

Figure 7.6: PCI Simulator site map

7.3.6 Functional Design

At the beginning of this section we discussed the functional requirements and illustrated

the use case based on our requirements in Figure 7.1. This formed a high-level view of

the capabilities provided by the system. The sections that followed discussed the

architectural details and the user interface design. With that information in mind, we now

provide the functional details of how the user interface interacts with our system. This

interaction can be explained with the use of a UML sequence diagram. A sequence

diagram is usually derived from a use case and shows the interaction of objects, the

messages between them, and the order in which the messages occur. The following

subsections list the use cases of the system and their respective sequence diagram.

 125

7.3.6.1 Simulation Use Case

The simulation use case, illustrated in Figure 7.7, provides a look at the interaction

between the user and the various functions provided by the system. The user may create a

new simulation either manually or through a simulation wizard, open an existing

simulation, save the current simulation, rename a simulation, delete a simulation, or edit

the settings of a simulation.

Figure 7.7: Simulation use case

7.3.6.1.1 New Simulation

When issuing a new simulation, the XML request is handled by the

SimulationController which instantiates a new SimulationXMLAction

object. In turn, a new SimulationFacade is created in which the

newSimulation() method is called. The SimulationDAO creates a new

Simulation object, adds the data provided by the user to the object, and saves it to the

database. For easy retrieval, the object is persisted in a session. A status is sent back to

 126

the SimulationXMLAction object where an XML response is formed and returned

back to the GUI. The user is then presented with a confirmation message and the user

interface is updated appropriately.

Figure 7.8: New simulation sequence diagram

7.3.6.1.2 Open Simulation

When the open simulation command is issued, the XML request data is formed and is

handled by the SimulationController which instantiates a new

SimulationXMLAction object. In turn, a new SimulationFacade is created in

which the getSimulations() method is called. The SimulationDAO retrieves a

list of simulations from the database and returns it back to the

SimulationXMLAction object where an XML response is formed and returned back

to the GUI. The user is then presented with a list of simulations to choose from. Once a

simulation is chosen, a separate XML request is sent to the server containing the

 127

simulation id. Again, the SimulationController handles the request, extracts the

id and calls the SimulationXMLAction.handleOpenAction() method. From

there, the SimulationFacade.getSimulation() is called with the simulation id

and then sent to the SimulationDAO object. When the simulation data is returned it

gets added to the Simulation object. The XML response is formed and then sent back

to the GUI where it is updated to reflect the opened simulation.

Figure 7.9: Open simulation sequence diagram

7.3.6.1.3 Save Simulation

In issuing a save simulation command, the XML request is handled by the

SimulationController which instantiates a new SimulationXMLAction

object, extracts the id, and then calls the

SimulationXMLAction.handleSaveSimulation() method. From within the

 128

handleSaveSimulation() method, a new SimulationDAO object is created and

the saveSimulation() method is called which stores the updated information in the

database. A status method is returned back to the SimulationXMLAction object

where an XML response is formed and returned back to the GUI.

Figure 7.10: Save simulation sequence diagram

7.3.6.1.4 Rename Simulation

When a rename simulation command is issued, the XML request is formed and handled

by the SimulationController which instantiates a new

SimulationXMLAction object, extracts the id and new name, and then calls the

SimulationXMLAction.handleRenameSimulation() method. From within

the handleRenameSimulation() method, a new SimulationFacade object is

created and the getSimulation() method is called. This returns the Simulation

object from the session. The new name is inserted into the object and then stored in the

 129

database. A status method is returned back to the SimulationXMLAction object

where an XML response is formed and returned back to the GUI.

Figure 7.11: Rename simulation sequence diagram

7.3.6.1.5 Delete Simulation

When the delete command is sent, an XML request is formed and the simulation id is

sent to the server and handled by the SimulationController. The

SimulationController creates a new SimulationXMLAction object and calls

the handleDeleteSimulation() method. From there, a new

SimulationFacade is created and the deleteSimulation() method called with

the simulation id as the attribute. The SimulationDAO deletes the simulation from the

database and returns the status. The session is then invalidated removing any objects

persisted with the session. The response XML is then formed along with the status

(success or error) and then sent to the GUI where the appropriate action takes place.

 130

Figure 7.12: Delete simulation sequence diagram

7.3.6.1.6 Simulation Settings

When the simulation settings command is issued, the XML request data is formed and is

handled by the SimulationController which calls the

SimulationXMLAction.handleEditSimulation() method. From there, a

new SimulationFacade object is created and the

SimulationFacade.getSimulation() is called with the simulation id as the

attribute. The Simulation object is returned from the session and return back to the

SimulationXMLAction object. An XML response is formed with the simulation

settings and returned back to the client. The user is presented with the existing settings

and may then proceed to edit the settings. Once finished with the edit, the user submits

the information back to the server, which again is handled by the

SimulationController. The SimulationController object calls the

SimulationXMLAction.handleEditSimulation() method which creates a

new SimulationFacade object. The saveSimulationSettings() method is

called with the simulation id and data which is stored in the database by a call to the

SimulationDAO.saveConfigurationSettings() method. The status is then

 131

returned, and the Simulation object is updated within the session for later retrieval. A

confirmation method is returned to the client via the SimulationXMLAction which

forms the response XML handled by the client.

Figure 7.13: Simulation settings sequence diagram

7.3.6.2 Device Use Case

The simulation use case, illustrated in Figure 7.14, provides a look at the interaction

between the user and the various functions provided by the system. The user may create a

new device either manually or through a simulation wizard, open an existing device that

was previously created, save a device, rename a device, or delete a device.

 132

Figure 7.14: Device use case

7.3.6.2.1 New Device

When issuing a new device command, the XML request is handled by the

SimulationController which instantiates a new SimulationXMLAction

object. In turn, a new SimulationFacade is created in which the newDevice()

method is called. The SimulationDAO creates a new Device object, adds the data

provided by the user to the object, and saves it to the database. For easy retrieval, the

object is persisted in a session and added to the current simulation. A status is sent back

to the SimulationXMLAction object where an XML response is formed and

returned back to the GUI. The user is then presented with a confirmation message and the

user interface is updated appropriately.

 133

Figure 7.15: New device sequence diagram

7.3.6.2.2 Open Device

When the open command is issued, an XML request is formed and handled by the

SimulationController which instantiates a new SimulationXMLAction

object. A new SimulationFacade is created in which the getDevices() method

is called. The SimulationDAO retrieves a list of devices from the database and returns

it back to the SimulationXMLAction object where an XML response is formed and

returned back to the GUI. The user is then presented with a list of devices to choose

from. Once a device is chosen, a separate XML request is sent to the server containing

the device id. Again, the SimulationController handles the request, extracts the

id and calls the SimulationXMLAction.handleOpenDevice() method. From

there, the SimulationFacade.getDevice() is called with the device id and then

sent to the SimulationDAO object. When the device is returned it gets added to the

 134

Simulation object. The XML response is formed and then sent back to the GUI where

it is updated to reflect the opened device.

Figure 7.16: Open device sequence diagram

7.3.6.2.3 Save Device

In issuing a save device command, the XML request is handled by the

SimulationController which instantiates a new SimulationXMLAction

object, extracts the id, and then calls the

SimulationXMLAction.handleSaveDevice() method. From within the

 135

handleSaveDevice() method, a new SimulationDAO object is created and the

saveDevice() method is called which stores the updated information in the database.

A status method is returned back to the SimulationXMLAction object where an

XML response is formed and returned back to the GUI.

Figure 7.17: Save device sequence diagram

7.3.6.2.4 Rename Device

When a rename device command is issued, the XML request is formed and handled by

the SimulationController which instantiates a new SimulationXMLAction

object, extracts the id and new name, and then calls the

SimulationXMLAction.handleRenameDevice() method. From within the

handleRenameDevice() method, a new SimulationFacade object is created

and the getDevice() method is called. This returns the Device object from the

session. The new name is inserted into the object and then stored in the database. A status

method is returned back to the SimulationXMLAction object where an XML

response is formed and returned back to the GUI.

 136

Figure 7.18: Rename device sequence diagram

7.3.6.2.5 Delete Device

When the delete command is issued, an XML request is formed and the device id sent to

the server and handled by the SimulationController. The

SimulationController creates a new SimulationXMLAction object and calls

the handleDeleteDevice() method. From there, a new SimulationFacade is

created and the deleteDevice() method is called with the device id as the attribute.

The SimulationDAO deletes the device from the database and also updates every other

simulation that references it. The device is then removed from the Simulation object. The

response XML is then formed with the status (success or error) and then sent to the GUI

where the appropriate action takes place.

 137

Figure 7.19: Delete device sequence diagram

7.3.6.3 Run Simulation Use Case

The run simulation use case, illustrated in Figure 7.20, provides a look at the interaction

between the user and the various functions provided by the system. In this specific case,

the user can only perform two functions: run simulation and view statistics. We note that

the view statistics use case extends the run simulation use case.

Figure 7.20: Run simulation use case

7.3.6.3.1 Run Simulation

This action allows the user to run the simulation from the currently configured system.

An XML request is sent to the server with the simulation id and action. The

 138

SimulatorController creates a new SimulationXMLAction object calling the

handleRunSimulation() method. The runSimulation() method is then called

with the simulation id. The Simulation object is then retrieved from the session by id.

From the Simulation object, the information is retrieved and the necessary

configuration scripts are created. The ScriptSim simulator is then run using the newly

created scripts. Once run, the simulator monitors the status and sends updates back to the

UI via an XML response. Once complete, the user is notified of the completion and the

status.

Figure 7.21: Run simulation sequence diagram

7.3.6.3.2 View Statistics

This action allows the user to view the statistics from a previously run simulation. An

XML request is sent to the server with the simulation id and action. The

SimulatorController creates a new SimulationXMLAction object calling the

 139

handleViewStatistics() method. The getStatistics() method is then

called with the simulation id. The Statistics object is then retrieved once the

generate() method is called. The Statistics object is returned to the controller

which extracts the information and formats it into an XML response. The response is then

sent back to the client, which formats the page and presents it to the user.

Figure 7.22: View statistics sequence diagram

7.4 Modification and Implementation of ScriptSim

We recall from Section 6 that ScriptSim provides a complete PCI model per the PCISIG

Local Bus Specification Version 2.2, which is described in detail in Section 4. We noted

previously that ScriptSim lacks PCI-X functionality and the ability to model device

behavior. To add in the PCI-X component, as described in Section 5, we simply modified

a single python file (pci_lib.py), the details of which are beyond the scope of this

thesis. However, adding the ability to model device behavior was more complex.

Previously in Section 7.1, we provided details on how to model device behavior by

decomposing a master and target device into a set of performance parameters. We

modified ScriptSim to accommodate the parameters of both master and target device

 140

descriptors as described in Sections 7.1.1.1 and 7.1.1.2 respectively. Before providing

these details, outlined in Section 7.4.2 below, we must first understand some of the

challenges of synchronization when implementing device latency as described in the

following section.

7.4.1 Device Latency and Synchronization

One of the factors that affect bus performance is device latency. Both master and target

devices have the ability to add wait states during a transaction if one, or both, are unable

to send or receive data during a clock period. In Figure 7.23, the target device adds a wait

state on clock cycle 3, which is signaled by the assertion of TRDY#. Before clock cycle 4

occurs, the target deasserts TRDY# and a data transfer occurs during that same clock

cycle. It is here we note that a data transfer will occur on clock cycle 5 as long as the

target deasserts TRDY# at some point in between clock cycle 4 and clock cycle 5. In a

real system, devices are attached to a physical bus and thus, any signal that is placed on

the bus is almost immediately sensed by other devices. However, this is not true in the

case of ScriptSim which tries to emulate a PCI bus.

 141

Figure 7.23: Typical PCI write transaction

To understand this more clearly, we must first understand how ScriptSim handles bus

signals. Figure 7.24 provides a high-level view of how bus signals are sent and received

in ScriptSim. In this figure, three devices (dev1, dev2, and dev3) are attached to the bus,

each of which send and receive bus signals on every clock cycle. During a single clock

period, the ScriptSim verilog program receives bus signals from every device, merges

them using an and_reduce function, and then distributes the merged signal back to all

devices. Thus, signals sent by some device on clock cycle n will not be received by other

devices until clock cycle n + 1. In the case of a data transfer, devices will now receive

data one clock cycle late. This can easily be solved by allowing devices to send data one

clock cycle early. However, this only works if devices are always ready to send or

receive data (i.e.: insert no wait states). If a device has to induce latency by inserting wait

states, data transfers that occurred during a previous clock period are no longer valid.

 142

Figure 7.24: High-level view of bus signal distribution in ScriptSim

To illustrate, we present a simple example as shown in Figure 7.25, which recreates the

PCI write shown in Figure 7.23. The start of a transaction begins with an idle phase on

clock cycle 1, which is followed immediately by the address phase in clock cycle 2

(AD_OUT). At this point, we realize the address will not be received by other devices on

the bus until clock cycle 3 (AD_IN). The first data phase will not occur until clock cycle 4

since the target asserts TRDY_OUT# on clock cycle 3, which will not be received by the

master until clock cycle 4. While data is sent out during clock cycle 4, the target won’t

receive the data until clock cycle 5, at which point the target will deassert TRDY_OUT#

indicating a wait state. Thus, the final piece of data will be sent on clock cycle 6 and

received by the target on clock cycle 7. The transaction ends on clock cycle 8, two full

clock cycles later than expected.

 143

To solve this issue, we allowed devices to send signals one clock early. However, issues

arrive when a device needs to insert wait states since it is possible for a device to send

data during a clock period where a wait state should occur. Therefore, we allow both

master and target to share latency information during a transaction. By knowing a priori

how many wait states a device must incur during a specific portion of a transaction, a

device can send signals at the correct time. While this does not correctly emulate signals

during a PCI transaction, it does produce correct results.

Figure 7.25: PCI write transaction in ScriptSim

7.4.2 Implementing Device Behavior

We recall that ScriptSim uses the notion of a control file to configure each device that is

to be simulated. Within the control file are a set of keyword-value pairs that describe the

device depending on if it is a master device or target device. These keyword descriptions

are detailed in Tables 6.4 and 6.5 for master and target devices, respectively. To

 144

implement the parameters associated with our device descriptor, as discussed in Section

7.1.1, we extend the control file to include additional parameters. These extended

parameters for master devices are outlined in Table 7.1 while extended target device

parameters are outlined in Table 7.2.

Table 7.1: Extended master keyword descriptions (continued on pg. 147)

Keyword Value Description
cmd 2-4 letter command

abbreviation
Specify the command to be driven on the
C/BE# lines.
PCI values:
ia – interrupt acknowledge
sc – special cycle
ir – I/O read
iw – I/O write
mr – memory read
mw – memory write
cr – configuration read
cw – configuration write
mm – memory read multiple
ml – memory read line
mi – memory write and invalidate
PCI-X values:
ia – interrupt acknowledge
sc – special cycle
ir – I/O read
iw – I/O write
id – Device ID
mr – memory read
mw – memory write
amrb – alias to memory read block
amwb – alias to memory write block
cr – configuration read
cw – configuration write
spc – split completion
dac – dual address cycle
mrb – memory read block
mwb – memory write block

miws Number This value specifies the number of master
initial wait states.

msws Number(s) Specifies the number of master subsequent
wait states.

 145

tiws Number This specifies the number of initial waits
states we expect for the target.

tsws Number(s) This specifies the number of subsequent
waits states we expect for the target.

tirt Number Specifies the initial retry threshold of the
target we are communicating with.

tsrt Number Specifies the subsequent retry threshold of
the target we are communicating with.

start Number This value specifies the start time, in cycles.
A master will not initiate a transaction until
the current clock cycle is greater than or
equal to this value.

Table 7.2: Extended master keyword descriptions (continued from pg. 146)

Keyword Value Description
cap_pntr Number The Capability Pointer specifies the

hardwired value in the configuration space
register at address 0x34 (upper 16 bits). The
address specified in this register is a pointer
to the first capabilities list item

capability Number(s) Specify the hardwired capability and written
value. Example: capability=(0x84, 0x7, 0x0,
0x0, 0x0) specifies the item is located at
address 0x84, that it is a PCI-X capability
list, has no other capabilities in the list, has
an ID of 0x0, and a status set to 0x0.

Table 7.3: Extended target keyword descriptions

While we acknowledge there were several additions and changes to the source code to

accommodate the above parameters, the implementation details are beyond the scope of

this thesis.

 146

CHAPTER 8

EXPERIMENTAL RESULTS

In this section we discuss the experimental results obtained from our PCI simulator. To

verify the accuracy of the simulator, we gathered PCI and PCI-X cycle snapshots from a

variety of configurations generated by Vanguard’s VMetro Bus Analyzer [19]. Statistical

information was then extracted and used in our simulator to generate results.

For experiments, the setup was organized as shown in Figure 8.1. Modern PC

architectures split the memory controller and I/O controller into separate chips labeled as

the Northbridge and Southbridge respectively. The Northbridge, or memory controller

hub, handles high speed communication between devices such as the CPU, RAM, and

AGP or PCI Express. The Southbridge, or I/O controller hub, typically handles less

performance critical I/O devices such as the PCI or PCI-X bus, LPC Bus and other I/O

devices. The PCI/PCI-X bus will contain one or more PCI/PCI-X devices as well as the

VMetro Bus Analyzer which will be used to passively monitor the bus. Data collected by

the analyzer will be then sent to the PC via USB which can be analyzed through

VMetro’s BusView software.

In Table 8.1 we outline the various configurations used for testing. Each test

configuration was first run on a physical system using the VMetro Bus Analyzer to

capture the data. We then calculated the following statistics which will be used as a

comparison:

 147

Utilization Indicates how the bus is being used and is calculated by dividing the

number of bus transactions by the total number of clocks.

Efficiency This the duration of data transfers versus duration of transactions and is

calculated by dividing the data total percentage by the transactions

percentage.

Bandwidth Amount of data sent over the bus per unit time and is calculated by

dividing the total number of bytes sent divided by the total time.

Figure 8.1: Experimental system setup

Sim.
Number

Bus PCI Devices PCI-X Devices Hostbridg
e Type Speed Width Maste

r
Target Maste

r
Target

1 PCI 33
MHz

32-bit 1 1 0 0 Intel [30]

2 PCI 33
MHz

32-bit 3 2 0 0 Intel [30]

3 PCI-
X

133
MHz

64-bit 0 0 1 1 Intel [31]

Table 8.1: Summary list of experiments

 148

8.1 Simulation 1: Single PCI Master

Our first simulated system consists of a 32-bit, 33 MHz PCI bus using Intel’s 82801DB

I/O controller hub. A single bus master device, Foresight Imaging’s PCI frame grabber,

can inject data onto the bus at a rate of 110 MB/s (calculated using a resolution of 1280

by 1024 with 24 bit depth at 28 frames per second) and exhibits performance

characteristics as described in Table 8.2. The frame grabber writes to and reads from

system memory, acting as the target device, via the host bridge. The target device incurs

no initial wait states on writes and exhibits an average of 15-34 initial wait states on

reads. It can sustain long bursts (up to a 4K page boundary) with no subsequent wait

states. The performance characteristics of system memory are described in Table 8.3. The

frame grabber will perform 34 burst writes at the maximum speed (i.e.: no subsequent

wait states) for each transaction until it hits a cache line which falls on a 4KB page

boundary, in which case a read will occur. A round robin arbiter is modeled after the PCI

scheduler found in Intel’s 82801 ICH with a MTT (multi-transaction timer) set to 20.

The following graph (Figure 8.2) shows the results of our simulation versus the statistics

gathered by the VMetro Bus Analyzer. We incur minimal error with respect to bus

utilization and efficiency, 2.21% and 0.3% respectively. However, there was a 7.76%

difference in the bandwidth, with our simulator producing a larger bandwidth value. We

believe this is due to our optimistic calculation of the recovery period. We recall that our

definition of recovery period is the minimum amount of time between transaction

requests, calculated using Equations 7.1 and 7.2. Generally this is the amount of time it

takes to refill the buffers, although, there may be other device specific factors involved

 149

which may delay requests. Our calculation only depends on the device’s required

bandwidth and the burst length of the next transaction while ignoring other outside

factors.

Device Frame Grabber
Device Type 32-bit PCI Master
Injection Rate 110 MB/s
Read/Write Ratio Perform write until 4K boundary and then 1 read transaction
Burst Length Read: 4

Write: 34

Initial Wait States Read: 0

Write: 0

Subsequent Wait
States

Read: 0

Write: 0

Master Latency
Timer

64

Recovery Period Calculated using Equation 7.1
Transaction Count 200

Table 8.2: Master performance specifications for simulation 1

Device Host Bridge (System Memory)
Device Type 32-bit PCI Target
Decode Speed Medium
Burst Length Stop at 4K page boundary
Initial Wait States Read: Random (15 - 24)

Write: 0

Subsequent Wait
States

Read: 0

Write: 0

Initial Retry
Threshold

16

Subsequent Retry
Threshold

8

Table 8.3: Target performance specifications for simulation 1

 150

Figure 8.2: VMetro analyzer versus PCI simulator results for simulation 1

8.2 Simulation 2: Three PCI Masters

As with the previous simulation, our system consists of a 32-bit, 33 MHz PCI bus using

Intel’s 82801DB I/O controller hub. However, in order to generate more interesting

results, we now include three PCI master devices. In addition to the frame grabber we

used in the previous simulation, we include Engineering Design Team’s Camera and PCI

interface streaming live data which can inject approximately 110 MB/s of data onto the

bus. The camera performs burst writes for 66 cycles at the full data rate (i.e.: no wait

states). We note that, while the device’s master latency timer is set at 64, the PCI

specification allows two extra cycles before a device must complete the transaction. After

each burst write, a memory read is performed followed by an I/O read of 4 cycles and 1

cycle, respectively. Periodically, a CPU read of the camera’s PCI interface is performed

and thus injects approximately 1 MB/s of data. Reads and writes to memory are still

performed via the host bridge and assume the same parameters. However, I/O reads via

the host bridge now incur initial wait states of between 5 and 8 cycles. We also assume a

round robin arbiter with the MTT set to 20 cycles.

 151

Device Frame Grabber Camera CPU
Device Type 32-bit PCI Master 32-bit PCI Master 32-bit PCI Master
Injection Rate 110 MB/s 110 MB/s 1 MB/s
Read/Write Ratio Perform write until

4K boundary and
then 1 read
transaction

Repeat memory
write followed by
read and then I/O
read

All memory reads

Burst Length Read: 4

Write: 64

Read: 4

Write: 66

Read: 1

Initial Wait States Read: 0

Write: 0

Read: Random (13
– 15)

Write: 0

Subsequent Wait
States

Read: 0

Write: 0

Read: 0

Write: 0

Recovery Period Calculated using
Equation 7.1

Calculated using
Equation 7.1

Calculated using
Equation 7.1

Master Latency
Timer

64 64 64

Transaction Count 200 200 200
Table 8.4: Master performance specifications for simulation 2

Device Host Bridge

(System Memory)
Host Bridge
(I/O Device)

Device Type 32-bit PCI Target 32-bit PCI Target
Decode Speed Medium Medium
Burst Length Stop at 4K page

boundary
1

Initial Wait States Read: Random (15 to 24)

Write: 0

Read: Random (5 - 8)

Write: 0

Subsequent Wait States Read: 0

Write: 0

Read: 0

Write: 0

Initial Retry Threshold 16 16
Subsequent Retry Threshold 8 8

Table 8.5: Target performance specifications for simulation 2

Shown on following graph (Figure 8.3) are the results of our simulation versus the

statistics gathered by the VMetro Bus Analyzer. What is interesting to note is the fact that

we find a significant decrease in error (87.09%) with respect to the bandwidth from our

 152

previous simulation. We theorize this may be due to the fact that the recovery period may

be hidden by another device transferring data on the bus. Consider a simple example with

two devices on a bus, D1 and D2, where D2 has been granted access to the bus and D1 is

beginning its recovery period. If the recovery period for D2 is less than or equal to the bus

access time required by D1 to complete its transfer, then D2 will be able to immediately

start after D1 completes. If we denote the overhead associated to D2 as D2,overhead and the

following holds true:

eryreaccessoverhead DDD cov,2,1,2 −≤ (8.1)

Then the amount of error associated with the additional overhead is eliminated since in

our simulated case and in the physical system D2 will access the bus as soon as D1

completes. In fact, we see that in Section 3.1.2 and in 3.1.3, Schönberg provides a

detailed explanation of why this may be the cause. Specifically, see Figures 3.2 and 3.3.

Figure 8.3: VMetro analyzer versus PCI simulator results for simulation 2

 153

8.3 Simulation 3: Single PCI-X Master

 Our final simulated system consists of a 64-bit, 133 MHz PCI-X bus using Intel’s

6700PXH 64-bit PCI hub. A single bus master device, a Nallatech 64-bit 133 MHz PCI-

X FPGA computing motherboard [32], can inject data onto the bus at a rate of 192 MB/s

and exhibits performance characteristics as described in Table 8.6. The FPGA can

perform burst writes to system memory, acting as the target device, via the host bridge.

The target device incurs no initial wait states on writes and can sustain long bursts (up to

a 4K page boundary) with no subsequent wait states. The performance characteristics of

system memory are described in Table 8.7. The FPGA will perform 1,024 burst writes

with no subsequent wait states for each transaction until it hits a cache line, which falls

on a 4KB page boundary.

Figure 8.4: VMetro analyzer versus PCI simulator results for simulation 3

The results of our experiment are shown in Figure 8.4. As we have discussed previously,

the simulator calculates a minimum for the recovery period, thus leading to a higher

 154

bandwidth. However, we also notice that our simulator has a higher efficiency than the

actual system. The bus efficiency is calculated using the following formula:

nutilizatio

data

percent
percentefficiency = (8.2)

Where the data percentage is calculated by:

total

data
data cyclesclock

cyclesclockpercent
_
_

= (8.3)

Keeping the total number of clock cycles the same, as we increase the amount of data

cycles, we increase the data percentage, thus leading to a higher efficiency.

Device Nallatech FPGA
Device Type 64-bit PCI-X Master
Injection Rate 192 MB/s
Read/Write Ratio Perform write until 4K boundary and then 1 read transaction
Burst Length Write: 1024

Initial Wait States Read: 0

Write: 0

Subsequent Wait
States

Read: 0

Write: 0

Recovery Period Calculated using Equation 7.1
Master Latency
Timer

1024

Transaction Count 100
Table 8.6: Master performance specifications for simulation 3

 155

Device Host Bridge (System Memory)
Device Type 64-bit PCI-X Target
Decode Speed Medium
Burst Length Stop at 4K page boundary
Initial Wait States ead: Random (15 - 24) R

Write: 0

Subsequent Wait
States

ead: 0

te: 0

R

Wri

Initial Retry 16
Threshold
Subsequent Retry
Threshold

8

Table 8.7: Target performance specifications for simulation 3

 156

CHAPTER 9

SUMMARY

9.1 Conclusion

In this thesis we have developed a novel approach to PCI simulation using ScriptSim, an

open-source PCI simulator. We extended ScriptSim to include PCI-X functionality and

developed a web-based graphical user interface which provides users with a high level of

configurability to model real-life systems. The architecture and design of the system

employ well known software engineering techniques that ensure scalability. By using

well known design patterns we promote reuse while decreasing overall design time.

In order to achieve a high-level of accuracy in our simulations, we developed techniques

that allow devices to exhibit individualized behavior on the bus. This was done by

decomposing a device into a set of performance parameters that, together, make up a

device descriptor. While techniques were borrowed from the PCI specifications and a

previous simulator, we introduce two unique parameters, injection rate and recovery

period allowing us to specify how much data a device is able to put onto the bus and the

minimum amount of time it can start a subsequent transaction, once one has already

started. Experimental results show we achieve a high level of accuracy in bus utilization,

efficiency, and bandwidth versus system data captured by a bus analyzer.

 157

9.2 Future Use

Simulators have become a popular item in a designer’s toolbox. They allow for fast

prototyping with minimal expense helping to reduce costly mistakes that may arise in the

future. For those who are looking for the PCI bus as a solution to their problem, we

believe our tool could be of great benefit. Designing, building, and testing custom

hardware for the PCI bus can become both timely and costly. Using our PCI web

simulator, designers can easily simulate a PCI system based on their architecture to

immediately determine if the PCI bus is an appropriate choice. Users may also wish to

determine how different combinations of devices on the bus affect their custom device,

thereby determining if it is scalable. In addition, they may wish to alter parameters of

their simulated device to determine the best performance.

9.3 Future Work

While we have achieved an accurate PCI/PCI-X simulation tool with a flexible web-

based GUI, there are several additions which could be implemented allowing for better

ease of use and performance. Most of the GUI is text based; implementing a window

which allows device objects to be dragged and placed into the window would allow users

to easily visualize the architecture of the system they are modeling along with how

devices may interact. For performance, simulations could be distributed amongst many

load balanced systems.

While we believe that we have developed a rich and robust PCI simulation environment,

we can also see room for improvement and how others might contribute. The open-

source nature of ScriptSim allows developers to integrate current and future

 158

implementations of PCI. For instance, while we currently only implement PCI-X v1.0,

one can augment the code to implement PCI-X v2.0. Furthermore, one might also wish to

alter the code to test for possible improvements in the PCI protocol.

By developing the application interface using Java’s enterprise architecture, we provide

an extensible architecture for one to build upon. While most of the GUI is text based

viewed via a web browser; implementing a window which allows device objects to be

dragged and placed into the window would allow users to easily visualize the architecture

of the system they are modeling along with how devices may interact. For performance,

simulations could be distributed amongst many load balanced systems. One feature of the

simulator is the ability to store devices in the context of parameters. Each developer

needs to describe a device (such as an Ethernet card, or video card) in the context of these

parameters which are usually derived from manufacturer specifications. It may be useful

to allow designers to download devices created by others. In fact, we could easily see a

repository where by devices can be stored and automatically updated by the simulator

without the interference of the user. This would allow access to all the latest devices, in

addition to fixes of current devices. Another contribution may provide the ability to recall

results based on current input data. Simulations may take an excessive amount of time.

However, it would be beneficial to know if someone has run a similar simulation, and

thus only the results would be displayed. Along with the results would be the parameters

of the simulation allowing the designer to adjust the simulation for comparison purposes.

 159

In conclusion, we foresee many contributions that can be made by the community to

allow our PCI simulator to grow and become an important aspect in the research

community.

 160

REFERENCES

[1] T. Shanley and D. Anderson, ISA System Architecture. MindShare, Inc., 1995.

[2] W. Fischer, “IEEE P1014 – a standard for the high-performance VME bus,”

IEEE Micro, vol. 5, pp. 31-41, Feb. 1985.

[3] B.P. Aichinger, “Futurebus+ as an I/O Bus: Profile B,” in Proceedings of the
19th Annual International Symposium on Computer Architecture, (Gold Coast,
Australia), pp. 300-307, ACM SIGARCH and IEEE Computer Society TCCA,
May 19-21, 1992.

[4] IEEE Standards for Futurebus+ - Logical Protocol Specification, std 896.1-
1991 ed., Mar. 1992.

[5] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips,
Universal Serial Bus Specification 2.0, 2.0 ed., Apr. 2000.

[6] IEEE Standard for a High Performance Serial Bus, std. 1394-1995, Dec. 1995.

[7] IEEE Standard for a High Performance Serial Bus – Amendment 1, std. 1394a-
2000, Mar. 2000.

[8] IEEE Standard for a High Performance Serial Bus – Amendment 2, std. 1394b-
2002, Dec. 2002.

[9] Intel Corp., Accelerated Graphics Port Interface Specification. Santa Clara,
May, 1998. Revision 2.0.

[10] Intel Corp., AGP V3.0 Interface Specification. Santa Clara, Sept., 2002. Revision
1.0.

[11] S.K. Dewan, “Introduction to PCI Express - A New High Speed Serial Data
Bus,” Nuclear Science Symposium Conference Record, vol. 2, pp. 687-691, Oct.
2005.

[12] InfiniBand Trade Association, InfiniBand Architecture, rel. 1.2, Oct. 2004.

[13] E. Solari and G. Willse, PCI & PCI-X Hardware and Software Architecture &
Design. Research Tech Inc., 6th ed., 2005.

[14] E. Finkelstein, “Design and Implementation of PCI Bus Based Systems.”
Master’s Thesis, Tel Aviv University, 1997.

 161

[15] S. Schönberg, “Using PCI-Bus Systems in Real-Time Environments.” PhD
Thesis, Technische Universität Dresden, 2002.

[16] PCI Special Interest Group, PCI Local Bus Specification Revision 2.2, Dec.

1998.

[17] PCI Special Interest Group, PCI-X Addendum to the PCI Local Bus
Specification, rev. 1.0b, July 2002.

[18] “DesignWare PCI and PCI-X Solutions.”
http://www.synopsys.com/products/designware/pci_solutions.h
tml.

[19] VMETRO. http://www.vmetro.com/.

[20] J. Liedtke, M. Völp, and K. Elphinstone, “Preliminary thoughts on memory-bus
scheduling.” In 9th SIGOPS European Workshop, (Kolding, Denmark), Sept.
2002.

[21] “PCI Pamette V1.”
http://www.hpl.hp.com/downloads/crl/pci/index.html.

[22] Intel Corp., Santa Clara, Intel 440FX PCISET 82441FX PCI and Memory
Controller (PMC) and 82442FX Data Bus Accelerator (DBX), May 1996. Order
290549-001

[23] M. Fowler and K. Scott, UML Distilled Second Edition. Reading, MA: Addison-
Wesley, Jan. 2000.

[24] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns. Upper Saddle River, NJ:
Prentice Hall, 2nd ed., 2003.

[25] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao, “JSIM: A Java-Based
Simulation and Animation Environment,” in Proceedings of the 30th Annual
Simulation Symposium, pp. 31-42, Atlanta, George, April, 1997.

[26] X. Huang and J. A. Miller, “Building a Web-Based Federated Simulation System
with Jini and XML,” in Proceedings of the 34th Annual Simulation Symposium,
pp. 143-150, Seattle, Washington, April, 2001.

[27] J. Stearns, R. Chinnici, and Sahoo, “An Introduction to the Java EE 5 Platform.”
Sun Developer Network, May 2006.
http://java.sun.com/developer/technicalArticles/J2EE/intro_
ee5/.

 162

 163

[28] “Jini Network Technology.”

http://java.sun.com/developer/products/jini/index.jsp.

[29] “Extensible Markup Language (XML).” http:// www.w3.org/XML/.

[30] Intel Corp., Santa Clara, Intel 82801DB I/O Controller Hub 4 (ICH4), May
2002. Order # 290744-001

[31] Intel Corp., Santa Clara, Intel 6700PXH 64-bit PCI Hub, July 2004. Order #
302628-002

[32] Nallatech. http://www.nallatech.com/.

[33] ScriptSim. http://www.nelsim.com/scriptsim/intro.html.

