to the evolution of
the system, which is what gives rise to the colored noise.

The objective of the system is to keep |yt− y∗| small
for all values of t, where y∗ in this case is the con-
stant value desired for the output. Formally, the system
attempts to minimize the average squared tracking error

lim
N→∞

1
N

N∑
t=1

(yt − y∗)2. (3)

It can be shown (e.g., in [5]) that the optimal control
law minimizing (3) is given by

ut =
y∗ − (a + c)yt + cy∗

b
, (4)

which does not depend on w, but does depend on the
coefficient c of previous noise terms.

In situations where the coefficients in the control law
are not known a priori, as is the case in our problem
formulation, they can be estimated online using standard
gradient descent techniques [5]. To do this, we introduce
a parameter vector θ = (a+c, b, c)T to represent the true
coefficients and a feature vector φt = (yt, ut,−y∗)T .
From these definitions it is easy to see that the control
law given in (4) can be expressed as φT

t θ = y∗. We
can then define a gradient descent update rule for the
estimated parameter vector θ̂t as described in [5], which
is given by

θ̂t+1 = θ̂t +
µ

φT
t φt

φt(yt+1 − φT
t θ̂t), (5)

where µ is a positive constant step-size parameter.

C. Satisfying ENO-Max with LQ Tracking

We now formulate the problem of a given sensor node
maintaining the ENO-Max condition as an LQ tracking
problem of the form described in the previous section.
Such a formulation requires making certain assumptions,
which we will justify in this section. First, we assign the
variables of the tracking problem appropriately, letting
yt be the battery level, Bt, of the node at time t and
ut be the node’s duty cycle at time t. The colored
noise, wt, will model the moving average of battery level
increments produced by the harvested energy. Note that
in this formulation harvesting inefficiencies need not be
modeled directly because the algorithm only observes
the actual harvested energy. This is in contrast to [1],
in which harvesting inefficiencies had to be modeled
explicitly (with the parameter η) because the harvested
source was modeled directly.

By choosing these variable assignments we assume
that the dynamics of the node’s battery, given now as a
function of y, w, and u, evolve according to (2). That is,
we assume linearity of the battery level with respect to
itself, the incoming energy from the environment, and
the power consumption profile as defined by the duty
cycle. Most batteries have approximately linear discharge
and recharge rates in the middle region of their voltage
discharge curves, with non-linearities occurring at the
extremes. Thus, the linearity assumption is in general a
reasonable one if the range of the reported battery level
(y) is clamped around the linear region of the battery’s
voltage discharge curve.

It is straightforward to transform the objective function
we defined in (1) into the cost function for the LQ
tracking problem given by (3). We simply let y∗ = B0

and yt+1 = Bt+1 and note that the two are then
equivalent. However, we mention one possible design
choice here that changes our notation slightly. It should
be clear that a system designer would want y∗ to be some
value in the mid-range of the battery level interval [0, 1],
so that the battery can act as a buffer both in the case
of surpluses of energy as well as in the case of deficits.
We suggest a value between 0.5 and 0.75, as values in
this range incorporate a bias towards tolerating energy
wasting and against tolerating over-depletion.

It may not be plausible or desirable, however, to set
the initial charge of a node’s battery to exactly the
level of y∗. In general, a system designer would likely
want the convenience of fully charging all of the nodes
in a network before deployment. This does not pose
a problem because any mismatch between the initial



battery level B0 and the desired target for the LQ tracker
y∗ becomes negligible in terms of the cost function as
t → ∞. We therefore change notation slightly and say
that y∗ is set by the system designer to a “pseudo” initial
battery level B∗, rather than to B0.

It has been suggested [12] that the parameter esti-
mation algorithm (5) will converge must faster if θ̂ is
initialized to a reasonable value rather than arbitrarily.
Given the dynamics (2) of the system we describe and
the variable assignments discussed earlier, it is clear that
the coefficient b should be negative (power consumption
decreases battery level), a should be positive and near
1, and c should also be positive (energy influx increases
battery level). For these reasons we suggest initializing
θ̂ to (2,−1, 1)T , recalling that θ̂(0) = a + c. We have
observed empirically that θ̂ converges quickly in all of
our simulations given this initialization, which should be
appropriate for most energy harvesting systems. 1

D. Reducing Duty Cycle Variance

Another design issue which to our knowledge has not
been addressed in previous work on performance-aware
energy harvesting is attempting to minimize the variance
of the node’s duty-cycling profile subject to maintaining
the ENO-Max condition. As mentioned in Section 1,
this will be of particular interest in applications such as
event monitoring where the likelihood of an event may
be uniformly distributed over time and the goal of the
network is minimum response latency to such events. In
such cases, one would ideally want a node to be equally
likely to be awake at any given point in time.

Our goal is to have the node smooth its choices of duty
cycle over time such that the variance of the duty-cycling
profile is minimized, subject of course to maintaining
the ENO-Max condition. If a node can realize this third
objective, then it will tend to choose duty cycles that
take it between periods of high and low energy influx
without large changes in its duty cycle. In this case, if
the duty cycle represents percentage of time awake, the
probability distribution which gives the likelihood that
the node will be awake at any given point in time will
be closer to a uniform distribution than if this objective
is not considered.

There are many possible ways to filter the control
outputs of the LQ-Tracker so as to decrease variance
of the duty-cycling profile. We present a very simple
method for doing so and show that it can be used to

1When implementing our algorithm, it may also be useful to
introduce the restrictions θ̂(0) > 0, θ̂(1) < 0, and θ̂(2) > 0 to
prevent the values from exiting their appropriate ranges.

reduce duty-cycling profile variance to varying degrees
without violating the ENO-Max condition. Our approach
is to smooth the sequence of control outputs {ut} of the
LQ-Tracker with a simple exponential weighting scheme.
That is, the duty cycle chosen by the node will be
an exponentially weighted moving average of previous
control outputs of the LQ-Tracker. One advantage of this
approach is its simplicity and ease of computation. The
update rule for computing the smoothed control signal
ūt from the control output ut of the LQ-Tracker at time
step t is given by

ūt = ūt−1 + α(ut − ūt−1), (6)

where α ∈ (0, 1] is a smoothing parameter discussed in
more detail shortly.

This has the effect of setting the duty cycle to a
recency-weighted average of previous values of u, where
the weighting is a function of α. A general rule of
thumb is that the number of significant data points
that contribute to the average is given approximately by
1/α [12]. Thus, for large values of alpha (close to 1),
smoothing over only the last few data points will occur.
When α is close to 0, the value of ū will be averaged
over increasingly longer histories of the sequence {ut},
leading to greater smoothing. Note that if α = 1 then no
smoothing occurs, and we restrict α to be greater than 0
because α = 0 would always keep ū at its initial value.

The choice of α will be a function of the time step
duration and thus will be application dependent. We do
not present a method for adjusting α online, but rather
discuss guidelines for choosing appropriate values for
the parameter. If no information about the energy source
is known a priori, then α must be chosen based solely
on the heuristic mentioned above. That is, to smooth
the sequence of control outputs over approximately x
time steps, α should be set to 1/x. If any information
about the nature of the energy source is known, this
information along with the heuristic mentioned above,
can be used to set α appropriately.

Setting the duty cycle directly to ū will, in some
cases, prevent the node from adapting quickly to large
bursts or deficits in energy availability, potentially vio-
lating the ENO-Max condition for long periods of time.
We therefore introduce a simple, parameterized tradeoff
mechanism for allowing both the short time scale control
of the LQ-Tracker and the longer time scale control of
the weighted average to contribute to the choice of duty
cycle. The tradeoff is parameterized by β ∈ [0, 1], which
determines the relative contributions of each control
signal by setting the duty cycle ρt at time step t to a



θ̂ ← (2,−1, 1)T

B ← initial battery level ∈ [0, 1]
B∗ ← target battery level ∈ [0, 1]
ρ, u, ū← initial duty cycle ∈ [0, 1]
φ← (B, u,−B∗)T

loop forever
B ← current battery level ∈ [0, 1]
θ̂ ← θ̂ + µ

φT φ
φt(B − φT θ̂)

u← σ[(B∗ − θ̂(0)B + θ̂t(2)B∗)/θ̂(1)]
φ← (B, u,−B∗)T

ū← ū + α(u− ū)
ρ← βu + (1− β)ū

end loop

Fig. 1. Sensor node algorithm pseudocode.

weighted combination of ut and ūt according to

ρt = βut + (1− β)ūt. (7)

The value of β will clearly be application dependent
and should be set to 1 in cases where duty cycle variance
is irrelevant, since this will produce no contribution from
the weighted average control. For applications in which
duty cycle variance should be minimized, it is suggested
that β be set between 0.25 and 0.75, depending on how
critical variance minimization is. Smaller values of β will
increase the contribution of the weighted average, thus
reducing variance, but may lead to poor performance if
the energy source is highly variable, since the node will
not be able to respond as well to quick variations in
energy availability. We present performance results for
differing values of β in Section 5.

E. Algorithm and Implementation Details

Armed with the theoretical formulation of the prob-
lem of maintaining the ENO-Max condition outlined
in the previous sections, we now discuss methods of
implementation in wireless sensor nodes and present a
constant time, constant space algorithm for maintaining
this condition in a given node. Figure 1 gives pseudocode
for the algorithm. We first note that the loop is over dis-
crete time steps whose duration must be chosen a priori.
However, the computational demand of the algorithm
at each iteration is minimal, even for most low-power
systems, and for the most part can be neglected when
choosing the time step duration.

It is clear that the node will not be able to perform
updates while in sleep mode, and so the actual time
between all iterations will not be constant. We assume
that the system is designed to perform iterations of the

algorithm at a constant rate when in awake mode, and
to begin a series of these equally spaced updates upon
awaking from sleep mode until sleep mode is entered
again. The asymmetry of the time step durations will not
affect the algorithm’s performance, however, since the
control law does not directly depend on the amount of
time that has passed since the last update. Realistically,
in most applications it will be sufficient to have the node
run one iteration of the algorithm upon awaking from
sleep mode. This will have the effect of executing one
wake-sleep cycle before deciding whether or not to alter
the timing of the next.

Finally, as seen in Figure 1, we have introduced the
rectifier function σ(u) to constrain the control output u
to be a valid duty cycle. That is, σ(u) is defined as

σ(u) =




0 if u < 0
1 if u > 1
u otherwise

. (8)

IV. EXPERIMENTAL DESIGN

We compared our LQ-Tracking algorithm with the al-
gorithm presented in [1] in simulation on three different
solar energy data sets and a wind energy data set. This
section presents the details of our simulations and the
specifics of the data sets.

A. Sensor Node Simulation

Our sensor node simulation was designed to model the
performance characteristics of the Heliomote platform,
a solar energy harvesting sensor node [13]. The power
consumption of the node was simulated to be 3mW in
sleep mode (Psleep) and 100mW in active mode (Pmax)
under a 100% duty cycle. Power consumption Pc(t) in
mW under a given duty cycle ρt ∈ [0, 1] at time t was
therefore calculated as Pc(t) = ρtPmax +(1− ρt)Psleep.

We then used this energy consumption rate to compute
a change in battery voltage level per time step. This
was done by choosing a constant that approximated the
slope of the linear region of the discharge curve for a
standard NiMH rechargeable battery [14]. The voltage
values at the beginning and end of this linear region
represented 100% full and 0% full, respectively. When
the battery level reached zero, all duty cycling decisions
by the algorithm were overridden and the duty cycle
was manually set to 0 until the battery regained charge
through harvesting. Energy recharging was treated as the
inverse of power consumption, and the power output by
the harvesting system was obtained from the data.



B. Algorithmic Details

We chose a time step duration of one minute for our
simulations. This was thought to be fine grained enough
given the nature of the energy sources to provide realistic
dynamics. Thus, each iteration of our algorithm was run
once every minute of real time, a frequency at which our
results suggest would be reasonable in a real system.

The framework outlined in [1] described a utility
function, parameterized by ρmin and ρmax ∈ [0, 1], that
was a function of a node’s duty cycle. Duty cycles were
restricted to be in the interval [ρmin, ρmax], and the utility
function was assumed to be strictly increasing over that
interval. We chose a special case of this function in
which ρmin = 0.01 and ρmax = 1 because we feel
that higher values of ρmin are unlikely to be necessary
in most applications, and higher duty cycles should
in general increase utility, even though there may be
diminishing returns. We note, however, that varying ρmin

and ρmax produced little effect on the performance of our
algorithm except for the trivial cases in which there was
not enough energy output by the source for the node to
support a minimum duty cycle of ρmin. This validated
our choice of utility function.

Our algorithm was implemented as in Figure 1, with
the exception that ρmin = 0.01 was used as the lower
bound of the rectifier function σ, instead of 0. We let
B∗ = 65%, µ = 0.001, the initial duty cycle be 20%, and
the initial battery level be 95% for all of our experiments.
Changing these parameters to other reasonable values
had little effect on our results, and so we present only
the results for these values.

We compared the performance of our algorithm
against the algorithm given in [1]. To implement the
algorithm, we chose the same time discretization as used
in that paper—48 blocks per day representing 30-minute
blocks of time. The exponential weighting parameter for
estimating the average expected energy for each block
was set to 0.5 as in [1]. The initial estimates of the
expected energy input for each of the blocks in the
algorithm were obtained by averaging the data points in
each of those blocks over the entire data set beforehand.
Finally, the case of energy harvesting inefficiencies was
not considered and thus η = 1 in our simulations.
Experimentation with other reasonable discretizations
and time step durations yielded similar results.

C. Data Sets

We obtained data for our evaluations from two
sources. The first set was a portion of that used in [1]
and consisted of 60 days of solar data collected by a

Heliomote in Los Angeles, CA during July and August
of 2005. From now on, we refer to this data set as Helio-
CA. Data were in the form of average mW flowing out
of the solar cells on the device, were sampled once every
10 seconds. One characteristic of this data set is its high
predictability and correspondingly low variance. These
properties provide a relatively easy task for a dynamic
duty-cycling algorithm such as the one developed in [1]
which relies on modeling the energy source with simple
averaging methods. To illustrate the power and versatility
of our model-free approach, we sought additional data
sets that contained high variability in energy availability.

Our second source of data was the US Climate Ref-
erence Network (USCRN), which maintains a database
of environmental data collected from various monitoring
stations across the US [15]. In particular, we obtained
a year’s worth of solar radiation data from two weather
stations—one in Durham, NH, and one in Darrington,
WA—and a year’s worth of wind speed data from the
station in NH. We will refer to these data sets as
USCRN-NH, USCRN-WA, and USCRN-WIND, respec-
tively. We used data spanning from January 1, 2005,
through December 31, 2005, for both stations. Solar data
were in the form of W/m2 and were given as an average
over each hour along with the standard deviation for that
hour. These were converted to units of mW/m2 to match
the units of the Helio-CA data set. The wind data gave
averages of wind velocities in m/s over each hour and
the standard deviation for each hour.

To make the USCRN data usable in our simulations,
we had to scale them down to represent a reasonable
estimate of the power which a Heliomote would likely
obtain if placed in the corresponding environment. To
do this, we took the maximum-valued data point of the
Helio-CA data set, maxCA, and the maximum-valued
data points of each of the USCRN solar data sets,
maxNH and maxWA, and scaled all of the data points
of each of the latter with the resulting ratios. That is,
the USCRN-NH data set was scaled by a factor of
maxCA/maxNH , and the USCRN-WA data set by a factor
of maxCA/maxWA.

For the wind data, we chose a somewhat ad-hoc
mapping of wind speeds to energy values because we
were unable to find specifications for any relatively
small wind energy harvester that would have given us
a realistic mapping of wind speeds to average mW
obtained. However, the purpose of using this data set
was to obtain performance results for our algorithm on
an aperiodic energy source. Therefore, whether the exact
energy harvested by a node for various wind speeds



Data Set Helio-CA USCRN-NH USCRN-WA USCRN-WIND
Algorithm Kansal et al. LQ-Tracker Kansal et al. LQ-Tracker Kansal et al. LQ-Tracker Kansal et al. LQ-Tracker

Mean Duty Cycle 31.44 33.40 26.00 29.11 18.47 22.43 28.44 37.68
Duty Cycle Var. 19.82 15.73 17.34 14.71 12.85 12.13 18.08 10.64
Time Dead (%) 0.55 0.0 14.97 0.0 16.32 0.0 3.26 0.0
Time Full (%) 2.33 0.0 4.38 0.73 4.68 0.24 17.54 0.93

TABLE I
PERFORMANCE COMPARISON OF ALGORITHM OF KANSAL ET AL. [1] AND THE LQ-TRACKING ALGORITHM WITH NO EXPONENTIAL

SMOOTHING (β = 1) ON THREE DIFFERENT SOLAR ENERGY DATA SETS AND A WIND DATA SET.

matches our converted values is mostly irrelevant. What
matters is that the energy obtained is proportional to the
wind speeds observed and so the conversion method for
the solar data was applied in the same manner to the
wind data. That is, each of the wind speeds was scaled
by a factor of maxCA/maxWIND, where maxWIND was
the maximum wind speed of the entire data set.

Although the algorithm in [1] is designed specifically
for dealing with periodic energy sources, it does update
its estimates of incoming energy online relatively rapidly,
and so we chose to run it on the wind data set as
well, keeping the same period and discretization as for
the solar data sets. We feel that although this is not a
completely fair comparison, it is a reasonable one to
make so as to give us a baseline for evaluating the
performance of our algorithm on an aperiodic data set.

D. Evaluation Metrics

For each experiment we evaluated each algorithm on
four performance metrics:

• Mean Duty Cycle: This provided a measure of
task performance and was taken to be the average
of the duty cycles chosen by the algorithm over
all time steps. Note that this average includes the
overriding zeros forced on the algorithm when the
node’s battery level reached 0.

• Duty Cycle Variance: A measure of the variability
of the node’s duty cycle choices over time was com-
puted as the average squared difference between the
duty cycle at each time step and the average duty
cycle computed for the first metric.

• Percent Time Dead: We measured the percent of
time during which the node was inoperable. This
was taken to be the ratio of the number of time
steps for which the node’s battery level was 0 to
the total number of time steps in the experiment.

• Percent Time Full: To asses the percentage of time
during which the node was unable to make use of
incoming energy, we computed the ratio of time

steps for which the node’s battery level was 100%
to the total number of time steps.

V. RESULTS

Our first experiments compared the performance of
the algorithm in [1] with the performance of our LQ-
Tracking algorithm on each of the four data sets. For
these experiments, no duty cycle smoothing was used in
our algorithm (β = 1). The results of these experiments
are shown in Table 1. We see that for all four data sets
the LQ-Tracker produced a higher average duty cycle
than the algorithm of Kansal et al. Additionally, the time
series of duty cycles produced by the LQ-Tracker have
lower variance than the other algorithm in all four cases,
even without any explicit smoothing. More importantly,
the LQ-Tracker never reached a battery level of 0 on any
of the data sets, and the amount of time during which it
wasted incoming energy was minimal for each data set
(less than 1%). We see also that the aperiodic nature of
the wind data set posed no problems for our algorithm.

Conversely, although the algorithm in [1] does well on
the Helio-CA data set, its performance decreases dras-
tically when presented with data sets exhibiting higher
variability, spending significant portions of time with an
either empty or full battery. This is largely a result of the
energy source-centric nature of the algorithm. It is unable
to adjust its duty cycle choices appropriately when the
node’s battery level is exceedingly low (as seems often
to be the case in the two USCRN solar data sets) or high
(as in the case of the wind data set).

The rest of our experiments studied the effects of
varying the parameters α and β on the variance of the
duty-cycling profile and on the overall performance of
the algorithm. In each of these experiments one of the
parameters was varied independently of the other and
a reasonable value for the fixed parameter was chosen
based on existing performance data.

Figure 2(a) shows the effect of varying the smoothing
parameter α on the variance of the duty cycle for the
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Fig. 2. (a) Effect of α on duty cycle variance and lifetime for the USCRN-NH data set. (b) Effect of β on duty cycle variance for the
USCRN-NH data set. (c) Effect varying the scaling factor of the data for the USCRN-NH data set on lifetime and performance.

USCRN-NH data set when β = 0.5. The variance of
the duty cycle time series for the algorithm in [1] is
included as a reference point. Note the log scale on the
x-axis. These results clearly show the strong effect α can
have on duty cycle variance, reducing the variance from
just under 15% (when no smoothing is used) down to
less than 5% for very small values of α, a two-thirds
reduction. Note that the upper bound of the variance is
25%.

However, we note that this effect is more pronounced
for certain ranges of α than for others. Values of α
greater than 0.1 produce no effect on the variance of
the duty cycle, although the variance is still lower in
these cases than for the algorithm in [1]. This is because
ū is averaged over only a few data points in these cases,
producing little smoothing. Similarly, values smaller than
0.001 have diminishing effects on the variance as they
continue to get smaller. This is a result of ū being
smoothed over periods longer than the periodicity of the
energy source (the sun in this case), which provides no
additional benefit over smoothing across a single period.
Values in the region between 0.001 and 0.1, however,
affect the variance of the duty-cycling profile to more
varying degrees.

Another important result shown in Figure 2(a) is that
although they reduce the variance of the duty cycle,
very small values of α can also negatively impact the
performance of the node, as is evidenced by the time-
dead curve for our algorithm, which is zero for many
values of α but not for very small values. This is
because too much smoothing hinders the ability of the
node to respond adaptively to longer deficits in energy
availability, even though β is set to 0.5. Thus, a good
value of α suggested by these results for this data
set when β = 0.5 is given by where the time-dead
curve reaches 0 — around 0.0005. For this value of α,

the algorithm minimizes the variance of the duty cycle
subject to maintaining ENO. This value will clearly be
different for different energy sources and profiles. For
example, although not shown here, the time-dead curve
for our algorithm on the Helio-CA data set was 0 for all
values of α shown in Figure 2(a), and so a smaller value
of α could be chosen to minimize variance further.

The effect of varying β on the variance of the duty-
cycling profile for the USCRN-NH data set is illustrated
in Figure 2(b) for the case where α = 0.0005. We
see that for all values of β the variance of the duty
cycles chosen by our algorithm are consistently lower
than the algorithm in [1], and that the variance decreases
monotonically for increasingly small values of β. This is
as expected, since smaller values of β give higher weight
to the smoothed sequence of LQ-Tracker outputs. We
also note that, although not shown here, the time-dead
curve of our algorithm for this experiment was zero for
all values of β, indicating that no value of β hindered
the ability of the algorithm to maintain ENO.

Figure 2(c) illustrates the effect of varying the overall
energy availability of the energy source. The purpose of
this experiment is to show the robustness of our algo-
rithm in adapting to different environmental conditions
such as severe lack or large surpluses of energy. Rather
than run our algorithm on many other data sets exhibiting
varying degrees of energy availability, we simulated such
energy profiles by scaling the numerator, maxCA, of the
data normalization factor for the USCRN-NH data set
to the values given on the x-axis of Figure 2(c). As
these results show, our algorithm adapts well to different
energy availability profiles, never experiencing any dead
time and adapting its average duty cycle appropriately to
make use of the available energy. We see that although
the algorithm in [1] adapts to some degree as well by
adjusting its average duty cycle, it rarely achieves a



higher average duty cycle than our algorithm and, more
importantly, produces significant dead times for all of
the environmental conditions tested—as high as 25%.

VI. DISCUSSION

We have outlined an efficient, unified approach for
achieving three objectives of primary concern in energy
harvesting wireless sensor networks—energy neutral op-
eration, performance maximization, and duty cycle sta-
bility. As we have shown, our algorithm provides four
significant contributions to this area of research.

The battery-centric nature of our approach yields
generality of implementation, allowing our algorithm to
be realized in most energy harvesting scenarios with-
out making any assumptions about the profile of the
harvested energy source or the existence of preliminary
data pertaining to it. Our results for all four data sets,
especially the USCRN-WIND data set, confirm this.

As our experimental results illustrate, our algorithm
is also better equipped to recover from situations in
which large variations in the energy profile may drive
the battery level into dangerously low regions. This is
due to the fact that our algorithm is battery-centric and
thus such perilous situations are continually made known
to the algorithm until it becomes successful in correcting
them. The time-dead performance of our algorithm on all
four data sets illustrates this.

Further advantages of our algorithm are its constant
computational time and constant storage requirements.
The algorithm given in [1] takes time proportional to
the number of blocks in the discretization of the energy
source’s period, and an equivalent amount of space. Our
algorithm requires only the storage of a few variables
and a negligible amount of computational time at each
iteration, making it easily implemented on most low-
power, computationally constrained devices.

Finally, our mechanism for reducing variance in a
node’s duty-cycling profile was shown to achieve sig-
nificant reductions in this variance (up to two-thirds)
for appropriate parameter values without hindering the
algorithm’s ability to maintain ENO. We also showed
that our system is robust to varying those parameters.
The tunable property of this mechanism also gives
our approach flexibility, making it appropriate both for
applications such as event monitoring, in which node
availability should be evenly distributed over time, and
other applications in which variance in the duty-cycling
profile is irrelevant to network performance.
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