


 
Figure 7.6: PCI Simulator site map 

 

7.3.6 Functional Design 

At the beginning of this section we discussed the functional requirements and illustrated 

the use case based on our requirements in Figure 7.1. This formed a high-level view of 

the capabilities provided by the system. The sections that followed discussed the 

architectural details and the user interface design. With that information in mind, we now 

provide the functional details of how the user interface interacts with our system. This 

interaction can be explained with the use of a UML sequence diagram. A sequence 

diagram is usually derived from a use case and shows the interaction of objects, the 

messages between them, and the order in which the messages occur. The following 

subsections list the use cases of the system and their respective sequence diagram. 
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7.3.6.1 Simulation Use Case 

The simulation use case, illustrated in Figure 7.7, provides a look at the interaction 

between the user and the various functions provided by the system. The user may create a 

new simulation either manually or through a simulation wizard, open an existing 

simulation, save the current simulation, rename a simulation, delete a simulation, or edit 

the settings of a simulation. 

 
Figure 7.7: Simulation use case 

 

7.3.6.1.1 New Simulation 

When issuing a new simulation, the XML request is handled by the 

SimulationController which instantiates a new SimulationXMLAction 

object. In turn, a new SimulationFacade is created in which the 

newSimulation() method is called. The SimulationDAO creates a new 

Simulation object, adds the data provided by the user to the object, and saves it to the 

database. For easy retrieval, the object is persisted in a session. A status is sent back to 
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the SimulationXMLAction object where an XML response is formed and returned 

back to the GUI. The user is then presented with a confirmation message and the user 

interface is updated appropriately. 

 
Figure 7.8: New simulation sequence diagram 

 

7.3.6.1.2 Open Simulation 

When the open simulation command is issued, the XML request data is formed and is 

handled by the SimulationController which instantiates a new 

SimulationXMLAction object. In turn, a new SimulationFacade is created in 

which the getSimulations() method is called. The SimulationDAO retrieves a 

list of simulations from the database and returns it back to the 

SimulationXMLAction object where an XML response is formed and returned back 

to the GUI. The user is then presented with a list of simulations to choose from. Once a 

simulation is chosen, a separate XML request is sent to the server containing the 
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simulation id. Again, the SimulationController handles the request, extracts the 

id and calls the SimulationXMLAction.handleOpenAction() method. From 

there, the SimulationFacade.getSimulation() is called with the simulation id 

and then sent to the SimulationDAO object. When the simulation data is returned it 

gets added to the Simulation object. The XML response is formed and then sent back 

to the GUI where it is updated to reflect the opened simulation. 

 

 
Figure 7.9: Open simulation sequence diagram 

 

7.3.6.1.3 Save Simulation 

In issuing a save simulation command, the XML request is handled by the 

SimulationController which instantiates a new SimulationXMLAction 

object, extracts the id, and then calls the 

SimulationXMLAction.handleSaveSimulation() method. From within the 
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handleSaveSimulation() method, a new SimulationDAO object is created and 

the saveSimulation() method is called which stores the updated information in the 

database. A status method is returned back to the SimulationXMLAction object 

where an XML response is formed and returned back to the GUI. 

 

 
Figure 7.10: Save simulation sequence diagram 

 

7.3.6.1.4 Rename Simulation 

When a rename simulation command is issued, the XML request is formed and handled 

by the SimulationController which instantiates a new 

SimulationXMLAction object, extracts the id and new name, and then calls the 

SimulationXMLAction.handleRenameSimulation() method. From within 

the handleRenameSimulation() method, a new SimulationFacade object is 

created and the getSimulation() method is called. This returns the Simulation 

object from the session. The new name is inserted into the object and then stored in the 
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database. A status method is returned back to the SimulationXMLAction object 

where an XML response is formed and returned back to the GUI. 

 
Figure 7.11: Rename simulation sequence diagram 

  
7.3.6.1.5 Delete Simulation 

When the delete command is sent, an XML request is formed and the simulation id is 

sent to the server and handled by the SimulationController. The 

SimulationController creates a new SimulationXMLAction object and calls 

the handleDeleteSimulation() method. From there, a new 

SimulationFacade is created and the deleteSimulation() method called with 

the simulation id as the attribute. The SimulationDAO deletes the simulation from the 

database and returns the status. The session is then invalidated removing any objects 

persisted with the session. The response XML is then formed along with the status 

(success or error) and then sent to the GUI where the appropriate action takes place. 
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Figure 7.12: Delete simulation sequence diagram 

 

7.3.6.1.6 Simulation Settings 

When the simulation settings command is issued, the XML request data is formed and is 

handled by the SimulationController which calls the 

SimulationXMLAction.handleEditSimulation() method. From there, a 

new SimulationFacade object is created and the 

SimulationFacade.getSimulation() is called with the simulation id as the 

attribute. The Simulation object is returned from the session and return back to the 

SimulationXMLAction object. An XML response is formed with the simulation 

settings and returned back to the client. The user is presented with the existing settings 

and may then proceed to edit the settings. Once finished with the edit, the user submits 

the information back to the server, which again is handled by the 

SimulationController. The SimulationController object calls the 

SimulationXMLAction.handleEditSimulation() method which creates a 

new SimulationFacade object. The saveSimulationSettings() method is 

called with the simulation id and data which is stored in the database by a call to the 

SimulationDAO.saveConfigurationSettings() method. The status is then 
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returned, and the Simulation object is updated within the session for later retrieval. A 

confirmation method is returned to the client via the SimulationXMLAction which 

forms the response XML handled by the client. 

 
Figure 7.13: Simulation settings sequence diagram 

 

7.3.6.2 Device Use Case 

The simulation use case, illustrated in Figure 7.14, provides a look at the interaction 

between the user and the various functions provided by the system. The user may create a 

new device either manually or through a simulation wizard, open an existing device that 

was previously created, save a device, rename a device, or delete a device. 
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Figure 7.14: Device use case 

  
7.3.6.2.1 New Device 

When issuing a new device command, the XML request is handled by the 

SimulationController which instantiates a new SimulationXMLAction 

object. In turn, a new SimulationFacade is created in which the newDevice() 

method is called. The SimulationDAO creates a new Device object, adds the data 

provided by the user to the object, and saves it to the database. For easy retrieval, the 

object is persisted in a session and added to the current simulation. A status is sent back 

to the SimulationXMLAction object where an XML response is formed and 

returned back to the GUI. The user is then presented with a confirmation message and the 

user interface is updated appropriately. 
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Figure 7.15: New device sequence diagram 
 

7.3.6.2.2 Open Device 

When the open command is issued, an XML request is formed and handled by the 

SimulationController which instantiates a new SimulationXMLAction 

object.  A new SimulationFacade is created in which the getDevices() method 

is called. The SimulationDAO retrieves a list of devices from the database and returns 

it back to the SimulationXMLAction object where an XML response is formed and 

returned back to the GUI. The user is then presented with a list of devices to choose 

from. Once a device is chosen, a separate XML request is sent to the server containing 

the device id. Again, the SimulationController handles the request, extracts the 

id and calls the SimulationXMLAction.handleOpenDevice() method. From 

there, the SimulationFacade.getDevice() is called with the device id and then 

sent to the SimulationDAO object. When the device is returned it gets added to the 
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Simulation object. The XML response is formed and then sent back to the GUI where 

it is updated to reflect the opened device. 

 
Figure 7.16: Open device sequence diagram 

  
7.3.6.2.3 Save Device 

In issuing a save device command, the XML request is handled by the 

SimulationController which instantiates a new SimulationXMLAction 

object, extracts the id, and then calls the 

SimulationXMLAction.handleSaveDevice() method. From within the 
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handleSaveDevice() method, a new SimulationDAO object is created and the 

saveDevice() method is called which stores the updated information in the database. 

A status method is returned back to the SimulationXMLAction object where an 

XML response is formed and returned back to the GUI. 

 
Figure 7.17: Save device sequence diagram 

 

7.3.6.2.4 Rename Device 

When a rename device command is issued, the XML request is formed and handled by 

the SimulationController which instantiates a new SimulationXMLAction 

object, extracts the id and new name, and then calls the 

SimulationXMLAction.handleRenameDevice() method. From within the 

handleRenameDevice() method, a new SimulationFacade object is created 

and the getDevice() method is called. This returns the Device object from the 

session. The new name is inserted into the object and then stored in the database. A status 

method is returned back to the SimulationXMLAction object where an XML 

response is formed and returned back to the GUI. 
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Figure 7.18: Rename device sequence diagram 

 
 

7.3.6.2.5 Delete Device 

When the delete command is issued, an XML request is formed and the device id sent to 

the server and handled by the SimulationController. The 

SimulationController creates a new SimulationXMLAction object and calls 

the handleDeleteDevice() method. From there, a new SimulationFacade is 

created and the deleteDevice() method is called with the device id as the attribute. 

The SimulationDAO deletes the device from the database and also updates every other 

simulation that references it. The device is then removed from the Simulation object. The 

response XML is then formed with the status (success or error) and then sent to the GUI 

where the appropriate action takes place. 
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Figure 7.19: Delete device sequence diagram 

 
7.3.6.3 Run Simulation Use Case 

The run simulation use case, illustrated in Figure 7.20, provides a look at the interaction 

between the user and the various functions provided by the system. In this specific case, 

the user can only perform two functions: run simulation and view statistics. We note that 

the view statistics use case extends the run simulation use case. 

 
Figure 7.20: Run simulation use case 

 
7.3.6.3.1 Run Simulation 

This action allows the user to run the simulation from the currently configured system. 

An XML request is sent to the server with the simulation id and action. The 
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SimulatorController creates a new SimulationXMLAction object calling the 

handleRunSimulation() method. The runSimulation() method is then called 

with the simulation id. The Simulation object is then retrieved from the session by id. 

From the Simulation object, the information is retrieved and the necessary 

configuration scripts are created. The ScriptSim simulator is then run using the newly 

created scripts. Once run, the simulator monitors the status and sends updates back to the 

UI via an XML response. Once complete, the user is notified of the completion and the 

status. 

 
Figure 7.21: Run simulation sequence diagram 

 

7.3.6.3.2 View Statistics 

This action allows the user to view the statistics from a previously run simulation. An 

XML request is sent to the server with the simulation id and action. The 

SimulatorController creates a new SimulationXMLAction object calling the 
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handleViewStatistics() method. The getStatistics() method is then 

called with the simulation id. The Statistics object is then retrieved once the 

generate() method is called. The Statistics object is returned to the controller 

which extracts the information and formats it into an XML response. The response is then 

sent back to the client, which formats the page and presents it to the user. 

 
Figure 7.22: View statistics sequence diagram 

 

7.4 Modification and Implementation of ScriptSim 

We recall from Section 6 that ScriptSim provides a complete PCI model per the PCISIG 

Local Bus Specification Version 2.2, which is described in detail in Section 4. We noted 

previously that ScriptSim lacks PCI-X functionality and the ability to model device 

behavior. To add in the PCI-X component, as described in Section 5, we simply modified 

a single python file (pci_lib.py), the details of which are beyond the scope of this 

thesis. However, adding the ability to model device behavior was more complex. 

Previously in Section 7.1, we provided details on how to model device behavior by 

decomposing a master and target device into a set of performance parameters. We 

modified ScriptSim to accommodate the parameters of both master and target device 
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descriptors as described in Sections 7.1.1.1 and 7.1.1.2 respectively. Before providing 

these details, outlined in Section 7.4.2 below, we must first understand some of the 

challenges of synchronization when implementing device latency as described in the 

following section. 

7.4.1 Device Latency and Synchronization 

One of the factors that affect bus performance is device latency. Both master and target 

devices have the ability to add wait states during a transaction if one, or both, are unable 

to send or receive data during a clock period. In Figure 7.23, the target device adds a wait 

state on clock cycle 3, which is signaled by the assertion of TRDY#. Before clock cycle 4 

occurs, the target deasserts TRDY# and a data transfer occurs during that same clock 

cycle. It is here we note that a data transfer will occur on clock cycle 5 as long as the 

target deasserts TRDY# at some point in between clock cycle 4 and clock cycle 5. In a 

real system, devices are attached to a physical bus and thus, any signal that is placed on 

the bus is almost immediately sensed by other devices. However, this is not true in the 

case of ScriptSim which tries to emulate a PCI bus. 
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Figure 7.23: Typical PCI write transaction 

 

To understand this more clearly, we must first understand how ScriptSim handles bus 

signals. Figure 7.24 provides a high-level view of how bus signals are sent and received 

in ScriptSim. In this figure, three devices (dev1, dev2, and dev3) are attached to the bus, 

each of which send and receive bus signals on every clock cycle. During a single clock 

period, the ScriptSim verilog program receives bus signals from every device, merges 

them using an and_reduce function, and then distributes the merged signal back to all 

devices. Thus, signals sent by some device on clock cycle n will not be received by other 

devices until clock cycle n + 1. In the case of a data transfer, devices will now receive 

data one clock cycle late. This can easily be solved by allowing devices to send data one 

clock cycle early. However, this only works if devices are always ready to send or 

receive data (i.e.: insert no wait states). If a device has to induce latency by inserting wait 

states, data transfers that occurred during a previous clock period are no longer valid. 
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Figure 7.24: High-level view of bus signal distribution in ScriptSim 

 

To illustrate, we present a simple example as shown in Figure 7.25, which recreates the 

PCI write shown in Figure 7.23. The start of a transaction begins with an idle phase on 

clock cycle 1, which is followed immediately by the address phase in clock cycle 2 

(AD_OUT). At this point, we realize the address will not be received by other devices on 

the bus until clock cycle 3 (AD_IN). The first data phase will not occur until clock cycle 4 

since the target asserts TRDY_OUT# on clock cycle 3, which will not be received by the 

master until clock cycle 4. While data is sent out during clock cycle 4, the target won’t 

receive the data until clock cycle 5, at which point the target will deassert TRDY_OUT# 

indicating a wait state. Thus, the final piece of data will be sent on clock cycle 6 and 

received by the target on clock cycle 7. The transaction ends on clock cycle 8, two full 

clock cycles later than expected. 
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To solve this issue, we allowed devices to send signals one clock early. However, issues 

arrive when a device needs to insert wait states since it is possible for a device to send 

data during a clock period where a wait state should occur. Therefore, we allow both 

master and target to share latency information during a transaction. By knowing a priori 

how many wait states a device must incur during a specific portion of a transaction, a 

device can send signals at the correct time. While this does not correctly emulate signals 

during a PCI transaction, it does produce correct results. 

 
Figure 7.25: PCI write transaction in ScriptSim 

7.4.2 Implementing Device Behavior 

We recall that ScriptSim uses the notion of a control file to configure each device that is 

to be simulated. Within the control file are a set of keyword-value pairs that describe the 

device depending on if it is a master device or target device. These keyword descriptions 

are detailed in Tables 6.4 and 6.5 for master and target devices, respectively. To 
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implement the parameters associated with our device descriptor, as discussed in Section 

7.1.1, we extend the control file to include additional parameters. These extended 

parameters for master devices are outlined in Table 7.1 while extended target device 

parameters are outlined in Table 7.2. 

Table 7.1: Extended master keyword descriptions (continued on pg. 147) 

Keyword Value Description 
cmd 2-4 letter command 

abbreviation 
Specify the command to be driven on the 
C/BE# lines. 
PCI values: 
ia – interrupt acknowledge  
sc – special cycle 
ir – I/O read 
iw – I/O write 
mr – memory read 
mw – memory write 
cr – configuration read 
cw – configuration write 
mm – memory read multiple 
ml – memory read line 
mi – memory write and invalidate 
PCI-X values: 
ia – interrupt acknowledge  
sc – special cycle 
ir – I/O read 
iw – I/O write 
id – Device ID 
mr – memory read 
mw – memory write 
amrb – alias to memory read block 
amwb – alias to memory write block 
cr – configuration read 
cw – configuration write 
spc – split completion 
dac – dual address cycle 
mrb – memory read block 
mwb – memory write block 

miws Number This value specifies the number of master 
initial wait states. 

msws Number(s) Specifies the number of master subsequent 
wait states. 

 145 



tiws Number This specifies the number of initial waits 
states we expect for the target. 

tsws Number(s) This specifies the number of subsequent 
waits states we expect for the target. 

tirt Number Specifies the initial retry threshold of the 
target we are communicating with. 

tsrt Number Specifies the subsequent retry threshold of 
the target we are communicating with. 

start Number This value specifies the start time, in cycles. 
A master will not initiate a transaction until 
the current clock cycle is greater than or 
equal to this value.  

Table 7.2: Extended master keyword descriptions (continued from pg. 146) 
 

Keyword Value Description 
cap_pntr Number The Capability Pointer specifies the 

hardwired value in the configuration space 
register at address 0x34 (upper 16 bits). The 
address specified in this register is a pointer 
to the first capabilities list item 

capability Number(s) Specify the hardwired capability and written 
value. Example: capability=(0x84, 0x7, 0x0, 
0x0, 0x0) specifies the item is located at 
address 0x84, that it is a PCI-X capability 
list, has no other capabilities in the list, has 
an ID of 0x0, and a status set to 0x0.  

Table 7.3: Extended target keyword descriptions 
 

While we acknowledge there were several additions and changes to the source code to 

accommodate the above parameters, the implementation details are beyond the scope of 

this thesis. 
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CHAPTER 8 

EXPERIMENTAL RESULTS 

In this section we discuss the experimental results obtained from our PCI simulator. To 

verify the accuracy of the simulator, we gathered PCI and PCI-X cycle snapshots from a 

variety of configurations generated by Vanguard’s VMetro Bus Analyzer [19]. Statistical 

information was then extracted and used in our simulator to generate results. 

 

For experiments, the setup was organized as shown in Figure 8.1. Modern PC 

architectures split the memory controller and I/O controller into separate chips labeled as 

the Northbridge and Southbridge respectively. The Northbridge, or memory controller 

hub, handles high speed communication between devices such as the CPU, RAM, and 

AGP or PCI Express. The Southbridge, or I/O controller hub, typically handles less 

performance critical I/O devices such as the PCI or PCI-X bus, LPC Bus and other I/O 

devices. The PCI/PCI-X bus will contain one or more PCI/PCI-X devices as well as the 

VMetro Bus Analyzer which will be used to passively monitor the bus. Data collected by 

the analyzer will be then sent to the PC via USB which can be analyzed through 

VMetro’s BusView software. 

In Table 8.1 we outline the various configurations used for testing. Each test 

configuration was first run on a physical system using the VMetro Bus Analyzer to 

capture the data. We then calculated the following statistics which will be used as a 

comparison: 
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Utilization Indicates how the bus is being used and is calculated by dividing the 

number of bus transactions by the total number of clocks. 

 

Efficiency This the duration of data transfers versus duration of transactions and is 

calculated by dividing the data total percentage by the transactions 

percentage. 

 

Bandwidth Amount of data sent over the bus per unit time and is calculated by 

dividing the total number of bytes sent divided by the total time.  

 
Figure 8.1: Experimental system setup 

 

Sim. 
Number 

Bus PCI Devices PCI-X Devices Hostbridg
e Type Speed Width Maste

r 
Target Maste

r 
Target 

1 PCI 33 
MHz 

32-bit 1 1 0 0 Intel [30] 

2 PCI 33 
MHz 

32-bit 3 2 0 0 Intel [30] 

3 PCI-
X 

133 
MHz 

64-bit 0 0 1 1 Intel [31] 

Table 8.1: Summary list of experiments 
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8.1 Simulation 1: Single PCI Master 

Our first simulated system consists of a 32-bit, 33 MHz PCI bus using Intel’s 82801DB 

I/O controller hub. A single bus master device, Foresight Imaging’s PCI frame grabber, 

can inject data onto the bus at a rate of 110 MB/s (calculated using a resolution of 1280 

by 1024 with 24 bit depth at 28 frames per second) and exhibits performance 

characteristics as described in Table 8.2. The frame grabber writes to and reads from 

system memory, acting as the target device, via the host bridge. The target device incurs 

no initial wait states on writes and exhibits an average of 15-34 initial wait states on 

reads. It can sustain long bursts (up to a 4K page boundary) with no subsequent wait 

states. The performance characteristics of system memory are described in Table 8.3. The 

frame grabber will perform 34 burst writes at the maximum speed (i.e.: no subsequent 

wait states) for each transaction until it hits a cache line which falls on a 4KB page 

boundary, in which case a read will occur. A round robin arbiter is modeled after the PCI 

scheduler found in Intel’s 82801 ICH with a MTT (multi-transaction timer) set to 20. 

 

The following graph (Figure 8.2) shows the results of our simulation versus the statistics 

gathered by the VMetro Bus Analyzer. We incur minimal error with respect to bus 

utilization and efficiency, 2.21% and 0.3% respectively. However, there was a 7.76% 

difference in the bandwidth, with our simulator producing a larger bandwidth value. We 

believe this is due to our optimistic calculation of the recovery period. We recall that our 

definition of recovery period is the minimum amount of time between transaction 

requests, calculated using Equations 7.1 and 7.2. Generally this is the amount of time it 

takes to refill the buffers, although, there may be other device specific factors involved 
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which may delay requests. Our calculation only depends on the device’s required 

bandwidth and the burst length of the next transaction while ignoring other outside 

factors.  

 

Device Frame Grabber 
Device Type 32-bit PCI Master 
Injection Rate 110 MB/s 
Read/Write Ratio Perform write until 4K boundary and then 1 read transaction 
Burst Length Read: 4 

 
Write: 34 

Initial Wait States Read: 0 
 
Write: 0 

Subsequent Wait 
States 

Read: 0 
 
Write: 0 

Master Latency 
Timer 

64 

Recovery Period Calculated using Equation 7.1  
Transaction Count 200 

Table 8.2: Master performance specifications for simulation 1 
 
Device Host Bridge (System Memory) 
Device Type 32-bit PCI Target 
Decode Speed Medium 
Burst Length Stop at 4K page boundary 
Initial Wait States Read: Random (15 - 24) 

 
Write: 0 

Subsequent Wait 
States 

Read: 0 
 
Write: 0 

Initial Retry 
Threshold 

16 

Subsequent Retry 
Threshold 

8 

Table 8.3: Target performance specifications for simulation 1 
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Figure 8.2: VMetro analyzer versus PCI simulator results for simulation 1 

8.2 Simulation 2: Three PCI Masters 

As with the previous simulation, our system consists of a 32-bit, 33 MHz PCI bus using 

Intel’s 82801DB I/O controller hub. However, in order to generate more interesting 

results, we now include three PCI master devices. In addition to the frame grabber we 

used in the previous simulation, we include Engineering Design Team’s Camera and PCI 

interface streaming live data which can inject approximately 110 MB/s of data onto the 

bus. The camera performs burst writes for 66 cycles at the full data rate (i.e.: no wait 

states). We note that, while the device’s master latency timer is set at 64, the PCI 

specification allows two extra cycles before a device must complete the transaction. After 

each burst write, a memory read is performed followed by an I/O read of 4 cycles and 1 

cycle, respectively. Periodically, a CPU read of the camera’s PCI interface is performed 

and thus injects approximately 1 MB/s of data. Reads and writes to memory are still 

performed via the host bridge and assume the same parameters. However, I/O reads via 

the host bridge now incur initial wait states of between 5 and 8 cycles. We also assume a 

round robin arbiter with the MTT set to 20 cycles. 
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Device Frame Grabber Camera CPU 
Device Type 32-bit PCI Master 32-bit PCI Master 32-bit PCI Master 
Injection Rate 110 MB/s 110 MB/s 1 MB/s 
Read/Write Ratio Perform write until 

4K boundary and 
then 1 read 
transaction 

Repeat memory 
write followed by 
read and then I/O 
read 

All memory reads 

Burst Length Read: 4 
 
Write: 64 

Read: 4 
 
Write: 66 

Read: 1 
 
 

Initial Wait States Read: 0 
 
Write: 0 

Read: Random (13 
– 15) 
 
Write: 0 

 
 
 

Subsequent Wait 
States 

Read: 0 
 
Write: 0 

Read: 0 
 
Write: 0 

 
 
 

Recovery Period Calculated using 
Equation 7.1 

Calculated using 
Equation 7.1 

Calculated using 
Equation 7.1 

Master Latency 
Timer 

64 64 64 

Transaction Count 200 200 200 
Table 8.4: Master performance specifications for simulation 2 

 
Device Host Bridge  

(System Memory) 
Host Bridge  
(I/O Device) 

Device Type 32-bit PCI Target 32-bit PCI Target 
Decode Speed Medium Medium 
Burst Length Stop at 4K page 

boundary 
1 

Initial Wait States Read: Random (15 to 24) 
 
Write: 0 

Read: Random (5 - 8) 
 
Write: 0 

Subsequent Wait States Read: 0 
 
Write: 0 

Read: 0 
 
Write: 0 

Initial Retry Threshold 16 16 
Subsequent Retry Threshold 8 8 

Table 8.5: Target performance specifications for simulation 2 
 
Shown on following graph (Figure 8.3) are the results of our simulation versus the 

statistics gathered by the VMetro Bus Analyzer. What is interesting to note is the fact that 

we find a significant decrease in error (87.09%) with respect to the bandwidth from our 
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previous simulation. We theorize this may be due to the fact that the recovery period may 

be hidden by another device transferring data on the bus. Consider a simple example with 

two devices on a bus, D1 and D2, where D2 has been granted access to the bus and D1 is 

beginning its recovery period. If the recovery period for D2 is less than or equal to the bus 

access time required by D1 to complete its transfer, then D2 will be able to immediately 

start after D1 completes. If we denote the overhead associated to D2 as D2,overhead and the 

following holds true: 

eryreaccessoverhead DDD cov,2,1,2 −≤     (8.1) 

 

Then the amount of error associated with the additional overhead is eliminated since in 

our simulated case and in the physical system D2 will access the bus as soon as D1 

completes. In fact, we see that in Section 3.1.2 and in 3.1.3, Schönberg provides a 

detailed explanation of why this may be the cause. Specifically, see Figures 3.2 and 3.3.  

 
Figure 8.3: VMetro analyzer versus PCI simulator results for simulation 2 
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8.3 Simulation 3: Single PCI-X Master 

 Our final simulated system consists of a 64-bit, 133 MHz PCI-X bus using Intel’s 

6700PXH 64-bit PCI hub. A single bus master device, a Nallatech 64-bit 133 MHz PCI-

X FPGA computing motherboard [32], can inject data onto the bus at a rate of 192 MB/s 

and exhibits performance characteristics as described in Table 8.6. The FPGA can 

perform burst writes to system memory, acting as the target device, via the host bridge. 

The target device incurs no initial wait states on writes and can sustain long bursts (up to 

a 4K page boundary) with no subsequent wait states. The performance characteristics of 

system memory are described in Table 8.7. The FPGA will perform 1,024 burst writes 

with no subsequent wait states for each transaction until it hits a cache line, which falls 

on a 4KB page boundary. 

 
Figure 8.4: VMetro analyzer versus PCI simulator results for simulation 3 

 

The results of our experiment are shown in Figure 8.4. As we have discussed previously, 

the simulator calculates a minimum for the recovery period, thus leading to a higher 
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bandwidth. However, we also notice that our simulator has a higher efficiency than the 

actual system. The bus efficiency is calculated using the following formula: 

 

 
nutilizatio

data

percent
percentefficiency =       (8.2) 

 

Where the data percentage is calculated by: 

 

total

data
data cyclesclock

cyclesclockpercent
_
_

=      (8.3) 

 

Keeping the total number of clock cycles the same, as we increase the amount of data 

cycles, we increase the data percentage, thus leading to a higher efficiency. 

 

Device Nallatech FPGA 
Device Type 64-bit PCI-X Master 
Injection Rate 192 MB/s 
Read/Write Ratio Perform write until 4K boundary and then 1 read transaction 
Burst Length Write: 1024 

 
Initial Wait States Read: 0 

 
Write: 0 

Subsequent Wait 
States 

Read: 0 
 
Write: 0 

Recovery Period Calculated using Equation 7.1 
Master Latency 
Timer 

1024 

Transaction Count 100 
Table 8.6: Master performance specifications for simulation 3 
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Device Host Bridge (System Memory) 
Device Type 64-bit PCI-X Target 
Decode Speed Medium 
Burst Length Stop at 4K page boundary 
Initial Wait States ead: Random (15 - 24) R

 
Write: 0 

Subsequent Wait 
States 

ead: 0 

te: 0 

R
 
Wri

Initial Retry 16 
Threshold 
Subsequent Retry 
Threshold

8 
 
Table 8.7: Target performance specifications for simulation 3 
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CHAPTER 9 

SUMMARY 

9.1 Conclusion 

In this thesis we have developed a novel approach to PCI simulation using ScriptSim, an 

open-source PCI simulator. We extended ScriptSim to include PCI-X functionality and 

developed a web-based graphical user interface which provides users with a high level of 

configurability to model real-life systems. The architecture and design of the system 

employ well known software engineering techniques that ensure scalability. By using 

well known design patterns we promote reuse while decreasing overall design time. 

 

In order to achieve a high-level of accuracy in our simulations, we developed techniques 

that allow devices to exhibit individualized behavior on the bus. This was done by 

decomposing a device into a set of performance parameters that, together, make up a 

device descriptor. While techniques were borrowed from the PCI specifications and a 

previous simulator, we introduce two unique parameters, injection rate and recovery 

period allowing us to specify how much data a device is able to put onto the bus and the 

minimum amount of time it can start a subsequent transaction, once one has already 

started. Experimental results show we achieve a high level of accuracy in bus utilization, 

efficiency, and bandwidth versus system data captured by a bus analyzer. 
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9.2 Future Use 

Simulators have become a popular item in a designer’s toolbox. They allow for fast 

prototyping with minimal expense helping to reduce costly mistakes that may arise in the 

future. For those who are looking for the PCI bus as a solution to their problem, we 

believe our tool could be of great benefit. Designing, building, and testing custom 

hardware for the PCI bus can become both timely and costly. Using our PCI web 

simulator, designers can easily simulate a PCI system based on their architecture to 

immediately determine if the PCI bus is an appropriate choice. Users may also wish to 

determine how different combinations of devices on the bus affect their custom device, 

thereby determining if it is scalable. In addition, they may wish to alter parameters of 

their simulated device to determine the best performance.  

9.3 Future Work 

While we have achieved an accurate PCI/PCI-X simulation tool with a flexible web-

based GUI, there are several additions which could be implemented allowing for better 

ease of use and performance. Most of the GUI is text based; implementing a window 

which allows device objects to be dragged and placed into the window would allow users 

to easily visualize the architecture of the system they are modeling along with how 

devices may interact. For performance, simulations could be distributed amongst many 

load balanced systems. 

 

While we believe that we have developed a rich and robust PCI simulation environment, 

we can also see room for improvement and how others might contribute. The open-

source nature of ScriptSim allows developers to integrate current and future 
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implementations of PCI. For instance, while we currently only implement PCI-X v1.0, 

one can augment the code to implement PCI-X v2.0. Furthermore, one might also wish to 

alter the code to test for possible improvements in the PCI protocol. 

 

By developing the application interface using Java’s enterprise architecture, we provide 

an extensible architecture for one to build upon. While most of the GUI is text based 

viewed via a web browser; implementing a window which allows device objects to be 

dragged and placed into the window would allow users to easily visualize the architecture 

of the system they are modeling along with how devices may interact. For performance, 

simulations could be distributed amongst many load balanced systems. One feature of the 

simulator is the ability to store devices in the context of parameters. Each developer 

needs to describe a device (such as an Ethernet card, or video card) in the context of these 

parameters which are usually derived from manufacturer specifications. It may be useful 

to allow designers to download devices created by others. In fact, we could easily see a 

repository where by devices can be stored and automatically updated by the simulator 

without the interference of the user. This would allow access to all the latest devices, in 

addition to fixes of current devices. Another contribution may provide the ability to recall 

results based on current input data. Simulations may take an excessive amount of time. 

However, it would be beneficial to know if someone has run a similar simulation, and 

thus only the results would be displayed. Along with the results would be the parameters 

of the simulation allowing the designer to adjust the simulation for comparison purposes. 
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In conclusion, we foresee many contributions that can be made by the community to 

allow our PCI simulator to grow and become an important aspect in the research 

community. 
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