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ABSTRACT 

 

TRANSFER FUNCTION AND IMPULSE RESPONSE SYNTHESIS  

USING CLASSICAL TECHNIQUES 

 

SEPTEMBER 2007 

 

SONAL S. KHILARI   B.E., UNIVESITY OF MUMBAI 

 

M.S.ECE., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Dev Vrat Gupta 

 

 

This thesis project presents a MATLAB based application which is 

designed to synthesize any arbitrary stable transfer function. Our application is 

based on the Cauer synthesis procedure. It has an interactive front which allows 

inputs either in the form of residues and poles of a transfer function, in the form 

of coefficients of the numerator and denominator of the transfer impedance or in 

the form of samples of an impulse response. The program synthesizes either a 

single or double resistively terminated LC ladder network. Our application 

displays a chart showing the variation of stability of an impulse response with the 

addition of delay. An attempt is made to synthesize usually unstable impulse 

responses by calculating the delay that would make them stable. 
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CHAPTER 1 

INTRODUCTION 

Network synthesis involves the methods used to determine an electric 

circuit that satisfy certain specifications. Given an impulse response there are 

myriad techniques that can be used to synthesize a circuit with the specified 

response. Different methods may also be used to synthesize circuits, all of which 

may be optimal. Hence the solution to a network synthesis problem is never 

unique.  

1.1.  Why use analog passive, LC ladder networks? 

Many applications today use digital processing in lieu of analog processing 

and the GHz spectrum is finding increasing use in applications such as wireless 

communications. However, operation at high frequencies requires analog filtering 

and processing circuits simply because using digital techniques is neither realistic 

nor economical. Another advantage that analog devices have over their digital 

counterparts is their ability to operate with wide instantaneous bandwidths and 

moderately high dynamic ranges at microwave frequencies [ 3]. Analog circuits 

with passive elements are generally preferred unlike active components, as they 

do not require an excitation source. Passive LC networks are also more 

advantageous as compared to active networks since they have a high tolerance to 

component variances and are simple. Also analog passive circuits can be used as 

prototypes for designing active networks, interface circuits, transmission lines and 

other complex networks with discrete components or on chips.  
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Most importantly, passive LC circuits generally operate in the range of 10
2
 

to 10
9
 Hz [ 3]. As we will be dealing with high frequency applications (of the 

order of GHz) in this project, we felt that it was best to use analog passive LC 

circuits.  

Figure  1.1 Examples of lattice (top) and ladder (below) networks 

Two of the most commonly synthesized network structures are lattice 

networks and ladder networks as shown in Figure  1.1. Lattice structures are 

relatively simple but balanced circuits. This means that they do not have a 

common ground between input and output. Also because of tolerance 

requirements they are usable only when the specified transfer function has a zero 
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on or near the ‘jw’ axis [ 7]. Although this problem can be solved by applying 

balanced to unbalanced conversion methods using transformers (e.g. the 

Weinberg synthesis procedure), all of these techniques only lead to relatively 

complicated parallel networks [ 7]. 

On the other hand, ladders are popular structures for circuits because the 

shunt or series LC arms are directly related to the transmission zeros 

by
LC

ontransmissi

1
=ω . This makes circuit tuning not only a simpler process but 

also making the loss poles relatively insensitive to element variations as compared 

to balanced networks [ 7]. Hence ladders are preferred over lattices. 

1.2.  Thesis objective and applications 

There is no dearth of literature on the methods to synthesize transfer 

functions. The problem arises in using these methods to synthesize a specific 

function into realizable elements. Today there are numerous software applications 

for filter synthesis available in the market. However, all the available applications 

synthesize only filters of standard families such as Butterworth, Chebyshev, 

Elliptic and so on. We have not found any applications that can be used for the 

synthesis of any arbitrary transfer function. Also, in communications and signal 

processing it sometimes becomes necessary to synthesize impulse responses as 

well; an option that is unavailable in synthesis programs commercially available 

today. 

Hence, the objective of this thesis is to develop a generic application in 

software (MATLAB ®) that will synthesize (using classical synthesis techniques) 
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a lossless passive network for any arbitrary stable transfer function. This 

application will synthesize stable transfer functions with zeros located anywhere 

in the s-plane, instead of being limited to the imaginary axis. Furthermore, in 

cases where the input impulse response is not stable i.e. if the poles of the transfer 

function lie in the right hand side of the s-plane (for continuous case) or lie 

outside the unit circle (in the case of a discreet system), our program will 

calculate the delay (up to a specified granularity) required to make this impulse 

response stable after which it will proceed to synthesize this modified response; 

thus synthesizing a delayed stable version of the unstable impulse response.  

Our main objective behind this project is to enhance the circuit design 

process and enable circuits designers synthesize a variety of arbitrary transfer 

functions and impulse responses. In other words, the motivation behind this 

project is to automate the process of network synthesis, making it simple, efficient 

and fast. 

The outline of this thesis is as follows. In chapter 2, the various 

prerequisites for network synthesis and an overview on the various methods 

available to synthesize a transfer function are presented. We also mention briefly 

the most widely used commercially available filter synthesis applications. Chapter 

3 describes the procedures used to synthesize single and double resistively 

terminated LC ladder networks. In chapter 4, some results for the synthesis of 

transfer functions are presented. Finally, in chapter 5, the synthesis method is 

extended to impulse responses and results showing the variation in the stability of 

impulse responses with delay are presented. 
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CHAPTER 2 

BACKGROUND (OVERVIEW OF WORK DONE IN THE PAST) 

In order to synthesize a driving point function into a passive network using 

resistors, inductors and capacitors, it must be positive real; a fact that was first 

demonstrated by Otto Brune [ 8]. This means that the following properties must be 

satisfied,  

a. It must be a rational function of the complex frequency, s. 

b. The poles must lie on the left hand side of the jw axis or on the imaginary 

axis (stable function). 

c. The poles on the jw axis must be simple (multiplicity of 1). The 

denominator polynomial must be Hurwitz. 

d. Complex poles and zeros must occur in conjugate pairs. 

Most of the transfer function synthesis methods in literature can be 

considered to be realizations of driving point impedances [ 8]. Hence the same 

conditions of positive realness are applicable for transfer functions also. For a 

driving point function, the zeros should have negative or zero real parts. However 

in the case of synthesis of transfer functions, there is no restriction on the location 

of zeros. But to synthesize lossless circuits (those with only inductors and 

capacitors), the zeros must lie exclusively on the imaginary (jw) axis [ 11]. 

2.1. Theoretical synthesis of two-terminal networks 

The most practical application of passive network synthesis is the 

synthesis of two-terminal transfer functions, which is what we will be focusing on 

throughout this thesis project. Today, there are various methods available for the 
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synthesis of one-port to n-port networks. Due to the exhaustive literature present 

on the synthesis of two-terminal networks, we will not discuss every one of these 

techniques in detail. Instead we will focus only on a few important methods. 

 The synthesis of transfer impedance can be considered to be the 

realization of the associated driving point impedance at the zeros of transmission 

[ 7].
 
Also, since networks serve the purpose of point-to-point (or multipoint) 

transmission of information, two-port networks (or in general, n-port networks) 

are more practical. The design of these higher port networks has its roots in the 

synthesis of one-port networks. Notable among the driving point impedance 

synthesis methods are those by Brune, Bott Duffin, Darlington and Cauer.  

 The first method for the synthesis of passive networks was proposed by 

Brune. The main idea behind this method is the removal of the zeros located at the 

origin, infinity and on the jw axis. The Bott Duffin method is quite similar to 

Brune’s method, but is more complex as it does not use transformers. Kuh and 

Miyata proposed transfer function simplification by splitting the input function 

into a sum of functions easier to realize. Darlington’s method synthesizes 

resistively terminated reactive networks (containing inductors, capacitors and 

transformers). This method uses surplus factors and requires ideal components. 

Cauer’s method also requires the use of transformers in case a negative 

inductance is encountered but is by far the easiest and simplest method to 

implement. This method is based on continued fraction expansion or in Foster’s 

representation; the function may be split into partial fractions to realize a ladder 

structure. 
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 In addition, there are many other techniques for network synthesis based 

on one or more of the earlier methods. They differ in the procedure followed to 

attain the impedance (or admittance) functions to be realized. Some of these 

techniques include Guillemin’s transfer admittance synthesis (which realizes the 

impedance function as the summation of a series of functions each having a single 

numerator terms), Lucal’s method (decomposition of driving point functions to 

realize the conditions for RC synthesis) and so on. A more detailed description on 

classical and modern synthesis methods is provided in literature [ 9].  

2.2. Available commercial filter design applications (in software) 

There are a large number of commercially available software in the market 

that can be used to design and synthesize filters.  For example, MATLAB has a 

filter design tool called FDAtool which allows digital filter synthesis of standard 

filters. Filter Solutions (by Nuhertz Technologies), Filter Master (by Intusoft), 

S/FILSYN (by ALK Engineering) and others* design filters by scaling them from 

a large variety of normalized reference low pass filters. These filter design 

applications perform active and passive filter synthesis of all types of filters (high 

pass, low pass, band pass etc) in only the standard approximations (Chebyshev, 

Butterworth, elliptic etc). 

Figure  2.1 shows the console of a commercially available filter synthesis 

application (S/Filsyn by ALK Engineering).  

                                                 
*
 www.circuitsage.com has a list of different filter synthesis programs available. 
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Figure  2.1 A commercially available filter synthesis application 

In summary, this chapter describes in brief the various theoretical methods 

available for the synthesis of two-port lossless ladder networks. Although 

commercial network synthesis software exist, none of these applications allow the 

user to enter an arbitrary transfer function. They do not give the user the option to 

enter an arbitrary transfer function or impulse response to be synthesized. The 

main advantage of our application is that it offers the user both options. 
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CHAPTER 3 

SYNTHESIS OF TRANSFER FUNCTIONS USING RESISTIVELY 

TERMINATED LADDER NETWORKS 

3.1. The objective 

In the synthesis of networks, the most commonly preferred synthesis 

methods are the two-element synthesis methods. In this chapter, the synthesis of 

transfer functions using single and double resistively terminated lossless ladder 

networks is considered. Synthesis is performed using the classical techniques 

proposed by Cauer, which is based on continued fraction expansion.  

3.2. The algorithm (The Cauer-Guillemin synthesis technique) 

The method for the synthesis of a transfer function as proposed by Cauer 

and Guillemin can be reduced to the problem of realizing an associated driving 

point function with a specific number of transmission zeros [ 8,  10]. This synthesis 

procedure describes a convenient way of splitting the given transfer function and 

we end up with two networks to synthesize, both of which have zeros exclusively 

on the imaginary axis. The resultant networks are not only simpler to compute but 

also easier to analyze since they are purely reactive ladder networks. The only 

components in the circuit are inductors and capacitors or combinations of the two 

in shunt or series branches, with the exception of the termination resistance and/or 

source resistance. The circuit thus synthesized is efficient since it generates a 

minimum number of elements, which is equal to the order of the numerator or the 

denominator (whichever is higher), to produce a given response. 
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The Cauer synthesis method is preferred because it is a simple technique 

based on continued fraction expansion, which results in an unbalanced ladder 

network. Another desirable feature about Cauer synthesized networks is that it is 

possible to synthesize a circuit such that no transformers are required. For 

synthesis, only two functions need be known: namely, the driving point 

impedance function and the transfer impedance function. 

3.3. Synthesis of single resistively terminated lossless ladder networks 

The general form of the transfer impedance function H12(s) can be 

represented as [ 10] 

22L

12L

1212
zZ

zZ
Z)s(H

+

⋅
==  

where 

ZL = Load impedance 

Z12 = Transfer impedance when the circuit is terminated with a load ‘ZL’ 

z12 = Backward open circuit transfer impedance 

z22 = Open circuit input impedance (driving point impedance). 

For the case of ZL = 1Ω we get 

22

12

12
z1

z
H

+
=  

This impulse response can be written in the following form 

)s(D

)s(N

)s(D

)s(N

)s(D

)s(N)s(N

)s(D

)s(N
)s(H oddevenoddeven

12 +=
+

==  

where  

Neven(s) = Even part of the numerator of the transfer function.  



 11 

Nodd(s) = Odd part of the numerator of the transfer function. 

D(s) = Denominator of the transfer function.  

An even polynomial is one which contains terms with only even powers of 

‘s’ (for example a0+ a2s
2
+ a4s

4
+ a6s

6
+…). Similarly an odd polynomial is one 

which contains terms with only odd powers of ‘s’ (for example a1s + a3s
3
+ 

a5s
5
+…). D(s) is a polynomial which contains both even and odd terms. 

This network synthesis method is sensitive to the impedance level and 

hence when we split the numerator, we must account for a scale factor [ 10]. An 

inefficient solution is to use transformers with varying turn ratio. This can be 

avoided by adjusting the impedance level so that we have a 1:1 transformer, 

which means that we do not have to use a transformer at all.   

In this case H12(s) must be a minimum phase function. Once separated the 

zeros of 
)s(D

)s(N
)s(H even

even,12 =  and 
)s(D

)s(N
)s(H odd

odd,12 =  lie exclusively at the 

origin, infinity or on the ωj  axis. The two transfer impedances can be realized 

separately to yield lossless ladder circuits using the Cauer synthesis method and 

the zero shifting techniques described below.  

Cauer Synthesis Technique 

The Cauer synthesis methods (Cauer I and Cauer II) are based on the 

continued fraction expansion method and involve the removal of alternate series 

and shunt elements as needed. 

The zeros at infinity are realized using the Cauer I synthesis method. The 

important point to note in the Cauer I synthesis method is that the starting driving 

point function should always be such that the degree of the numerator is greater 
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than the degree of the denominator [ 12]. Let Z1(s) be the original driving point 

function. The numerator is divided by the denominator to yield  

Z1(s) = sL1 +Z2(s). 

Z2(s) is the remainder and the order of this function is one less than Z1(s). The 

next step is to produce an admittance branch. This is done by  

Y2(s) = sC2 + Y3(s). 

Here Y2(s) = 1/ Z2(s) and Y3(s) is the remainder driving point function. The 

synthesis is carried out by removing series inductors and shunt capacitors each 

element accounting for one zero at infinity [ 11]. 

On the other hand, the zeros at the origin are realized using the Cauer II 

method which is also a continued fraction expansion but in this case the 

polynomials are arranged in ascending order of their powers. In the case of the 

Cauer II synthesis technique the starting driving point function is always chosen 

such that the denominator is an odd polynomial [ 12]. The procedure to determine 

the series capacitors and shunt inductors is the same as that described for the 

Cauer I synthesis method. In this case, the synthesis is carried out by removing 

series capacitors and shunt inductors where each element accounts for one zero at 

the origin [ 11].  

The Cauer I and Cauer II techniques, however, can not be used if there are 

finite zeros on the imaginary axis (transmission zeros). The continued fraction 

expansion is valid only for transfer functions with zeros at the origin or at infinity 

[ 11]. If the transmission zeros coincide with the poles of the driving point 
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impedance, they can be realized as series impedance branches or shunt admittance 

branches [ 13]. 

Zero shifting procedure: 

However, when the transmission zeros do not occur at the poles of the 

driving point impedance function or any of its remainders, the zero shifting 

technique must be used. The pole locations are created by introducing redundant 

elements [ 13]. In other words, the basic idea is to manipulate the driving point  

Figure  3.1 Shunt resonant and series anti-resonant sections 

impedance function (z22) by pulling out a series inductance or shunt capacitance 

so that it exhibits a transmission zero at the frequency of the pole of the driving 

point function. This zero can then be removed as a shunt resonant or a series anti-

resonant section while synthesizing the driving point function as shown in Figure 

 3.1 

However, in the event that H12(s) is not minimum phase, it can be realized 

as a cascade of a minimum phase network and an all pass network as described 

below. Consider the response 

C2 

L1 

L2 
C1 

L2 

C2 



 14 

0b,0a
)s(D

)cbss()as()s`(N

)s(D

)s(N
)s(H

2

12 >>
+−⋅−⋅

==  

in which we have three zeros in the right hand side of the s-plane. They are, as =  

and
2

42
cbb

s
−+

= . If )s`(N is the part of the numerator without right plane 

zeros, the original impulse response H(s) can be modified as 










++

+−
⋅








+

−
⋅

++⋅+⋅
==

)cbss(

)cbss(

)as(

)as(

)s(D

)cbss()as()s`(N

)s(D

)s(N
)s(H

2

22

12  

Substituting the realizable part of the impulse response with H’(s) we get, 

)s(D

)cbss()as()s`(N
)s(`H

2

12

++⋅+⋅
=  

and H12(s) can be written in the form 

)cbss(

)cbss(

)as(

)as(
)s(`H

)s(D

)s(N
)s(H

2

2

1212
++

+−
⋅

+

−
⋅==  

)s(A)s(A)s(`H
)s(D

)s(N
)s(H 211212 ⋅⋅==      

H`12(s) can be synthesized using the method described previously in this 

section  along with the Cauer continuous fraction expansion and zero shifting 

methods; Finally, this realization is cascaded with A1(s) as a first order all pass 

filter and A2(s) as a second order all pass filter. 
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Realization of All Pass Filters: 

All pass filters, as the name suggests, are networks that have a flat 

frequency response but introduce a frequency phase shift. All pass filters are also 

known as delay equalizers or constant resistance networks as the input impedance 

has a constant value of R ohms throughout the frequency range. These constant 

resistance networks can be cascaded without loading. The transfer function of a 

first order all pass filter can be represented as
as

as
)s(T

+

−
= . The magnitude is 

1
aw

aw

as

as
)jw(T

22

22

=
+

+
=

+

−
=  and the phase shift is 








−= −

a

w
tan2)w( 1β . The first 

order all pass section is relatively simple since it has only one parameter (a). The 

first order LC all pass filter can be represented as shown in Figure 3.2. In the 

figure, values of the inductance and capacitance are 
a

R2
L = and 

a.R

2
C =  

respectively [ 15]. 

Figure  3.2 First order all pass filter 
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The second order all pass filter can be represented as 
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design of a second order all pass filter is a little more complicated since it has two 

parameters (wr and Q). In this case the Q-factor needs to be taken into account 

and the circuit representation varies depending on whether Q is greater than 1 or 

less than 1 

Figure  3.3 Second Order All Pass sections when Q > 1 

When Q>1, the circuit in Figure 3.3 is used with values as follows [ 15]. 
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When Q<1, the value of Ca becomes negative, hence a different circuit (shown in 

figure 3) is used. In this case the capacitance values are, 
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Figure  3.4 Second Order All Pass sections when Q < 1 (a) using coupled 

inductors;    (b) Coupling coefficient =1 

 

Although this circuit can be represented using coupled inductors (shown in 

Figure 3.4(a)), this is not a very convenient method. It is more practical to use a 

center tapped inductor with a couple coefficient of 1 (shown in Figure 3.4(b)). 

The values of the inductors L3b and L4 are found as follows [ 15] 
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First order all pass sections are used when real roots (on the real axis) are 

to be compensated for; while, second order all pass filter sections are used when 

complex conjugate roots (located anywhere in the ‘s’ plane except the real axis) 

are to be compensated for. Any higher order all pass filter section can be 
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synthesized as a cascade of one or more first and second order all pass filter 

structures. 

Thus every realizable transfer function with zeros on the ‘jw’ axis can be 

synthesized in the form of reactive ladders terminated in 1Ω resistances. This can 

be represented as shown in Figure 3.5. 

Figure 3.5. Single resistively terminated LC ladder network 

Once the odd and even parts of the impulse response have been realized 

separately, they must be summed. This can be done using operational amplifiers 

(op-amps) as shown in Figure 3.6.  

Figure 3.6 Connecting even and odd parts using an op-amp 
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The synthesis of a single resistively terminated LC ladder can be represented by a 

flowchart as shown in Figure  3.7 

Figure  3.7 Flowchart for the synthesis of a single resistively terminated LC 

ladder network 
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3.4. Synthesis of doubly resistively terminated lossless ladder networks 

Single resistively terminated networks are rarely used in practice mainly 

because of their high sensitivity to variation in component tolerances [ 3]. Another 

drawback of the single resistively terminated networks is resistive loading, 

because the network is always loaded by the element connected to it. If however 

the effective loading is lumped into the terminal resistance, the performance of 

the network is not affected [ 13]. In general a double resistively terminated 

reactance two port network (Figure  3.8) is the most widely used (and generally 

preferred) synthesis method. The reasons for this are its ability to produce any 

type of loss response and an optimal LC ladder realization with maximum power 

transfer resulting in low sensitivity to component variations [ 5].  

Figure  3.8 Doubly resistively terminated LC ladder network 

According to Orchard [ 1, 11], zero sensitivity of the loss to component 

variations (in the passband) can be achieved when a double resistively terminated 

ladder network is designed such that there is maximum power transfer at 

frequencies of minimum loss in the network. This property is exclusive to the 

double resistively terminated network which is why they are preferred over other 

types of networks.  

V R2222 = = = =1Ω1Ω1Ω1Ω    
    

R1111 = = = =1Ω1Ω1Ω1Ω    
 

LC 

network 
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The approach to finding a doubly terminated ladder network is a little 

different and more complicated as compared to the single terminated network 

[ 16]. The main difference lies in finding the driving point impedance function 

from the input transfer function. Once z11 and z22 have been determined, the 

network is synthesized with the zeros of transmission using the Cauer method 

described earlier. 

 The synthesis begins by assuming that the input transfer function is the 

voltage gain function,
)(

)(
)(
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In order that this LC ladder realization have low sensitivity, H(s) must be 

scaled such that 20log10|H(jw)| = 0 at the frequencies of loss minima. Next, the 

characteristic function K(jw) is evaluated [ 11]. 

|K(jw)|
2
 = |H(jw)|

2
 – 1  

 The transducer function is proportional to the loss of the network and the 

characteristic function indicates how close this loss is to 1. Now that we have H(s) 

and K(s), the driving point impedance functions can be evaluated as follows [ 11]. 
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Along with the restriction imposed on transfer functions in section  0, it 

must also be noted that both H(s) and K(s) should have loss poles which lie 

exclusively on the imaginary axis. 

One of the main problems faced in the synthesis of the double resistively 

terminated ladder networks is described for the particular transfer function that we 

have used. In the synthesis method, the transfer function was split into even and 

odd parts so that the transmission zeros are on the imaginary (jw) axis – a 

condition required for synthesis using lossless components. However, it was 

observed that this method produced accurate results only when the transfer 

functions either had maxima occurring at DC (0 Hz) or had zeros at the origin or 

at infinity. While the even part of our transfer function had a low pass response, 

the odd part of the transfer function did not. A solution was obtained when the 

odd part of the transfer function was further split into two parts such that we had a 

cascade of an even part and a simple transfer function with a zero at the origin of 

the form
bass

s
2 ++

. Using Matthaei’s procedure [ 9], it is possible to build a 

circuit that sees a 1Ω source and load and hence does not require a buffer. In this 

case, we use Matthaei’s method to synthesize the simple function and this can be 

represented in the form of an ‘L section’ composed of Za and Yb as shown below 

in Figure  3.9. Multiple such sections can be formed (with different Za and Yb) and 

cascaded together with a single source resistance and a single load resistance. 
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Figure  3.9 The basic L-section used in Matthaei’s synthesis procedure 

In our case, since this is being done for only the simple function of the odd 

part of the transfer function, synthesis by Matthaei’s method becomes simpler. In 

this case we have, 
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This function is then tested to ensure that it satisfies the conditions, 
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constant K1 must be chosen such that Za is a realizable driving point function. 

This means that the smallest degree of the numerator and denominator should 

differ by 1. The second equation evaluated is,  
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K2 is defined by the relation
2

1

12
R

R
KK = . 

With the two functions Za and Yb determined, a continued fraction 

expansion can be carried out to obtain the values of inductance, capacitance and 

resistance that should be connected in the series and shunt arms of the circuit.   

In all examples that have been synthesized in the next chapter, the load 

and source resistances are 1Ω, normalized to a frequency of 1Hz. To implement 

circuits with different termination resistances and cut off frequencies, impedance 

and frequency scaling are necessary. This is performed as follows. 
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Thus, in this chapter, the procedures for the synthesis of single and double 

resistively terminated lossless ladder networks have been outlined. The next 

chapter shows examples of how these were used with the help of our network 

synthesis application. 
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CHAPTER 4 

RESULTS FOR THE SYNTHESIS OF TRANSFER FUNCTIONS 

4.1. Software description 

The software to synthesize a lossless ladder circuit from a transfer 

function consists of 4 functions (functions for the cauer1, cauer2, zero shifting 

procedure , all pass filter generation, and the main function).The theory behind 

each of these algorithms has been explained in section 3. Later, chapter 5 

discusses the synthesis of single or double resistively terminated ladder circuits 

when inputs are in the form of samples of an impulse response. The main function 

does not take any parameters and is independent of the type of function to be 

synthesized or the format of the inputs. 

When the main function (netSyn) is called, the user is asked if a transfer 

function or an impulse response is to be synthesized and accordingly the inputs 

are accepted. In the case of transfer function synthesis, the program allows for the 

inputs to be either in the form of poles and residues of the transfer function or as 

coefficients of the numerator and denominator of the transfer function. Once these 

inputs are accepted, the user has a choice of synthesis using single resistive 

termination or double resistive termination. 

The software then goes through stages to ensure that the inputted system is 

stable and realizable. If there are poles in the right half s-plane, the program prints 

an error synthesis stops. On the other hand, if zeros are found to exist on the RHS 

of the s-plane (non- minimum phase function), it replaces them with the 

corresponding minimum phase function in cascade with all pass filter sections. 
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The procedures described in section  3.3 and section  3.4 are then followed to 

produce values of inductance and capacitance for the obtained circuit. 

The application for transfer function synthesis runs in the MATLAB® 

environment. In this chapter we show examples of how the network synthesis 

strategies discussed in chapter 3 are implemented. 

4.2. Single resistively terminated LC ladder networks 

4.2.1. Simple Example 

We show a simple example in which the system has simple roots located 

only at the origin and at infinity [ 13]. The transfer function in this case is,  

122
)(

2321
+++

==
sss

s
ZsH  

The circuit obtained from the application with inputs as per the transfer function 

H(s) is shown in Figure  4.1 

Figure  4.1 Circuit diagram using values obtained from application (Eg. 1) 
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A comparison of the ideal (from the transfer function) and obtained (using 

the synthesized circuit) frequency responses along with the error plot (using 

Electronic Workbench) is shown in Figure  4.2. It is evident that the error is very 

small (~10
-6

). It is understood that this synthesis is exact and not an 

approximation. Hence all error must be attributable to round off errors. 

 

Figure  4.2 Obtained and ideal frequency responses with error plot (Eg. 1) 

Error (magnified) 

Obtained response (from appl
n
 ckt) 

Ideal response (using transfer func
n
) 

Error 
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4.2.2. The Nyquist pulse  

This example shows the single termination realization of a Nyquist pulse. 

[ 19]
 
The inputs are the poles and residues and the output circuit is shown in 

Figure  4.3. As seen in the figure, the even and odd sections each have to be scaled 

by a different factor (obtained from the program). A comparison of the ideal and 

obtained AC frequency response at the output along with the corresponding error 

between the two responses is shown in Figure  4.4. Finally Figure  4.5 shows the 

transient responses along with the error plot  
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Figure  4.3 Circuit diagram for Nyquist pulse synthesis (obtained from 

application) 
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Figure  4.4 Superimposition of ideal and amplified circuit response (left) and 

error plot (right) 

Figure  4.5 Superimposition of the ideal and obtained transient responses 

with the error 

 

Error (magnified) 

Obtained response (from appl
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4.2.3. Square root raised cosine pulse 

This example shows the single termination realization of a square root 

raised cosine pulse [ 19]. The output circuit is shown in Figure  4.6. The even and 

odd sections have been scaled separately and added by means of a summing 

element thereby avoiding the use of op-amps. A comparison of the ideal and 

obtained AC frequency response at the output is shown in Figure  4.7  along with 

the error between the two responses after the output of the circuit has been 

amplified. Finally Figure  4.8 shows the transient responses along with the error 

plot. 
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Figure  4.6 Single resistively terminated square root raised cosine pulse 

(obtained from application) 
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Figure  4.7 Superimposition of ideal and amplified circuit response (left) and 

error plot (right) 

 

Figure  4.8 Superimposition of the ideal and obtained transient responses 

with the error  

Error (magnified) 

Obtained response (from appl
n
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n
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Error 

Error 
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4.2.4. Butterworth filter 

We also performed a comparison to test the component values obtained 

from this application against tabulated values from literature [ 20]. The equation 

form for the Butterworth filter is as follows 

systemtheofordertheisN,where
1

1
)jw(Z

N2

2

ω+
=  

The circuit form is as shown in Figure  4.9  

Figure  4.9 General form of a single resistively terminated Butterworth filter 

The values tabulated for the Butterworth case are shown in Table  4.1. It 

can be observed that the values obtained using the application match closely with 

the values obtained from literature. In Table  4.1, ‘prg’ refers to the values 

obtained from the synthesis application while ‘tab’ refers to the tabulated values 

obtained from literature. 

V 

L1 L3 L5 L7 L9 
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Table  4.1 Comparison of obtained and tabulated component values for 

Butterworth filter 

 
N L1 C2 L3 C4 L5 C6 L7 C8 L9 

2(prg) 0.7071 1.414        

2(tab) 0.7071 1.414        

          
4(prg) 0.3827 1.082 1.577 1.531      

4(tab) 0.3827 1.802 1.577 1.531      

          

7(prg) 0.2225 0.6560 1.055 1.397 1.659 1.799 1.588   

7(tab) 0.2225 0.6560 1.054 1.397 1.659 1.799 1.588   

          

9(prg) 0.1736 0.5155 0.8414 1.141 1.404 1.620 1.777 1.842 1.563 

9(tab) 0.1736 0.5155 0.8414 1.141 1.404 1.620 1.777 1.842 1.563 

 

The evaluation of error in these examples shows that the synthesized circuit 

reproduces the desired transfer function. The results obtained from our application 

are in excellent agreement with those obtained from literature for the Butterworth 

filter. Now examples of the synthesis of double resistively terminated lossless 

ladder networks are shown. 
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4.3. Double resistively terminated LC ladder networks 

4.3.1. Synthesis of a low pass filter with finite transmission zeros. 

Consider the following transfer function [ 11], 
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The circuit obtained using our application is shown in Figure  4.10. A 

comparison of the ideal and obtained frequency responses along with a plot of the 

difference between the two is shown in Figure  4.11 

 

Figure  4.10 Circuit diagram using values obtained from application 

(Example 1) 
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Figure  4.11 Ideal and Obtained frequency responses with error plot (Eg. 1) 

4.3.2. The Nyquist pulse 

In this example the Nyquist pulse [ 19] was synthesized to obtain a double 

resistively terminated LC ladder network. Figure 4.12 shows the circuit whose 

values were obtained using our filter synthesis application. The circuit is split into 

three parts – an even section, an odd section and the all pass filter section to 

compensate for the right hand s-plane zeros. The ideal and obtained AC frequency 

responses at the output were compared and the results along with an error plot are 

shown Figure  4.13 .The transient responses are compared in Figure  4.14. 
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Figure 4.12  Double resistively terminated LC ladder realization for a 

Nyquist pulse 
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Figure  4.13 Superimposition of ideal and amplified circuit response (left) and 

error plot (right) 

Figure  4.14 Superimposition of the ideal and obtained transient responses 

with the error 

Error (magnified) 

Obtained response (from appl
n
 ckt) 
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n
) 

Error 
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4.3.3. Prolate Spheroidal Wave Function 

In this example a 9
th

 order prolate spheroidal wave function (PSWF) was 

synthesized with a delay of 5 seconds to obtain a double resistively terminated LC 

ladder network. Figure  4.15 shows the circuit whose values were obtained using 

our filter synthesis application. The circuit is split into three parts – an even 

section, an odd section and the all pass filter section to compensate for the right 

hand s-plane zeros. The ideal and obtained transient responses along with a plot of 

the error are shown in Figure  4.16. 
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Figure  4.15 Double resistively terminated ladder representation for a 9
th

 

order PSWF 

 

 



 43 

Figure  4.16 Superimposition of the ideal and obtained transient responses 

with the error (PSWF) 

In summary, this chapter presents results obtained from our application for 

the synthesis of single and double resistively terminated ladder networks. It has 

been demonstrated that results obtained via the program presented in this thesis 

match very closely with the ideal response. The small error which is observed is 

most likely due to round off and truncation errors which arise during the process 

of calculations. Excellent agreement with literature in the case of the Butterworth 

filter was demonstrated. 
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CHAPTER 5 

IMPULSE RESPONSE SYNTHESIS 

 

In the areas of communication and signal processing, it is sometimes 

necessary to be able to synthesize impulse responses; for example in the synthesis 

of finite impulse response (FIR) and infinite impulse response (IIR) filters. We 

have found that this issue of impulse response synthesis is not addressed in the 

currently available software applications. The design and synthesis of impulse 

responses is done by creating a front end application for the Prony’s method. 

Prony’s method is a method used to obtain a set of poles and residues from 

an impulse response. Given an impulse response h(t) we uniformly sample the 

signal at 2N points to form the sample matrix and the sample vector.  
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The above system of linear equations is solved, from which the pole 

locations are obtained.  

To synthesize the system represented by these poles and residues, its 

impulse response must be stable. The stability of such discrete time impulse 

responses can be tested using the Jury test. It comprises of four conditions that the 

characteristic function must satisfy in order that the impulse response be stable. 

Since the Jury test is a necessary and sufficient condition for stability, if the 

impulse response fails even one of these tests, we can be sure that the response is 

unstable. 
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Although not all impulse responses are stable, some of them are stable 

within specific intervals. Such impulse responses can be made stable by delaying 

the signal by a certain amount say ‘δ’.  This can be represented in terms of a 

‘stability chart’. Once the delay (up to a user specified delay granularity) that 

makes the impulse response stable is found, the user will be notified of the 

modification to the input impulse response after which it will be synthesized. The 

flow of this program is further explained by the flowchart in Section  5.4 (Figure 

 5.1) 

5.1. Prony’s method  

Prony’s method is an algorithm for finding an IIR filter with a given time 

domain impulse response. The impulse response of a circuit can be obtained if the 

poles of the system in the s-plane and their corresponding residues are known. 

The impulse response can then be written as a summation of the residues, 

multiplied by exponentially damped functions.  If ‘N’ is the order of the system 

(number of poles in the system) then, the impulse response can be represented in 

the form [ 2,  17], 
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     Eq.  5.1 

However, our impulse response is rarely in the continuous domain. Rather, 

it is in the form of a sampled signal. This sampled data can be expressed in the 

form of a linear combination of exponentials.  
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Hence the equation 5.1 can be modified as 

1N21,0neA)tn(h
N

1m

)tn(s

msampled
m −==∑

=

L
∆∆    Eq.  5.2 

where, 

Am  : Residues of the N
th

 order system. 

sm   : Poles of the N
th

 order system.  

t∆   : Sampling interval. 

N    : Order of the system. 

These equations represented in equation 5.2 are a set of 2N non linear 

equations with 2N unknowns. For any N
th

 order system, the first 2N samples are 

independent and hence using Prony’s method, the poles and residues for an N
th

 

order system can be recovered. The equations also imply that the sampled impulse 

response can be reconverted into a continuous signal in the time domain using the 

first equality in equations 5.1 and can be represented in the frequency domain 

using the second equality in the same equation. This algorithm is also useful since 

it allows time domain to frequency domain interconversion, without the use of the 

Fourier transform, as shown below, 
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Equation 5.3 can also be represented in the form Ax=B. The matrix A, has 

a Toeplitz structure and a unique solution to equation 5.3 can be found for the 

vector [ ]T

1N10 a...aa − . The characteristic equation is formed as, 

0aa.....a)(B 01

1N

1N

N =−−−−= −

− ωωωω .  Eq.  5.4 

Equation 5.4 is then solved to get the N roots of the 

system )w,w,....,w,w( 121NN −  and the poles of the system (sn) are obtained using, 
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s nen ω
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
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
=     Eq.  5.5 

Now that the poles are known, the residues of this N
th 

order system can be 

found by making use of equation 5.2 in a similar fashion by solving a system of 

linear equations.  
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Representing this as a system of N linear equations (in matrix form) 
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   Eq.  5.6 

This matrix is of the form B = Ax and the matrix A, is a Vandermonde 

matrix. A unique solution can be found for the vector of 

residues [ ]T

1N10 A...AA − . Now that the poles and residues are known the 

impulse response is obtained in the frequency domain and can now be 

synthesized.  
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Thus to extract the poles and residues of an N
th

 order system using Prony’s 

method, atleast 2N samples are required. The algorithm involves the solution of 

two N
th

 order linear equations – one to obtain the poles and the other to obtain the 

residues. Once the poles and residues are known, the system transfer function can 

easily be determined using equation 5.1. Prony’s method gives an approximate 

transfer function from the sampled transient response. For large order systems, the 

order of the transfer function produced by this method is generally much smaller 

than the actual order of the system. One drawback however is that Prony’s 

method relies strongly on linearization and on the assumption of noiseless data. 

Hence, this might pose a problem for non-linear and/or noisy functions. 

5.2. Jury Tests 

The Jury test is a test that is generally used to test the stability of linear 

time invariant digital systems in the z- domain. The Jury test can also be used to 

test the stability of sampled data systems. It consists of a set of four criteria 

against which the characteristic equation of the system must be tested. The system 

is stable if and only if it passes all four conditions. In checking for stability these 

tests ensure that all the roots of the characteristic equation (in other words, the 

poles of the system) lie on or within the unit circle (region of stability in the z-

domain).  

 Let the characteristic equation of the system be represented as 

01

1n

1n

n

n azazazaD ++++= −
− L   0an >   

then the four conditions for the Jury test are summarized as [ 18] 
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Test 1: The first and most important condition to be satisfied is that the 

coefficients of the characteristic equation be positive. In other words, 

0)1(D >    for z = 1    Eq.  5.7 

Test 2: 

0)1(D)1( n >−−    for z = -1   Eq.  5.8 

Test 3: 

n0 aa <         Eq.  5.9 

 

Test 4 (Jury Array): 

The Jury array is constructed as follows, 
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                   Eq.  5.10 

Since equations 5.7 to 5.10 are a set of necessary and sufficient conditions, 

the system can be declared unstable as soon as any one test fails.  

While checking for the stability of a system, a case might arise when the 

system has poles on the unit circle (the corresponding case in a continuous time 

system is the poles of the system lying on the imaginary axis). In this case the 

system is said to be marginally stable and D(1) = 0 and/or D(-1) = 0 (for the first 

and second Jury tests). This can be resolved, by removing the roots that lie on the 

unit circle (z = 1 and/or z = -1) and reconstructing the characteristic equation so 

as not to contain these roots and then checking for stability. The program to check 

for stability of digital systems using the Jury method can be found in the 

Appendix. 

5.4. Synthesis of impulse responses (software description) 

This program to synthesize impulse responses takes as inputs, samples from 

an impulse response. It also allows optional inputs such as the star and end 

sampling points and assumes uniform sampling. Prony’s method (described in 

section  5.1) is used to generate a characteristic vector. The Jury test is then 

applied to the characteristic equation to test for stability.  

If the original system is unstable but a delayed version of the system is 

found to be stable, the user is notified of this fact. Another thing to note about this 
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program is that it is initially assumed that the order of the system (N) is half the 

number of the input samples (2N). However, to avoid cases where the user over-

specifies the system order (For example, the actual order of the system may be 5, 

but the user may provide 20 samples and insist on a 10
th

 order system), the rank of 

the matrix generated is calculated. If the rank is less than the specified degree then, 

it means that the system order was too large to begin with and this is 

automatically changed and recalculated using the new order (rank).  

Once a stable version of the response is found, the poles and residues are 

calculated from the impulse response and a single or double resistively terminated 

network can be synthesized as desired. On the other hand, if the system is 

unstable, a delay is added to the system until the system becomes stable. Then the 

shifted impulse response is synthesized. In addition, a ‘stability chart’ showing 

the delays for which the system is stable and unstable is plotted. The flowchart for 

this program is shown in Figure  5.1. 
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Figure  5.1 Flowchart depicting the synthesis of impulse responses 
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5.4. Stability as a function of delay 

5.4.1. The Nyquist pulse 

To test the stability of the Nyquist pulse, we took 18 samples starting from 

t=0 sec and at intervals of 0.5 sec. These samples were fed to the function. The 

delay was varied and a graph indicating the variation in stability in different 

intervals was plotted. From Figure  5.2, it is evident that by varying the delay of 

the system it is possible to make the system stable and unstable within certain 

intervals. 

Figure  5.2 Changes in stability with delay (Nyquist pulse) 

 

Of course the magnitude and phase response would vary because of the 

introduction of this delay, but if this is acceptable, then it might be possible to 

STABLE 

UNSTABLE 
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synthesize systems which were previously thought unstable just by introducing an 

additional delay element.  

Figure  5.3 show the plots for the location of poles for the original system (no 

delay), system after a delay of 1sec (stable), a delay of 1.4 sec (stable) and after a 

delay of 1.5 sec (unstable). 

 

Figure  5.3 Pole locations for the Nyquist pulse at various stages of delay 

Pole locations for Nyquist pulse 

No Delay 

Pole locations for Nyquist pulse 

Delay = 1sec 

Pole locations for Nyquist pulse 

Delay = 1.4sec 

 

Pole locations for Nyquist pulse 

Delay = 1.5sec 
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Figure  5.4 shows a comparison of the normalized transient responses (all 

plotted in MATLAB) at zero delay, 1 sec, 1.4 sec and finally the unstable 

response at 1.5 seconds.  

 

Figure  5.4 Transient response for the Nyquist pulse at various stages 

of delay 
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5.4.2. The Square root raised cosine pulse 

The same procedure of obtaining 18 samples starting from t=0 sec at a 

sampling interval of t=0.5 sec was followed for the square root raised cosine 

pulse. These samples were fed to the function for the synthesis of impulse 

responses. The delay was varied and a graph indicating the variation in stability 

with delay was plotted. From Figure  5.5, it can be seen that by varying the delay 

of the system it is possible to make the system alternately stable and unstable 

within certain intervals. 

Figure  5.5 Variation in stability with delay (Square root raised cosine pulse) 

Figure  5.6 show the plots for the location of poles for the original system 

(no delay), system after a delay of 0.5 and 0.55 sec (stable), a delay of 0.6 sec 

(unstable) and after a delay of 1 sec (stable) Figure 5.7 shows a comparison of the 

normalized transient responses (all plotted in MATLAB) at zero delay, 0.5 sec, 

0.55 sec, 0.6 sec (unstable) and finally the stable response at 1 sec.  

STABLE 

UNSTABLE 
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Figure  5.6 Pole locations for the Square root raised cosine pulse at various 

stages of delay 

Pole locations for Sqrt raised cosine pulse 

Delay = 0.5 sec 

Pole locations for Sqrt raised cosine pulse 

No Delay  

Pole locations for Sqrt raised cosine pulse 

Delay = 0.6 sec 

Pole locations for Sqrt raised cosine pulse 

Delay = 0.55 sec 

Pole locations for Sqrt raised cosine pulse 

Delay = 1  sec 
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Figure  5.7 Transient response for the Square root raised cosine pulse at 

various stages of delay 

Transient response – Sqrt raised cosine pulse 

No Delay 

Transient response – Sqrt raised cosine pulse 

Delay = 1sec 

Transient response – Sqrt raised cosine pulse 

Delay = 0.5sec 

  
 

 Transient response – Sqrt raised cosine pulse 

Delay = 0.6sec 
Transient response – Sqrt raised cosine pulse 

Delay = 0.55sec 
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 In summary, the stability charts show that in some cases, it is possible to 

‘stabilize’ a system if a delay in the response is acceptable. Prony’s method was 

used for the synthesis of impulse responses. Also, with the introduction of delay, 

unstable impulse responses can in some cases be made stable 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

In conclusion, this thesis offers an application written in MATLAB for the 

synthesis of transfer functions and impulse responses using passive ladder 

networks.  Both single resistively terminated and double resistively terminated 

networks can be synthesized by this application. It was shown that this application 

was not only able to synthesize standard functions which have zeros on the 

imaginary axis, but also more complex functions, such as Nyquist and square root 

raised cosine pulses, that have zeros anywhere in the s-plane. It was also noticed 

that the presence of a single zero in the odd part of the split transfer function 

posed some problems in the synthesis of an acceptable circuit using the Cauer 

method. However, by splitting this odd section into a cascade of an even part and 

a simple function with a zero at the origin, it is possible to combine the Cauer 

technique and Matthaei’s method so as to synthesize any arbitrary transfer 

function. It was also determined that delay has a significantly large effect on the 

stability of the system. Hence, by introducing some delay, it may be possible to 

stabilize an impulse response and hence synthesize a stable version of the 

originally unstable response. However, there appears to be a tradeoff between 

being able to synthesize a delayed version of the impulse response and the 

accuracy of the corresponding obtained pulse. 

By splitting the original function into even and odd parts, a very simple 

approach has been adopted to synthesize the transfer function. However, if a 

certain amount of complexity and the use of transformers are permitted, it may be 
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possible to synthesize the transfer function as one circuit instead of as a cascade 

of two to three circuits so that the circuit can be simplified. This could form a 

seed for the future work. 

Other future work should address the issue of how the variation of 

individual component values affects the sensitivity of the synthesized networks. 

We also note that, while exact values were obtained from the application and used 

while comparing the obtained and ideal AC and transient responses, in practice, 

only specific values of components are available. Hence as part of future work, 

the sensitivity of the synthesized circuits could be examined in more detail. It 

would be interesting to see how the change in component values affects poles, 

zeros and stability of the original transfer function. To show just how important 

this sensitivity analysis is and to depict the advantage of double resistively 

terminated networks over their single resistively terminated counterparts, 

preliminary Monte Carlo simulations were run, the details of which can be found 

in the Appendix. 

Lastly, a part of future work could also focus on an algorithm to 

dynamically tune the transmission zeros by tuning the LC resonant and anti-

resonant sections. This would ensure a tighter, more accurate response. 
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APPENDIX 

MONTE CARLO ANALYSIS 

This section includes the details of a preliminary Monte Carlo analysis 

that was performed on the single and double resistively terminated ladder 

networks for the synthesis of a Nyquist pulse. This was done to estimate the 

sensitivity of frequency and transient analysis to component variations. The 

tolerances of the passive components were set in accordance with the standard 

component tolerance values available in the market- namely resistors with 0.1%, 

inductors with 5% and capacitors with 2% tolerance. 1000 runs were performed 

with uniform distribution. Figure A.1 shows the Monte Carlo simulations for the 

AC response and transient response for the single resistively terminated ladder 

network. Below each of the figures are the statistics in terms of mean, standard 

deviations and percentage of data within the standard deviations. Figure A.2 

shows the Monte Carlo simulations for the AC and transient responses for the 

double resistively terminated circuit along with the corresponding statistics 
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Figure A.1 Monte Carlo simulations for AC response (left) and transient 

response (right) for single resistively terminated network for Nyquist pulse 
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Figure A.2 Monte Carlo simulations for AC response (left) and transient 

response (right) for double resistively terminated network for Nyquist pulse 

 

It must be noted that the behavior of the response (frequency and 

transient) in the pass band must be as prescribed by the transfer function. The 

absolute level of the responses is not important [ 0,  0]. If component variations 

cause attenuation (at all frequencies) in the response, it is acceptable since the 

basic contour of the response is maintained. This can be compensated, if required, 

by means of an amplifier. On the other hand, errors in component values can also 
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cause unwanted ripples or jumps in the response. It is difficult to compensate for 

such deviations [ 0,  0]. Comparing the statistics in Figures A.1 and A.2, it can be 

noted that the performance of a double resistively terminated ladder network is 

better as compared to the single terminated ladder network in the presence of 

component variation. 
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