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members.  These results suggest that Src is the kinase that is being inhibited by the 

inhibitor SU6656 and SKI606.  

 

 

 

 

 

 

 

 

Fig.11. Src kinase is present in mouse sperm extract.  Total mouse sperm 
extracts (~ 2 x 106 cells) were lysed in sample buffer or extracted in RIPA buffer,  
separated by 10 % SDS-PAGE and transferred to Inmobilon P. Western blots were 
performed using anti-Src, anti-fyn, anti- lck, anti- lyn, anti- blk, anti- yes, anti- hck 
and anti-fgr antibodies. Experiments shown are representative of experiments 
performed at least three times with similar results3' ' In the rightmost lane 20 µg of 
the respective positive control was run in parallel.  A representative of three 
repetitions is shown.  Abbreviations: MACS (Mouse macrophages); NAM 
(namalwa cells); MDCK (Madin-Darby canine kidney); spleen (mouse spleen 
extract).  Membranes were reblotted with anti-actin as a loading control. 
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Src activity in mouse sperm 

Since we were able to observe a inhibitory effect on the tyrosine phosphorylation 

normally correlated with the capacitated sperm state when sperm were incubated in the 

presence of Src inhibitors, we decided to analyze whether there is a change in Src activity 

levels during capacitation. We measured the kinase activity using the well characterized 

Src peptidic substrate cdc2 (KVEKIGEGTYGVVYK).   

 

 

 

 

 

 

 

 

Fig.12. Src kinase activity in non capacitated and capacitated mouse sperm.   
Mouse cauda sperm was incubated in conditions that elicit (+BSA, +NaHCO3), 
or not capacitation and extracted as described in “Material and Methods” A) 
Mouse sperm extracts were incubated with anti-Src (GD11) antibody for 2 hr.  
Protein G Sepharose was added for another h.  Sepharose beads were then 
washed three times with the same buffer and proteins bound were eluted from 
the beads by boiling. Immunoprecipitated proteins were then separated by 10% 
gel, transferred and then probed with anti- Src antibody (36D10).  Anti-tubulin 
antibody was used as a control.  As a second control sperm extracts were 
incubated with beads without antibody.   B) Posterior to incubation with anti-
Src (GD11) antibody, proteins were immunoprecipitated and subjected to a 
kinase reaction using cdc2 as a substrate.  The incorporation of 32P (nmol) per 
minute per 5 million sperm cells was assayed by scintillation counting. C)  
Sample as in B was separated by 8% gel, transferred and 32P  was visualized by 
autoradiography.  Same membrane was probed with anti-Src antibody.  Results 
illustrate one of three replicated performed experiments. 

A B C 
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Sperm were incubated in conditions that support (+ BSA, + NaHCO3) or do not (- BSA, - 

NaHCO3) support capacitation for 60 min.  Src was then isolated from sperm extracts by 

immunoprecipitation using a monoclonal antibody against Src (GD11).  The immuno 

precipitate was incubated in a kinase buffer containing 32ATP and the specific substrate 

(cdc2).  As shown in Fig. 12, Src activity was significantly higher in capacitated sperm 

than in the non capacitated sperm. In addition to the effect of Src inhibitors on the 

phosphorylation state of sperm proteins, this observation points toward an active role of 

Src during sperm capacitation   

Specificity of Src inhibitors 

In order to discard possible nonspecific effects of SU6656 and SKI606 on other 

kinases than Src kinase, we analyzed the effect of these inhibitors on PKA activity. PKA 

is a known player of capacitating pathway. Moreover, it has been recently suggested that 

in mouse sperm, Src lies downstream of PKA in the signaling pathway that leads to the 

phosphorylation of sperm proteins (Baker et al. 2006). With this hypothesis in mind, 

SU6656 and SKI606 should have no effect on PKA activity. In other to analyze PKA 

activity in vivo, we used a specific monoclonal antibody against phosphor-PKA 

substrates (RRXpS/pT). Sperm protein extracts were prepared following incubating 

conditions that support capacitation; western blots were performed to assay PKA activity 

(Morgan et al. 2008).  To our surprise, in the presence of the same concentration that 

abrogates the capacitation-dependent tyrosine phosphorylation, the inhibitors strongly 

abolishes the phosphorylation of serine/threonine residues of PKA substrates (Fig. 13).  

This striking result suggests that tyrosine phosphorylation is being inhibited due to 
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nonspecific inhibition of PKA. The same effect was observed when specific PKA 

inhibitors were used (not shown).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Should the effect of Src inhibitors on tyrosine phosphorylation be exerted through 

the blockade of PKA activity, PKA should also be inhibited when an in vitro 

kinetic assay are conducted.  To confirm the effect of Src inhibitors on PKA, we 

analyzed vitro PKA activity in the presence of SU6656 and SKI606. Sperm were 

lysed with 1% Triton X-100 in the presence of protease and phosphatase 

inhibitors Then, the reactions were conducted in the presence of cAMP (with the 

phosphodiesterase inhibitor IBMX), and different concentrations of SU6656 or 

Fig. 13. Effects of Src family inhibitors on the appearance of 
phosphorylation of PKA substrates in capacitated mouse sperm.  Mouse 
sperm was incubated under conditions that support capacitation (+BSA, 
+NaHCO3) or not (-BSA, -NaHCO3).  Incubation reaction was performed in 
the presence or absence of 50µM of SU6656 or SKI606. Total mouse sperm 
extracts (~ 2 x 106 cells) were lysed in sample buffer and separated by 10 % 
SDS-PAGE and transferred to Inmobilon P. Western blots were performed 
using an antibody that recognizes phosphorylated PKA substrates.  This 
experiment was performed thrice with similar results. Shown is a 
representative experiment. 
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SKI606.  The well known PKA inhibitor, H-89, was used as a control.  After 30 

min, ATP incorporated to the PKA substrate (kemptide) was estimated using a 

scintillation counter. Surprisingly, no inhibition of PKA activity was found when 

Src inhibitors were present. In light of these results, it is understood that PKA 

activity is indirectly affected by Src inhibitors. It could be then hypothesized that 

Src could be an important player of the capacitating signaling pathway that is 

located upstream of PKA.  

 

 
 
 
 
 
 
 
 
 

Discussion 
 
 One of the missing links in the signaling pathways that lead to sperm capacitation 

is the identity of the tyrosine kinase downstream of PKA.  In terms of temporal regulation 

of capacitation events, PKA mediates both slow and fast events (Salicioni et al. 2007).  

The phosphorylation of tyrosine residues is a slow associated event and is mediated by  a 

crosstalk among PKA and one or several tyrosine kinases(Visconti et al. 1995b).  

Fig. 14.  Effects of Src family inhibitors on PKA activity in vitro.  Mouse 
cauda sperm (~105) were incubated presence of PKA agonist (media 
supplemented + 1 mM db-cAMP, +100 µM IBMX) and increasing 
concentrations of SU6656 and SKI606. Cells were lysed with Triton-X100.  
Incorporation of 32P relative to the sample without inhibitors (100%) is 
shown.   
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Recently, Baker et al (2006) proposed a model in which PKA regulates Src kinase 

activity both directly by phosphorylation of serine 17 and indirectly by inhibition of Src 

inhibitor, Csk.  According to the model, these signaling events will lead to a change in 

the conformation of Src, triggering the autophosphorylation and rendering the enzyme 

active.   

 Src family members had been reported in sperm of several mammalian species, 

using an immunological approach, here we show the presence of Src kinase and the 

absence of the other members of the family.  Likewise, we show the abrogation of the 

capacitation associated tyrosine phosphorylation in the presence of Src family inhibitors.  

Importantly, these inhibitors have been characterized as highly specific for Src and Src 

family members, SU6656 IC50 is reported as 0.28±0.03 µM (Blake et al. 2000) and SKI-

606 reported as 250 nM (Vultur et al. 2008).   Taken together, our results suggest Src 

involvement in the capacitation associated tyrosine phosphorylation. 

 To confirm such results, we performed a Src kinase assay by immunoprecipitating 

Src from sperm incubated in non capacitated and capacitated conducive conditions for 60 

minutes.  Consistent with our results, we found a significant increase in the activity of Src 

in the capacitated sperm.  Baker et al (2006) recently proposed a model in which Src is 

placed downstream of PKA.  In fibroblast cells it has been shown in vivo and in vitro   

(Stork and Schmitt 2002) PKA phosphorylates Src in serine 17, which triggers the 

activation of Src. 

 In sperm capacitation, PKA activation occurs during the first 30 min of 

capacitation (Morgan et al. 2008).  In order to rule out the effect of the inhibitors on PKA 

activity, using the same concentration of SU6656 and SKI-606 that abrogated the 
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tyrosine phosphorylation, we performed a western blot using an antibody that recognizes 

subtrates phosphorylated by PKA.  Unexpectedly, we found that Src inhibitors were 

strongly abolishing the phosphorylation of PKA substrates.   

 To validate this data, we capacitated sperm in the presence of Triton X-100, PKA 

agonists (+dbcA, +IBMX) and Src inhibitor for 30 minutes, and PKA activity was 

assayed.   The activity of PKA in these conditions was not significantly affected by the 

presence of Src inhibitors.  The in vitro assay results are incongruous with the results we 

obtained in the PKA substrates western blot.  PKA activity is regulated by spatial cellular 

distribution that the PKA anchoring proteins provide.  Sperm cells are highly 

compartmelized; therefore, the lack of spatial organization may have affected the activity 

of PKA.   

 Our results suggest a crosstalk between Src and PKA during capacitation.  The 

involvement of PKA signaling as a trigger of tyrosine kinase phosphorylation during 

capacitation is supported by a work from different labs in several mammalian species, 

and  a very accepted model (Visconti and Kopf 1998) suggest a tyrosine kinase 

downstream of PKA.  The identity and the signaling pathways that lead to the increase of 

tyrosine phosphorylation still remain outstanding. 

 In summary, our results suggest that the only Src family present in mouse sperm 

is the first characterized member of the Src family members and its inhibition results in 

abrogation of tyrosine phosphorylation.  We also present evidence that point towards a 

link between Src and PKA, in the regulation of the capacitation associated tyrosine 

phosphorylation. However, our results indicated that Src might be activated either prior 
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or concomitant to PKA activation. Noteworthy, Src inhibitions impairs PKA activity in 

vivo. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 
Conclusions 

 
 Sperm capacitation correlates with an increase of tyrosine phosphorylation of a 

subset of proteins in several mammalian species (Visconti et al. 1995; Leclerc et al. 1996; 

Galantino-Homer et al. 1997; Kulanand and Shivaji 2001).  The role of the 

phosphorylation signaling in the capacitation events is still unclear.   One   step towards 

the understanding of the possible role of the sperm capacitation associated tyrosine 

phosphorylation is the identification of the proteins that undergo these conserved post 

translational changes.   By separating the phosphoproteins with two dimensional SDS-

PAGE followed by MS/MS, we identified: tubulin, VDAC, PDH E1 β chain, glutathione 

S-transferase, NADH dehydrogenase (ubiquinone) Fe-S protein 6, acrosin binding 

protein precursor, proteasome subunit alpha type 6b, and cytochrome b-c1 complex as 

tyrosine phosphoproteins upon mouse sperm capacitation.  Of such proteins, we focused 

on characterizing those that are involved in the glycolytic and cellular respiration 

pathway, due to the expected high requirement for ATP of sperm during capacitation 

events.  We showed the presence by western blot and immunofluorescence of VDAC, 

Pyruvate dehydrogenase E1 β chain, found in the midpiece.  Likewise, we found aldolase 

in the principal piece. 

 Two isoforms of aldolase were identified as phosphoproteins associated with 

capacitation: aldoart1and aldoart2.  These two isoforms have been recently reported 

(Vemuganti et al. 2007) in mouse sperm as two testis specific intronless genes, most 
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likely, retrotrasposons ( Aldoart1 in chromosome 4 and Aldoart2 in chromosome 12).  

Two additional isoforms of aldolase are splicing variants of the somatic AldoA.  

Althought we could not detect a significant difference in the activity of aldolase by 

fluorimetry upon capacitation, it cannot be discarded a possible role in the capacitation 

events.   

 The signaling events that bring about the tyrosine phosphorylation increase upon 

capacitation are far from being elucidated (Salicioni et al. 2007).  Early on the 

capacitation events is the influx of HCO3
- One of the likely targets of HCO3

-  is the 

unique soluble adenylyl cyclase that will bring about the increase of cyclic AMP 

(reviewed by Salicioni et al., 2007).  In sperm the best characterized effector is the 

serine/threonine kinase PKA.  The increase of PKA activity proposed to be the first step 

of following tyrosine kinase cascade activation.  Here we show that Src is the only 

member of the Src family of kinases present in sperm. 

We show that the use of specific inhibitors abrogates the tyrosine phosphorylation 

associated with capacitation.  Moreover, the activity of the Src kinase during capacitation   

increases significantly.  However, the activity of PKA, as determined using a specific 

antibody that recognized the serine/threonine phosphoproteins was inhibited by both Src 

inhibitors, SU6656 and SKI-606 at a 50 µM concentration.  The in vitro activity of PKA, 

unexpectedly, not affected in the presence of SU6656 or SKI-606.  Our results suggest an 

involvement of a crosstalk between Src and PKA activities in capacitation associated 

events.  
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Future Directions 

    

 Future studies will focus in the characterization of the tyrosine phosphoproteins 

that we identified.  This information is crucial to the understanding of the biological 

relevance of tyrosine phosphorylation in capacitation events.  We speculate that the 

proteins involved in the production of ATP; glycolytic and electron chain transport 

pathways (VDAC, PDH E1 β chain,  NADH dehydrogenase (ubiquinone) Fe-S protein 6 

and cytochrome b-c1) role is critical for capacitation and we expect that the change of the 

phosphorylation status mediates the activity level.  Tubulin has been shown (Ficarro et al. 

2003) to be tyrosine phosphorylated upon capacitation as well, the exact role is still 

unclear.  The function of glutathione S-transferase, acrosin binding protein precursor, 

proteasome subunit alpha type 6b need as well to be elucidated. 

 Looking upstream on the regulation of the tyrosine kinase(s) that bring about the 

tyrosine phosphorylation, our results suggest a crosstalk between Src tyrosine kinase and 

PKA.  The activity of Src might be upstream of the activation of PKA.  This findings 

report the first tyrosine kinase in sperm that regulates a key step of capacitation events.  

Further studies will focus on the identification of the molecules that mediate that 

crosstalk and its regulation.  
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