








We examine the eigenvectors and eigenvalues computedyexesihg AMLS, and us-
ing the Kronecker method to help understand the performdifisgences. Since mountain
car is a two dimensional continuous domain, it is easy toallgwompare the eigenvectors.

Figure 5.8 shows the second through sixth eigenvectorslfdhr@e methods. The
graph, which is from one of the 30 trials in the policy itecatiexperiments, contains 1050
vertices. The exact eigenvectors and those computed uditigSAare nearly identical.
Notice there are some similarities"f25", and ") and some differences 't3and 4") for

the approximate eigenvectors computed using the Kroneukénod.
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Figure 5.8. The 2'9-6™" eigenvectors computed exactly (top row), computed using_8M
(middle row), and computed using the Kronecker method @oottow) for the mountain
car domain. The approximate eigenvectors computed using\kte nearly identical to
the exact values.

The AMLS algorithm accurately computed 50 eigenvalues. &kect eigenvalues as
well as those computed using AMLS are shown in Figure 5.9.pltieon the left of Figure
5.9 show the eigenvalues in increasing order. Notice thectwees are nearly identical. To
detect small differences, the plot on the right of Figuresh®ws the difference between the
eigenvalues(\MS — \;). This plot shows there is some discrepancy between thewalue

and that the discrepancy is greater for larger eigenvallibs behavior is to be expected
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from AMLS because the projection method (i.e. using theraigetors from subproblems
as a basis for approximating the larger eigenvalue probtatyrally captures more of the

low frequency components of the Laplacian spectrum.
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Figure 5.9. The first 50 eigenvalues of the normalized graph Laplaciathi®mountain car
task computed exactly and approximated using the AMLS dlgur(left). The difference
between the approximate and exact eigenvalues (right) shiogre is some discrepancy,
but the error in the approximation is small relative to thealbte value.

Another way to compare the exact eigenvectors with the AMpSraximation is to
compute the angle between the subspaces spanned by theeeiges. Before we define
the angle between two subspaces, note it is easy to commuatie between two vectors.
Given two vectors: andy of the same length, one can compute the angle betweey
asarccos ( Ly ). Now, assume we have two subspasgsand Sy . Using the definition

=yl
of Bjorck and Golub [14], the angle betweély and Sy is defined to be the maximum

angle between any vector ) and its closest vector ify. This angle can be computed

given orthonormal matrice&” andY” spanning the subspac&s andSy respectively as:

0(Sx, Sy) = max min arccos (X;'Y;)
i

with column indices and;. Using this definition, the angle between the spaces spanned

the first 50 eigenvectors computed exactly and computedjdsihLS isd = 0.128 radians,
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or § = 7.3°. Thus, the exact eigenvectors and the AMLS approximateneegors span
similar spaces.

The bottom row of plots in Figure 5.8 shows the second throsigth approximate
eigenvectors produced using the Kronecker product metRedall these eigenvectors are
stored in a compressed form. They are formed by computind<te@ecker product of
an eigenvector associated witi @ x 105 matrix with an eigenvector of & x 10 matrix.
As described in Section 5.2.2, one can interpret the Krosepkoduct as partitioning the
1050 samples into 105 clusters, each of size 10. Practi¢hllymeans the eigenvectors
produced using the Kronecker product method are more cdétackier”) than those
produced using AMLS. This is evident in the jaggedness ofthetions.

We also computed the angle between the subspaces spanredfiogtt20 exact eigen-
vectors and the 20 eigenvectors computed using the Krones&thod. The angle was
0 = 0.751 radians, op = 43.0°. As expected, this is larger than the angle between the sub-
spaces spanned by the exact and AMLS eigenvectors. Howeyed3.0° indicates there
is still a significant degree of overlap between the exactknotiecker product eigenspaces
for mountain car. For graphs in acrobot, this angle was clas@0° (meaning there was
at least one function in the span of the true eigenvectordynedhogonal to all functions
in the span of the approximate eigenvectors computed usmétonecker method). This
does not fully explain why the Kronecker product eigenvecfmerformed poorly as basis
functions for the acrobot experiments, but it does providdence that graphs in acrobot
may be poorly approximated with the block structure of ther&cker product.

We also attempted to use the theoretical analysis develop&ection 5.2.4 to un-
derstand the behavior of the Kronecker product method. Keweve found that for
both mountain car and acrobot domains, the error in the Kakereproduct approxima-
tion (| E| = ||A — B ® C||) was greater than the eigengap of matfiXd in Theorem 2).

This violates one of the assumptions in the proof of Theorem 2
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In this section, we visually compared the eigenvectors peed by the three methods
for the mountain car task, compared the eigenvalues pradus@g the exact and AMLS
methods, and computed the angles between subspaces sigrthedeigenvectors. This
analysis indicates the AMLS algorithm allows for a bettepaximation of the Laplacian
eigendecomposition. The fact that AMLS allows for compgtihousands of eigenvectors
of sparse matrices with millions of entries makes it patady attractive for generating
proto-value functions. The analysis also shows the qualfitthe Kronecker product ap-
proximation depends more heavily on the specific graph bieicprized. The Kronecker
method’s block structure allowed for a better approximaitio the mountain car domain
than in acrobot. Whether or not the Kronecker method’s sdé@labnd compression can

be leveraged appears domain dependent.

5.4 Conclusions

In this chapter, we presented three ways to scale the grapbdbbasis construction
method to larger problems. The greedy sampling proceduseres the graph is con-
structed only using enough data points as necessary toeestaie space coverage. This
allows for removing redundant samples. Not only does thigktate graph and basis con-
struction, but it also speeds up nearest neighbor searches the features of a new state
(not in the graph) are needed.

We also proposed two approximation algorithms for scalipgytaph-based basis con-
struction: the Kronecker product method and the AutomatedtiMvel Substructuring
(AMLS) algorithm. Both methods can be used to compute apprate eigenvectors and
the Kronecker product method can also be used to computexppate diffusion wavelets.
The Kronecker method decomposes the problem into smaliéigms that are combined
via the tensor product to approximate the original probleggendecomposition or dif-
fusion wavelet tree construction occurs on the smaller lprab. This method has two

substantial benefits: (1) basis construction only occursmoaller matrices, and (2) the ap-
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proximate eigenvectors or diffusion scaling and wavelecfions of the original problem
are never explicitly formed/stored. To achieve these bexmefie method makes the strong
assumption that the original problem has, to some degredjlttk structure of the Kro-
necker product. The AMLS algorithm method does not makedbhgimption. Indeed, it
can be used on any Laplacian matrix. AMLS recursively corapeigenvectors on smaller
problems and then uses those solutions to approximatevegiems on larger problems.
Experiments in the mountain car and acrobot tasks showddhbaasis functions pro-
duced using AMLS resulted in very similar performance to Ilasis functions produced
using exact eigendecomposition methods. We showed thigluaso AMLS’s accuracy
in computing eigenvalues and eigenvectors. On the othet,liha results were mixed for
the Kronecker product method. The basis functions alloveegélicies that could reach
the goal, albeit with some loss in performance, for mountain For the acrobot domain,
the policies using Kronecker basis functions were signifigaworse. This leads to the
conclusion that the block structure of the Kronecker pradliows for compression, but
whether the compressed functions adequately representitiieal problem appears task
dependent.

The AMLS algorithm has been used on matrices with milliongafs to compute
thousands of approximate eigenvectors. For some RL prablargraph with millions of
vertices could provide adequate coverage over the donmstats space. In these situations,
we believe AMLS can be used to provide a useful set of basistifums for represent-
ing value functions. While AMLS can be used generally on atihpems, the Kronecker
product method is applicable to domains where some bloclctstre exists and can be

exploited.
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CHAPTER 6
BASIS SELECTION

RL feature construction algorithms can be categorized twtmtypes: one that itera-
tively generates basis functions based upon the currefBelerror,7" (V) — V, and the
other that generates a dictionary of basis functioiote the latter type requiresselec-
tion strategy to determine which elements from the dictionanytilize. The graph-based
methods studied in this dissertation are an example of tbgodary approach to basis
construction. We propose three arguments for preferrirggahproach. First, a dictionary
offers the flexibility of approximating value functions asgated with many different poli-
cies. The other basis construction type iteratively getesrbasis functions for fitting just
a single function based on the agent’s current policy. Secthrere is significant interest
in the machine learning community on methods for generadeig-dependent dictionar-
ies[77, 60, 22, 59, 42]. By creating algorithms that operate wechddictionaries, we can
naturally leverage future advances. Third, from a pratstandpoint, we believe agents
should construct representations that are general andlusehe pursuit of a variety of
tasks. Over the course of an agent’s lifetime, it should He &breuse representations
and knowledge from previous experience. The dictionary@ggh to basis construction is
more in line with this ideal.

The previous sections of this dissertation have used a simpthod for selecting which
proto-value functions and diffusion wavelet functions sewhen approximating a value
function. The heuristic is to always use themost global, or smoothest, basis functions.

All prior applications of PVFs and diffusion wavelets in tliterature have also used this

We focus here on techniques fexplicitly constructing features.
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heuristic [67, 63, 68, 79, 44, 95].This mechanism is independent of the policy being
evaluated, meaning that all value functions are repredenmith the same set of basis func-
tions. Using just the smoothest basis functions has thendiagas of being computationally
simple and robust to overfitting (although too much regaktion can be just as problem-
atic as too little regularization), but it does not explaiétfull power of the basis function
dictionary. In this chapter, we explore different selestrnechanisms to better utilize the
dictionary. This is an improvement over previous work folotweasons. First, it tailors
the representation to the specific function being approtechaSecond, tailoring the rep-
resentation allows for using as few dictionary elementsassible, which is important for
computational efficiency.

We evaluate four sparse basis selection algorithms: ootha@ignatching pursuit (OMP)
[82], order recursive matching pursuit (ORMP) [75], the LS [103], and least angle re-
gression (LARS) [33]. Although we tested the selection athms using graph-based basis
functions as a dictionary, the algorithms can be used artyiset of basis functions. Each
algorithm returns a subset of basis functions from the alitry and a scalar coefficient
associated with each selected basis function. The selbaggs functions and coefficients
are linearly combined to produce an approximate value fanctWe tested two different
schemes for combining approximate policy evaluation arsisbgelection. The factor dis-
tinguishing these two schemes is whether the basis seatatjorithmdirectly or indirectly
uses the Bellman equation. These two schemes differ in tefregarsity (how many ba-

sis functions are used in the approximate value functiod)amputational efficiency. To

2Mahadevan and Maggioni [66, 63] demonstrated the potelmiagfits for basis selection in a restricted
setting where (1) the exact value functigfi is known, and (2) the dictionary is orthonormal (which is ajs
the case for PVFs, but not for diffusion wavelets). In thdtisg, the bestK basis functions are selected by
finding the elements; with the largestK values of (V™, ¢;)|. This results in the best rank-approximation
of V™ representable with the given dictionary. The result dogsinti, however, when the dictionary et
orthogonal. We develop algorithms in this chapter that yalsis selection for arbitrary dictionaries and
when the exact value function is unknown.
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assess the combination of basis selection and approxinsdity gvaluation, both policy

evaluation and policy iteration experiments were condiicte

6.1 Relevant Work

We provide a brief introduction to the basis selection peabland a few of the major
algorithms. The basic formulation is that there is a signal R" to be represented with
elements from an overcomplete dictionarye RY**. Each basis functio®; € R" has
unit norm. The problem is to find a vectar such thatbw = y.2 The decomposition of
y is not unique; therefore, additional constraints are addguefer solutions with certain
gualities (e.g. sparseness, independence).

Two popular approaches to the sparse regression problermatehing pursuit and
basis pursuit. Matching pursuit is an iterative, greedyatgm whereas basis pursuit is
an optimization principle that can be solved using any appate algorithm. Therefore,
matching pursuit and basis pursuit are not mutually exetuapproaches to sparse regres-

sion.

6.1.1 Matching Pursuit

Matching pursuit (MP) [69] is a greedy algorithm that seteglements sequentially to
best capture the signal. The algorithm begins with a coefiicvectorw equal to all zeros
and a residual vectay,., equal to the signaj. The first element is selected by scanning the
dictionary and finding the largest correlation with the desil: j* < argmax; |<I>fyres|,j €
[1, K|. The coefficient for the selected basis function is adjusted « w;« + @ﬁyres.
Then the residual signal is computgd, < 9,es — (@j@yres)@j* and the process iterates.
With MP, a basis function can be selected many times. Thereter variants of MP,
two of which are orthogonal matching pursuit (OMP) [82] andey recursive matching

pursuit (ORMP) [75]. OMP differs from MP in the way the resadisignal is computed.

3The model could also include a noise tedny + ¢ = y.
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OMP makes the residual orthogonal to the selected dictyoglaments, which means OMP
will never select the same dictionary element more than avitereas MP can. ORMP
goes even further than OMP and adds the orthogonalizatsgiisto the selection process.
Moghaddam et al. [73] proposed an efficient implementatio®RMP using partitioned
matrix inverse techniques [39] and showed that sparse $epstres regression is equivalent
to a generalized eigenvalue problem.

Algorithm 5 is a side-by-side comparison of the pseudocod&iP, OMP, and ORMP.
We use the symbdl to refer to a set of indices ifi, K] that indicate the elements of the
dictionary® that are selected by the algorithm. Similatly; refers to the scalar coefficients
applied to the selected basis functions. Basis functioatsate not selected have a scalar

coefficient of 0. Thus, the signalis approximated a®(:,Z7)w(Z) = ®zwz.

Algorithm 5 : Variants of Matchi ng Pursuit
Input: &,y
Output: Z, wz such thaty — ®7wz

1—(_@, , w0, Yres < Y

while (not done)do
If (matching pursuit
J* + argmax; \(IDJTyTeS|
Wi < Wy* + (I)g;yres
If (wj« #0), T —ZU{j*}. Else T —7—{j*}
Yres <= Yres — (q)ﬁ yres)q)j*
If (orthogonal matching pursuit
J* « argmax ¢ @fyreq
T —TU{j*}
wr « (P7Pz) ' TY
Yres < Y — drwr
If (order recursive matching purspit
j* « argmin;gz ||<I>I+j(<1>£jq>1+j)flq>%ﬂy —y|*>  where:Z.; — T U {j}
T —TU{j}
wr « (97 P7) 107y
end while
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6.1.2 Basis Pursuit

Matching pursuit finds a sparse representation by greeeligcting the most promising
elements. In contrast, basis pursuit (BP) [19] achievessgipdy finding solutions to the
following optimization problem:min ||w||; such thatbw = y. Sparsity of the solution
comes from the use di; norm. The BP problem can be solved using linear programming.
Note the hard constrainkw = y is appropriate when the signal is noiseless. When the
signal is noisy, it is appropriate to requit@w — y|* to be small. The LASSO (least
absolute shrinkage and selection operator) [103] implésndns noisy version of basis
pursduit in the following optimization problemnin ||y — ®w||> subject to||w||; < k. The
LASSO can be solved using quadratic programming; howevepe efficient solution is
to use the recently introduced least angle regression (DAER§®rithm [33] with a minor
modification. LARS selects elements from the dictionary aha time, much in the same
way the matching pursuit algorithms work. The first elemesiested is the one that is
most correlated with the signgl Then LARS adjusts the weight on the first element
until another element has as much correlation with the otiresidual. At that point,
LARS includes this second element and then proceeds in atidine(i.e. changing the
weights)equiangularbetween the first two elements. This strategy is less gréedydther
algorithms that sequentially add dictionary elementsergtingly, a small modification
to the LARS algorithm produces the LASSO solution. While LABSitself only adds
basis functions at each step, this modification for LASS@gjthe algorithm the ability to
remove basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms. dtisy to control the
sparsity of each of these algorithms by limiting the numbdasis functions that can be

selected.
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6.2 Combining Basis Selection and Approximate Policy Evaluation
The basis selection problem involves choosing elements &dlictionary to efficiently
represent a target signal. The approximate policy evalogtroblem is to represent the
true value functior)/™ with an accurate approximatidn. If V™ were known, then basis
selection could simply be performed with the target sigreah V™. However,VV™ only
becomes known through the Bellman equatidfi: = R™ + vP™V™ = T™(V™). Thus,
some framework is needed that effectively combines apprate policy evaluation (i.e.
finding an accurate approximatidf) and basis selection (i.e. efficiently representifly
We evaluate two schemes that achieve this combination. ifleesshce between the two is
in how they use the Bellman equatitiThe first scheme uses the Bellman equation within
the basis selection algorithm. This means that when thes Isa$ection algorithm adjusts
the weight vectorw, this not only changes the approximatidw but alsochanges the
target signal based on a function of the Bellman equation.c&liehis the direct scheme
because the selection algorithm directly encodes the Bwlleguation. The second, or
indirect, scheme doesot use the Bellman equation within the basis selection algarit
Rather, there is an iterative process that alternates leet®) setting the target signal
using the Bellman equation, and (2) representing the taigatl using the basis selection

algorithm. These two schemes are described below in a vergrgeform where:

1. f(T™(Pw') — duw') is a functionf of the Bellman residual,

2. Basi sSel ect i on is an algorithm that selects dictionary elemehend computes

weightswz to minimize either( f (7™ (dw') — dw’)) or (y — dw'), and

3. Set Wi ght s is an optional function that uses the dictionary elementsrdened

by Basi sSel ect i on, but computes its own set of weights.

“Note the distinction we draw between tHigect andindirect schemes is not new to RL. For example,
the fitted Q-iteration algorithm [36] is an example of theiredt scheme, whereas the LARS-TD algorithm
[52] is an example of the direct scheme. We are not aware ofodmgr work that makes this distinction,
so we introduced the terminology ourselves. Our analysiseperiments show that the direct and indirect
schemes can behave very differently.
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Direct Scheme
[Z, wr] < Basi sSel ecti on, (f (T™(dw') — duw'))
wr «— Set Wi ght s (f (T™(Pzw’) — Pzw')) OPTIONAL
V — (I)IUJI

Indirect Scheme

ZT—0, wr<10
while (not converged
targety <« 177 (Pzwz)
[Z, wr] < Basi sSel ecti on, (y — dw')
wr «— Set Wei ght s (f (T™(Pzw’) — Dzw')) OPTIONAL
‘7 — (I)Iw];

The direct and indirect schemes differ in their computaglozomplexity and degree
of sparsity. The computational complexity of the indirecheme has the potential to be
greater than the direct scheme because it iteratively tadlsbasis selection algorithm.
This could be wasteful when the target signal given to thesksedection algorithm does
not change significantly between iterations. On the othedhtne direct scheme, by using
the Bellman residual as the target function for the basiscsein algorithm, forces the
regression algorithm to follow a specific path. To see thigysider the beginning of the
basis selection algorithm when no basis functions have gehlselected. The Bellman
residual is equal to the immediate reward functi®h This means the first basis function
selected is attempting to fit the immediate reward. For thke & argument, assume the
first basis function exactly fits the immediate reward. Noe Bellman residual is equal
to the Bellman backup of the immediate reward(BF(R™) — R™) = vP™R™. This same
logic can be used inductively to show basis selection psee order of the elements
in the Neumann serie$, ;°,(yP™)'R™.> Attempting to fit the elements in the Neumann

series can lead to inefficient use of the basis functionss ®bcurs when there is structure

SFor a bounded operatdF, the Neumann series is defined ®%°,7%. One can showy ;> T"
(I-T)"1L. The value functio’™ can be defined using the Neumann serie¥’as= (I —~P™)~LR™
Sio(yP ) RT.
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in V™ that does not exist in the Neumann series; hence, the bdsiise algorithm is
unable to exploit the structure. Since the indirect schesmaoi confined to this path, it
has the potential to use fewer basis functions when reptiegethe eventual approximate
value functionl.

As an example of the potential inefficiency of the direct soheconsider an undis-
counted, deterministic chain MDP with an absorbing staten&t end of the chain. As-
sume the reward function is O everywhere exceptat the absorbing state. The optimal
value function is a constant function equaling 1 in eachestafit the Neumann series is
a sequence of delta functions from one end of the chain totther.oGiven a dictionary
consisting of all the delta functions and a constant fumctep basis selection algorithm
implementing the direct scheme will select all the deltactions rather than the constant
function. This may be an extreme example, but it is not uncomfor a MDP to have a
spiky reward function that would cause similar behavior.téNthis behavior can be par-
ticularly problematic for the multiscale diffusion wavelictionary where very localized
basis functions (that are not necessary for represenfifjgcan get selected before larger

scale basis functions.

6.2.1 Direct Scheme

The next three sections outline the OMB-ddgorithm (i.e. OMP for basis selection and
H, for setting the coefficients), the ORMP;HIgorithm, and the LASSO-Hand LARS-
H, algorithms. Laplacian-based regularization is used it edgorithm. The LASSO-H
and LARS-H algorithms are nearly identical, so we describe them semelbusly. Recall
the BR and FP least-squares methods are easily instantyatedting the hybrid parameter
to £ = 1 and¢ = 0 respectively.

Each algorithm takes as input a set of MDP samplgsr;, s;}7,, the discount factor
v, the hybrid parametef, the dictionary® of basis functions, the graph Laplaciaralong

with its regularization paramete., a distributionp over the states for weighting the least-
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squares problem, and a maximum allowable number of basisifuns%’ that the algorithm
can select. Each algorithm returns a set of indi¢eimto the columns ofd and scalar
coefficientsw; such that the approximate value functih= ®zw;. The sparsity of the
solution is directly controlled by limiting the basis sdiea algorithm to at mosiZ| < &’
basis functions. The parameteralso limits the basis selection algorithm’s computation
and memory usage. Since the selection algorithm builds oypabased estimates of the
least-squares data structures (eflg;m andZA)HQ‘,LR), the size of the data structures cannot
be larger thark’. This can be very important when the number of basis funstiarthe
dictionary is large. To further speed up OMB;KDRMP-H,, LASSO-H,, and LARS-H,

we take advantage of the fact that the algorithms insertrooxv@ one basis function at a
time to the active sef. The matrixflg,lZ can be incrementally formed. However, to keep
the pseudocode simple, the algorithms are not shown wighitiprovement. Appendix B
describes how the algorithms can incrementally updﬁ;@. Note that within this chapter
we only show pseudocode for the OMB-Blgorithm. The other algorithms are similarly
described in Appendix C.

The OMP-H and ORMP-H algorithms terminate when eithét basis functions have
been selected or when the change in the norm of the Bellmaduedsgoes beneath a
thresholc® The LASSO-H and LARS-H algorithms use both of those termination con-
ditions as well as one other condition (related to the patané) that we discuss in that

section.

6.2.1.1 Direct Scheme with Hybrid Method H,
Algorithm 6 (OMP-H,)) shows the direct approach for combining orthogonal match-
ing pursuit and the Hleast-squares algorithm with Laplacian-based regulaoza The

algorithm maintains a sample-based estimate of the vectiere

6Using the terminology described in the algorithm boxes,sheared norm of the Bellman residual is
written >0 p(s;) [ri — (dz(si) + Br gz(si) — fyqbz(s;))TwI]Q. The change in the norm of the Bellman
residual can easily be computed when inserting or removingyabasis function from the active s&t
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¢ = [(® = YP"®)TD, (" — (& =y P"®)u) - ,87 LD, Lou]

J

— [(® — &yP™®)"D,(R™ — (&7 — yP"®r)ws) — 5,07 LD, Ldsuwy] . (6.1)

i
Each iteration of OMP-Kiselects a new basis function to add to the active set by find-
ing j ¢ 7 that maximizegc;|. Then the weightsv; are adjusted to make the residual

orthogonal tod;.

Algorithm 6 : OVP-H, with Lapl aci an-based Regul ari zati on

Input:  {s;, 7, s;}",, samples generated using policy

¢: S — RE, Dbasis function

p: S — RT, weighting over the states

¢ €10,1], hybrid parameter{= 0is FP,{ = 1 is BR)

L, graph Laplacian defined over stafes}! ; (graph edges denoted with)

v € [0,1], discount factor

3. € RT, Laplacian-based regularization parameter

k' < K, maximum allowable number of basis functions
Output: Z, set of selected basis functions (indices injo

wz, weight vector such that (s) = ¢7(s)Twz

¢y p(si)p(si)ri

Initialize active sef « ()

while (|Z| < k") and(Bellman residual not converggdo
1. Find most correlated inactive element:
j* « argmax;gz(|c;|)
2. Adjust active set:
T —TU{j*}
3. Computed; 7 andby:
Az — Y0 p(si)l(dz(si) — Evor(sh) (bz(si) — v ()T + ...
) Brgz(si)gz(si)"]
bz — > iy p(si)(9z(si) — Evo(sy))ri
where: g(s;) < L(s;,s:) ¢(si)
9(5i) — 9(5) + L(si $u) D(5er)s Su|Suir # 5 A 5~ S00,}
4. Compute least-squares weights:
WL — AE}IBZ
5. Compute updated correlations:
¢ 2y p(s)l(0(si) — Evo(s))) (i — (dz(si) — v9z(s))) wr) — ...
Br g(si)gz(si)Twr]

end while

The next algorithm we consider is ORMR-HNe present the direct approach for com-

bining ORMP and the Hleast-squares algorithm with Laplacian-based regultozaThis
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is done to be consistent with our presentations of OMPUASSO-H,, and LARS-H,
which helps make the pseudocode more readable sincetleabi-squares data structures
are identical from one algorithm to the next. However, wd shlow that it is only valid to
combine ORMP and the BR least-squares metljod (). The pseudocode for ORMP;H
is provided in Appendix C (Algorithm 8).

The ORMP algorithm works by considering the impact eachtinabasis function has
on the least-squares problem. We use the terminalggyo indicate the inclusion of basis
functionj in the active set (i.eZ,; < Z U {j}). The first step of Algorithm 8 determines
the best inactive basis functign¢ 7 that maximizes(l?%j A7l . Bzﬂ.).

Moghaddam et al. [73] point out that it is actually faster tadfithe inactive basis
function that maximize{@%ﬂ,flgjﬂﬂfmj - B%AE}IBQ because some of the intermediate
computation cancels out. The intermediate terms cancelcdo®perties of the partitioned
matrix inverse. Note that since the extra te<r6fflg}zéz) is independent of all inactive
basis functions, it does not alter the result of the maxitraproblem. ORMP-H then
inserts the best basis function into the active set, upd&ggmndéz, and iterates.

The ORMP algorithm merits further attention. This algamitis particularly interesting
because it uses the least-squares method to determine tdusch function to include in
the active set. The best basis function is determineddvygmax; ., <b§+jAgjj7I+j bIﬂ).

In other words, ORMP considers the impact of each inactiseshbi@anction on the least-
squares problem. When the BR least-squares algorithm is tisedest basis function

is:

i (0742212
J

— argmax <(b§fj)Tw§fj)
J¢z

— arg;nax <(RW)TD,;((I>I+,- — 7P”<I>I+j)w13fj)
A '

— arggax (R™, Vzﬁlj - 7P“V£Ij_>p
J
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where(-, -) , denotes the-weighted inner product. This makes intuitive sense sihedBR
least-squares problem is fitting a functibi” that minimizes|R™ + yP™V 5" — VBRHi.
Now consider the direct scheme for combining ORMP and thesBBtisquares algorithm.
One can show the best inactive basis function for ORMP-FRuigax; 47 (R™, Vﬁpp.
This maximization does not make sense since selecting hasisons using this criteria
leads to a value function that approximates the rewélrd A simple idea to try to rescue
ORMP-FP is to change the maximization ta;gmax; .7 ((bffj)T(Aﬁj’ZH)‘1b§fj). No-
tice the use of the two different vectdrg® andbz; . This leads to selecting basis functions
according to:argmax g7 (R™, Vﬁfj — 7P”V£fj>p. Although this is seemingly more valid
than the original formulation, it is still problematic. Tlhaderlying problem is that the FP
objective function||IL,(R™ +vP™V*") — V7|12 can always be set for any set of basis
functions.

One must be careful when directly combining least-squagypevaluation algo-
rithms and basis selection algorithms. The result of thedyasis is that ORMP-FP isot
valid but ORMP-BR is valid. However, ORMP can be used withhbeP and BR in the
indirect scheme described in Section 6.2.2.

The last two direct algorithms that we consider are LASSQadd LARS-H. To
achieve sparsity, the LASSO algorithm takes the loss fondtiom Equation 4.4 and in-

cludes anl; constraint on the coefficient vector. This takes the form:

1—
Wiy 1 = argmin (gHT”(@w’) — dul|2 + TgHT“(u) —du 2+ ...

w’' eRK

Br
+ SlL@w 2 + Bl ) (6.2)
where 3, € R" is a regularization parameter that dictates the sparsitthe@fsolution.

Larger values of7, result in a coefficient vectow with more zero entries. In fact, there

exists a value ofj; for which the resulting vectow has all zero entries.
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Loth et al. [62] and Kolter and Ng [52] recently proposed gsiine LASSO algorithm
for approximate policy evaluation. Our description of thgagithm and its derivation fol-
lows along the same lines as that of Kolter and Ng [52]. Thg emteption is that we
consider Laplacian-based regularization and they did Hogrefore, our LASSO-Halgo-
rithm with ¢ = 0 and3, = 0 exactly coincides with their algorithrh.

The minimization problem in Equation 6.2 can be convertéd the following set of

optimality conditions:

_ﬁsgcjgﬁs \V/]
cj:55:>wj20
Cj:—ﬁ5:>’ZUj§O

—Bs <c¢j < Bs =>w; =0, (6.3)

where variable:; is defined according to Equation 6.1. The LASS@digorithm contin-
ually adjusts the weight vector (by adding or subtractingi®&unctions from the active
set) while satisfying the optimality conditions. The aligom is initialized withZ — () and
w « 0. The optimality conditions can be satisfied with this idiiation for somes3, > ;.
The algorithm proceeds to reduge (by inserting basis functions intb and adjustingu;)
while satisfying the optimality conditions until, = /3, or some other termination crite-
ria is triggered. The other termination criteria we usedev@maximum number of basis
functions ¢’) and a threshold on the change in the norm of the Bellmanuakid

The optimality conditions ensure thiat| = 3, for all basis functions in the active set.

This property is maintained by changing the weight vectaoading to:

"Our terminology is slightly different from that used by Keitand Ng [52]. Their LARS-TD algorithm
is the same as our LASSOsHalgorithm withé = 0 and 3, = 0. The distinction we draw between LARS
and LASSO is whether the algorithm only adds basis functiorthe active set (LARS) or both adds and
removes basis functions (LASSO).
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Awr = [(®7 — EyP 1) D, (@1 — vP 1) + 3,91 LD, L] signcr),

where sigitcz) replaces the entries i with valuest1 depending on the sign. The change

in the weight vecto\wz dictates how the vectarchanges:
Ac= ((® - &yP™®)"D,(®1 — yP™d1) + 3,87 LD,L&7) Aws.

The vectorAc allows one to compute if and when an inactive basis funcfigh Z will
have a value; that reaches the same value as those in the active set. Tthedosve basis

function that reaches this point is computed as:

+

[a*, j*] = [min

cj_Bs Cj+ﬁs)

’ argmln]j¢1’ (AC] — 17 ACJ' —|— 1

wheremin™ indicates the minimization is only over positive valuas,is the minimizing
value, andj* is the minimizing argument.

Before adding basis functiojt to the active set, the LASSOsHalgorithm must check
to see whether an element in the activejsetZ has a coefficienty; differing in sign with
c; as such an event would violate the optimality conditie first active basis function

that reaches this point is computed as:

#H — [mint 1. _ W
[a™ j7] = [min ,argmlnbg( ij>‘
If all elements in the minimization are negative, thefi is set tooco. If the step size
a* < o, then basis function* is added to the active set. If the reverse is true, then basis
function j# is removed from the active set. Pseudocode for LARSaRd LASSO-H is

given in Appendix C (Algorithm 9).

8Note this is the only difference between LASSQ-&hd LARS-H. LARS-H, is not required to ensure
w; ande; have the same sign. Therefore, LARS-ibes not remove basis functions from the active set.
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The LARS-H, and LASSO-H algorithms adjust the coefficient vectog in an equian-
gular direction. This means that the residual is never madgptetely orthogonal with the
selected basis functiors;. A common “fix” to this issue is to enforce orthogonality once
LARS-H, and LASSO-H terminate. We list this as an optional step at the end of the

algorithm.

6.2.1.2 Direct Scheme with Hybrid Method H

The previous three sections described the OMPORMP-H,, LASSO-H;, and LARS-
H, algorithms. By setting the hybrid parametetio 0 or 1, these algorithms implement the
FP and BR objective functions. We describe here how the ihgoes would change to
handle the H objective function. We do this in detail for OMP and then siynipighlight
where the (similar) changes need to be made in ORMP, LASS®I. ARS.

The memory and computation requirements are identical anetsing the FP, BR, or
H, least-squares criteria. The hybrid algorithm Rowever requires more memory and
computation time. As shown in the equations below,relquires forming two matrices
of size K x K where K is the number of basis functions in the dictionary. This can b
prohibitively large depending on the size of the dictionaNote that all basis selection
algorithms when using FP, BR, and, ldo not form matrices larger thakl x k" where
k' < K is specified by the user to be the maximum number of basis ibnxthat the
algorithm can select.

The following four lines of Algorithm 6 (OMP-kK) would need to change to accommo-

date the H objective function.

1. The first timecis initialized:
¢ — Ebpr+ (1= E(A™TC b,y
where:  bpr — S0y p(si)((s:) — vb(s)))rs

BFP — Z?:l p(8:)P(si)7;
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AP = 300 p(si) [$(si)(D(si) = v0(s7)T + Bra(si)g(si)T]
C =i plsi)d(si)d(si) -
2. ComputingAz 7 in Step 3:
Arz — ARS + (1 - O(AFS) Cr1ALS
where: AZ% — S0 p(si) [(02(si) — v0(s))(Sz(si) —v62(s))" + Braz(si)gz(si)”]
A5 — ST (i) [6x(5i)(B2(si) —v02(s))" + Braz(si)gz(si)”]
Crz = Yy plsi)dr(si)pz(si)”
3. Computing); in Step 3:
by — b5 + (1 — §)(AL5)TCppbe”
where: b2% — S p(si)(¢z(si) — voz(s)))rs
by Sy p(si)or(si)ri
AR = Sy (si) [02(s0)(82(si) = 10z(s0)" + Brgr(si)oz(s)”]
Crz Yy plsi)dr(si)or(si)”
4. Updatinge in Step 5:
¢ —E&epr+ (1= (AT C  epp
whereicpr — Y1y p(si)[((si) = v0(s))) (ri — (¢z(si) — voz(s})) wz) —
Brg(si)gz(si) wr)
crp = 2y p(si) [0(si)(ri — (9z(si) — vz (s))) wr) — Bra(si)gz(si) wr]
APP 3T p(si) [B(50)(D(si) — v (s))T + Brg(si)g(si)”]
C =iy plsi)d(si)d(si)T .

The changes to ORMP, LARS, and LASSO are very similar to trenghs made for
OMP; therefore, we just point out the lines that need to béeddiFor ORMP, four lines
would need to change: computiégH. in Step 1, computingizﬂlﬂ in Step 1, computing
AH in Step 3, and computinl@ in Step 3. For LARS and LASSO, four lines would need
to change: the first timeis initialized, computingflm in Step 1, computing\c in Step 2,

and computin@z at the final optional step of the algorithm.
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6.2.2 Indirect Scheme

The indirect scheme uses an iterative approach to sparsexapte policy evaluation.
The iterative approach alternates between (1) settingatiget function using the Bellman
backup operator, and (2) representing the the target fumcising the basis selection algo-
rithm. This potentially makes the indirect scheme more cai@jonally intensive than the
direct scheme, but it frees up the basis selection algortthohoose the best basis func-
tions for fitting the approximate value function (insteaditifng the ordered elements in
the Neumann series). We describe the iterative, indirderse in Algorithm 7. This is a
general framework which can utilize any sparse basis sefeftegression) algorithm. The
sparse basis selection algorithm is denoted as iB3&tl(y) wherey is the target function
that BSel fits using dictionaryd. For BSel, we evaluated the pure regression versions of
OMP, ORMP, LASSO, and LARS with the only exception being thaye augmented to
include Laplacian-based regularization. The pure regvasgersions of OMP and ORMP

without regularization were described in Algorithm 5.

6.3 Action-Value Function Approximation

The previous two sections described the direct and indgelaémes for approximating
the value function. The same algorithms can also be usedpi@edmate the action-value
function. The graph-based basis functions, which are defust over states, can be also
used to approximate the action-value function. This is ag@shed by using the basis
functions for each discrete action. For example, considdbd with two actionsga; and

as. The approximate action-value functighcan take the form:
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Algorithm 7 : I ndi rect Schene for Sparse Approx. Pol. Eval.
Input:  {s;, 7, s;}",, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}! ; (graph edges denoted with)
v € [0,1], discount factor
B. € RT, Laplacian-based regularization parameter
maxzlter € N, maximum number of iterations
BSel(y), sparse basis selection algorithm that approximates a target fugction
using the dictionary). The termination criteria foBSelincludes:
k' < K, maximum allowable number of basis functions
a threshold on the residug) — ®w||?
any other algorithm specific parameters (gigfor LASSO)
Output: Z, set of selected basis functions (indices injo
wr, Wweight vector such that (s) = ¢7(s) wr

Initialize active sef < (), w7z < 0, idter < 0

while (iter < maxIter) and(Bellman residual not convergedo
1. Form target vectoy using the sampled Bellman backup:
yi — ri +v9z(s)) T wg Vi
2. Run the sparse basis selection (regression) algorithmgo fit
[Z, wr] < BSel(y)
3. OPTIONAL: Adjustwz using one of the least-squares methods:
W7 “— AE}I(A)I
For example, if using FP least-squares method, then:
{11,1 — iy p(si) [@z(s0) (D2 (si) — vz ()" + Brgz(si)gz(si)”]
br — 3271 p(si)dz(si)ri
4. Increment the iteration count:
iter «— iter + 1

end while

Notice the approximate action-value function can use awffit set of basis functions
for each action:Q(-, a;) uses the basis functions indexed By andQ(-, a;) uses basis
functions indexed by, .

Algorithms 6, 7, 8, and 9 can be used with this definition withchanging any steps.
However, if these algorithms are used without changes, tingoer of selected basis func-
tions per action may not be equal. For the MDP with two actiepnanda,, this means
|Z,,| will not necessarily be equal t@,,|. It may be desirable to require the number of
basis functions per action to be equal (or approximatelyagqhis constraint can easily

be added to the indirect scheme (Algorithm 7) and to the tisehemes involving OMP
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and ORMP (Algorithms 6 and 8). It does not seem possible totliddconstraint to the
direct scheme involving LASSO and LARS (Algorithm 9) becaus the way these al-
gorithms control the correlation between the basis fumstiand the target function. For
example, step 3 of Algorithm 9 relies on the fact that all b&gnctionsnotin Z (i.e. basis
functions that have not been selected) have a correléatjpn< 3,. Adding a constraint
that the number of basis functions per action should be nyuggual (which would entalil
changing step 3 to not just select the minimizing element)ld/iseem to break this logic.
Algorithms 6, 7, 8, and 9 can produce approximate actione/élinctions for a specific
policy. These algorithms can also be used within leastisgyaolicy iteration (LSPI) [56].
One LSPI iteration takes a batch of MDP sampfes a;, ;, s;}?.; and a policyr and
produces), an approximation of)™. The greedy policy implicitly defined bg) is then

used in the next iteration of LSPI.

6.4 Experiments
6.4.1 Approximate Policy Evaluation

The following components were varied in the experiments:

¢ |east-squares method (FP, BR, ang H

¢ basis selection method (OMP, ORMP, LASSO, and LARS)

e scheme for sparse approximate policy evaluation (diredtiadirect)
e amount of Laplacian-based regularizatigh)(

e dictionary (PVFs and diffusion wavelet functions).

To get a solid understanding of how each component influetheepolicy evaluation
problem, we chose the 50 state chain MDP [56]. This domaimss\evisualized. The

problem consists of 50 states (i € [1,50]) and two actions moving the agent left ¢~
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s;_1) orright (s; ~» s;.1). The reward function is defined asl in statess;, ands,; and
zero everywhere else. The discount factoy is 0.9.

We consider the task of evaluating the optimal poli¢y Rather than sampling fromi*
to generate a data set, we used the true m&deland R™ in the following experiments.
This choice was made to remove the influence of sampling savhaan adequately com-
pare and contrast performance. However, we note that usenmnodel rather than samples
eliminates the bias of the BR method.

The graph used to form the PVFs and diffusion wavelets ctmesisb0 vertices with
self-edges and edges between “adjacent” vertices. The Ri6reary, which was con-
structed using the combinatorial Laplacian, consists ofleBal basis functions. The dif-
fusion wavelet tree was constructed using the parametei0—*. The number of scaling

and wavelet functions is shown in Table 6.4.1. We evaludtezktdictionaries constructed

Tree Levelj | [v;_1] | |¢;]
1 0 | 50
2 9 41
3 13 | 28
4 7 21
5 5 | 16
6 5 11
7 3 8
8 2 6
9 2 4

10 1 3

Table 6.1.Number of wavelet and scaling functions at each tree level for the 50cttate MDP.

from this tree. The first dictionary consisted of all 235 ftiaos in the tree (47 wavelet and
188 scaling functions). The second dictionary consistati@fl 35 functions at tree level 3
or greater (38 wavelet and 97 scaling functions). The 10fadunctions in the first dictio-
nary consist of very localized basis functions as well asesostillatory functions. Note
that both the first and second dictionaries are overcomp$gteselecting elements from

these dictionaries can lead to linear dependence in the fuasitions. The third dictionary
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consisted of all 47 wavelet functions and the 3 scaling fionstat tree level 10. This third
dictionary is orthonormal whereas the first two dictionarsgge overcomplete. A further
optimization that we did not pursue would be to select thestbguch orthonormal dictio-

nary (amongst the 10 possible orthonormal dictionariesteiad of just using the dictionary
that reaches to tree level 10.

We systematically tested different combinations of ditéity, least-squares algorithm,
policy evaluation scheme, amount of Laplacian regulanratand basis selection method.
The list of these combinations is shown in Table 6.4.1. Weegméethe main findings of
these experiments along with supporting figures. For a gagunr of all the experiments
and resulting value function plots, we refer the reader totechnical report [45].

The result of each experiment is an approximate value fandti. Rather than simply
report a number (such as the Bellman residual nof¥; (V') — V||, or the true error,
|V* — V||), we found it much more illuminating to qualitatively asseke approximate
value functions. This leads to some interesting insightstime interaction among the basis
selection algorithm, least-squares method, and dictjorfdre policy iteration experiments
in the next section provide a more quantitative measure bprance.

We summarize the policy evaluation experiments with thie¥ahg findings.

e OMP-FP & the effect of Laplacian regularization

Figure 6.1 shows the results of using the OMP-FP algorithrarging number of
basis functions (4, 8, and 12), and a different amount of &aph regularization
(6, = 0 andg, = 0.1). The captions under the plots show the different dictigasar
used to produce the approximate value function. We use thitheind DWT(50) to
refer to the diffusion wavelet dictionary with 50 orthonahtases, DWT(135) to re-
fer to the diffusion wavelet dictionary with 135 functiondiee level 3 or greater, and
DWT(235) to refer to the dictionary containing all 235 scgland wavelet functions

in the tree.
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| Scheme | Algorithm \ Dictionary

Direct OMP-FP, LASSO-FP PVFs
Direct OMP-BR, ORMP-BR, LASSO-BR PVFs
Direct OMP-H, PVFs
Indirect FP & BR OMP PVFs
Indirect FP & BR ORMP PVFs
Indirect FP & BR LASSO PVFs
Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets
Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets
Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
Direct ORMP-BR 235 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelet$

Table 6.2. Parameters varied in the policy evaluation experimentgHer50 state chain
MDP.

The approximate value functions learned using either obtitlgogonal dictionaries
(PVFs or DWT(50)) accurately captured the shape of the exalaevfunction*
when using at least 8 basis functions. The approximatioadymed using the dif-
fusion wavelet dictionary DWT(50) were more accurate thavs¢husing the PVF
dictionary. In fact, even using just 4 basis functions frdra DWT(50) dictionary
resulted in an approximate value function that tracked tape (not magnitude) of
%

The approximate value function learned using DWT(235) becamstable when
12 basis functions were used. This occurs because the m@tﬁmecame nearly
singular. The results were slightly better when using the [{¥8%) dictionary, which
removes some of the most localized and oscillatory funstionDWT(235). This

indicates the aggressiveness of OMP-FP may be a potentialeon with a highly
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overcomplete dictionary. It is possible though to make tgerdthm more stable by

checking the condition number @i‘g}z before inserting a basis function.

Lastly, notice the influence Laplacian regularization hashe value functions pro-

duced from the PVF and DWT(50) dictionaries. The approxioretiwith regular-

ization (3, = 0.1) clearly are smoother with respect to the topology of theirtha

This had a noticeable effect on the basis selection prooessd PVF dictionary.
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Figure 6.1. Results of OMP-FP with the PVF and diffusion wavelet dictines.

¢ ORMP-BR

Figure 6.2 shows results using ORMP-BR and OMP-BR with th& Bikd diffusion

wavelet dictionaries. Interestingly, the only basis sebecalgorithm that worked in

conjunction with the BR least-squares method was ORMP.cidhe approximate

value function learned using OMP-BR is very poor (which wias #éhe case for both

LASSO-BR and LARS-BR). We show the value function from OMR-Rith 20
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basis functions, which is more than enough for an excellppt@imation ofV*.
On the other hand, ORMP-BR produced excellent approximatwhen using 8 or

12 basis functions.

ORMP-BR, B, =0 ORMP-BR, B, =0 OMP-BR, B.= 0
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4 7‘; 4 73
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(a) PVFs (b) DWT(235) (c) PVFs

Figure 6.2. Results of ORMP-BR and OMP-BR with different dictionaries.

e OMP-H, with the PVF dictionary

Figure 6.3 shows results using OMR-&hd LASSO-H with the PVF dictionary. In-
termediate values @&f between 0 and 1 tend to produce approximate value functions

between the extremes produced by the FP and BR algorithms.

LASSO—H2 (Orth.), 12 Basis Functions
OMP—HZ, 12 Basis Functions, Ranging &, [3r =0 Ranging &, B =0
r

—Exact

—0
0.3

—0.6
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Value Function

% 10

Figure 6.3. Results of OMP-H and LASSO-H with the PVF dictionary using 12 basis
functions while varying (£ = 0 is equivalent to FP angl= 1 is equivalent to BR).
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e LASSO-FP

The LASSO-FP algorithm performed very differently depempion whether the
dictionary was orthogonal (PVFs and DWT(50)) or overconpi@WT(135) and
DWT(235)). Figure 6.4 shows the results using LASSO-FP badth and without
the optional orthogonalization step at the end of AlgorithnThe magnitude of the
approximate value function without the orthogonalizatstep was very small when
using the orthogonal dictionaries. This occurs becauseAESO algorithm, which
is conservative in its setting of the coefficients by design, moves in an equiangular
direction amongst orthogonal elemedts. When the element$; are not orthogo-
nal, as in the results with DWT(235), adjusting the coeffitMattorw; can lead to

larger steps in approximating the value function.

When the orthogonalization step in Algorithm 9 is used (whiodans the LASSO-
FP algorithm is used just for basis selection, not for sgttime coefficients), the
magnitude of the approximate value functions naturallyobees larger. The approx-
imate value functions were very accurate when 8 and 12 basidibns were used

from the dictionary DWT(235).

Note we do not show results using LARS-FP because they artynéantical, and

in some instances exactly identical, to LASSO-FP.

¢ Indirect scheme with an orthogonal dictionary

The experiments in this section were conducted using Aligari7 under three con-
ditions. First, the while loop in Algorithm 7 was executed 1@ iterations. Second,
we used a single termination criterion for the basis sedecsilgorithm. The algo-
rithm stopped when it had selected a specified number of basisions. Third, we

always used the optional third step in Algorithm 7 which is&b the weights on the

selected features using a least-squares method. We usBf thied FP least-squares
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Figure 6.4. Results of LASSO-FP using diffusion wavelet dictionaries. The valuetfons are
shown with and without the (optional) orthogonalization step in Algorithm 9.

methods. Since BR and FP produced similar results, we doepott results using

the hybrid method Kl

The indirect scheme with an orthogonal dictionary (both B\Rd DWT(50)) pro-

duced accurate approximate value functions for all bagecgsen methods (OMP,

ORMP, LASSO, LARS) and both the FP and BR least-squares methigure 6.5

shows results using the OMP and ORMP algorithms with FP aad &5S0O algo-

rithm with BR. For the OMP algorithm with FP, there is also atpf the Bellman

error norm|| 7™ (®zwz) — ®7wz||? after each iteration of Algorithm 7. We just show

the Bellman error plots for the OMP algorithm to point outttttee Bellman error is

not monotonically decreasing. The Bellman error plots f&MP and LASSO were

very similar to those for OMP.
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The resulting value functions were noticeably better tharsé produced using the
direct scheme for approximate policy evaluation. The ddfiee is easily recognized
by looking at the value functions estimated using 4 basistfans. Most of the

results using the direct scheme produced very poor appetioms with just 4 basis
functions. But the results were quite good when using th@eot scheme. This
supports our hypothesis that the direct policy evaluatareme can limit the efficacy

of the basis selection algorithm by forcing it to follow thedmann series.
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Figure 6.5. Results using the indirect policy evaluation scheme withagonal PVF and
diffusion wavelet dictionaries.

¢ Indirect scheme with an overcomplete dictionary

Figure 6.6 shows the results using the indirect policy estatun scheme with over-
complete diffusion wavelet dictionaries. Since all bagestion algorithms per-

formed similarly, we just show plots for the OMP algorithmhi3 is done for both
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the FP and BR least-squares methods. Overall, the resuitg BB were better than

those using BR (especially when fewer basis functions weeelu

The approximate value functions are less smooth than thoskiped using orthog-
onal dictionaries. The results with only 4 basis functioressagnificantly worse than

when 4 basis functions are used from an orthogonal dictionar
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Figure 6.6. Results using the indirect policy evaluation scheme with overcomplete diffusion
wavelet dictionaries.

6.4.2 Approximate Policy Iteration

The simple policy evaluation experiments in the previousiea were completed using
the MDP model and evaluating just a single policy. In thistise¢ we extend beyond
this idealized setting to the full approximate policy iteoa problem where a policy must
be learned from a fixed set of samples. Furthermore, we cardlinthree components
of the dissertation (regularized hybrid least-squaresrélygms, efficient basis construction
algorithms for graphs, and the basis selection methodsgistngle combined architecture.
We try to provide intuition as to how these different compatsenteract to produce a final
approximate value function and corresponding policy.

Experiments were conducted on the mountain car task usinglsa from 100 episodes,
each of at most 100 steps, of a random policy. The results €bapter 5 (Figure 5.7) on

this domain showed that it was possible to learn policies ¢bald reach the goal, albeit
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not optimally, without performing basis selection. Thissagone using the 20 smoothest
Laplacian eigenvectors as a basis. To make the problem sSoatemore complex, we re-
strict the algorithm to only 8 basis functions computed ggime AMLS algorithm. With
this limited representational capacity, neither the fixethpnor Bellman residual least-
squares algorithms were able to learn a policy that reliatiins the goal. Itis instructive,
however, to see what type of action-value functions thesthods do learn. Figure 6.7
shows the action-value functions and corresponding greetlgies for both the BR and
FP least-squares methotihere are four plots per method. The first three plots are the
action-value functions for the actions coast, forward, eserse. The fourth plot shows
the greedy policy attained from the action-value functifwiere the color corresponds to
the action). All of these plots are shown from a top-down v@whe two dimensional
state space. To keep the figures legible, we only show thdabess for the first of the four

plots; the remaining three plots are on the same scale.
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Figure 6.7. Action-value functions and policies learned using the BR BR least-squares
policy iteration algorithms and using the 8 smoothest Leipla eigenvectors (computed
using the AMLS algorithm) as a basis.

9Strictly speaking, we plot theegativeof the action-value function as is customary in the RL litera.
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There are two interesting things to point out about the aeti@lue functions in Figure
6.7. For the BR least-squares algorithm, notice that themsalue functions are very
smooth and that the values range from 0 to -15. The actiamevainctions learned using
the FP method have a much larger gradient. Further, the yalmege from 50 to 200.
That the maximum value is 200 (instead of 0) is less relevVzem the fact the spread of
values is 150 versus a spread of just 15 for the action-valoetions learned using the
BR method. This indicates the BR algorithm, via its objeefunction that minimizes the
Bellman residual norm, isonstrainingthe range of values as opposed to the basis func-
tions not being expressive enough. This leads to the hypisthieat if the FP method were
appropriately regularized, then it could compute an adeuaation-value function using
these same 8 basis functions. To test this hypothesis, weat®d two ideas. First, we
added Laplacian-based regularizatigh & 0.1) to the FP method. Second, we used the
hybrid least-squares algorithm with an intermediate wengh(¢ = 0.5) to enforce some
penalty for having a large Bellman residual norm. Both idessilted in better action-value
functions and better policies. Starting from the typicaltstate at the bottom of the hill,
the goal is reached in 160 steps (on average) for the policy the FP method with Lapla-
cian regularization and 219 steps for the policy from therld/inethod (the results were
even better - 130 steps to goal - when the hybrid method waswigle Laplacian regular-
ization). The action-value functions and greedy plots &\ in Figure 6.8. Notice the
range of values for the action-value functions is more ie kvith the optimal action-value
function’s range.

This is an interesting result that captures the idea belmadhybrid least-squares algo-
rithm. By placing some weight on minimizing the Bellman cegl norm, hybrid methods
in effect regularize the solutions produced by the fixed poiathods. One can argue this
is a more natural form of regularization for MDPs than usimgpip-based regularization

(since it stems from the Bellman equation), but on this tastk llorms of regularization
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Figure 6.8. Action-value functions and policies learned using appraate policy iteration
with the FP method including Laplacian-based regulame{, = 0.1) and the hybrid H
method £ = 0.5).

have a similar effect. We found the results were more serditi the Laplacian regulariza-
tion parametep, than to the hybrid parametér

These results show that even with this limited set of bagistfans, it is possible to
learn a policy that can reach the goal. However, notice thierawalue functions in Figure
6.8 do not accurately capture the optimal action-value tionc The only portion of the
state space that should have a value close to 0 (which comdspo dark blue in the plots)
is the region in the upper right-hand corner near the goak flbts show the dark blue
values encircle the outside of the state space, which islgliegorrect. It is interesting to
consider whether basis selection algorithms can chooséter seibset of basis functions.
We still limit the algorithms to 8 basis functions per actibnt they are free to select from
a dictionary. For this data set, we used a graph containirflyv&dtices and computed
100 approximate Laplacian eigenvectors using the AMLSrélgn. The 100 approximate
eigenvectors constitute the dictionary.

We limit our presentation of the results to a few interesimages. First, for the indi-
rect scheme including the optional orthogonalization steplgorithm 7, the action-value

functions were unstable when using the FP least-squaresithlp and any of the basis
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selection methods. When using the Bellman residual leasireq algorithm, the action-
value functions were too smooth. The hybrid least-squaigsithm, however, resulted
in both good policies and accurate action-value functiofigure 6.9 shows the action-
value functions and policies learned using the hybrid lsgsiares method with OMP and
LASSO for basis selection. In particular, notice how thekdalue region of the action-
value function plots is confined to just the region near thal gtate. This improvement
in the representation of the action-value function camerasait of the basis selection al-
gorithms picking elements useful for representing thepst in the mountain car value
function. Figure 6.10 shows two such basis functions thatallgorithms selected. These

are the 19 and 14" smoothest Laplacian eigenvectors in the dictionary.
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Figure 6.9. Action-value functions and policies learned using the rech policy itera-
tion scheme with the hybrid least-squares method and the Q&ffp and LASSO (right)
algorithms.

We also used the indirect scheme without the orthogon@izatep. Note that, without
orthogonalization, the indirect scheme in Algorithm 7 isueglent to Ernst’s fitted Q-
iteration algorithm [36] with the exception being that thelue function in Algorithm 7
is linear in the features. Figure 6.11 shows the actionevéilunction and policy learned
using this scheme with LASSO. The approximate action-valuaetion is not close to the

optimal action-value function, but its greedy policy isesffive (reaching the goal in 131
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Figure 6.10.The 12" (left) and 14" (right) elements from the Laplacian eigenvector dictio-
nary. The basis selection algorithms chose these elemehish are useful for capturing
the steep cliff in the mountain car value function (near thalgegion).

steps). Interestingly, although it had the ability to dotbis technique did not change the

basis functions from the original 8 smoothest elementseardibtionary.
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Figure 6.11. The action-value function and greedy policy when using LAS6 the indi-
rect scheme without orthogonalization.
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In general, we found the direct schemes for combining apprate policy evaluation
and basis selection to be less stable. LASS(OAND LARS-H, produced the best results.
This is due to their conservative updates to the basis fonatoefficients. On the other
hand, when OMP-kland ORMP-H select a new feature, the coefficients are set by making
the residual completely orthogonal to the selected basistiions. This method is overly

aggressive and lead to instability in the action-value fiomcrepresentation. We believe it
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is possible to dampen this aggressive behavior by consttaihe weights (using Laplacian
regularization or a simplé, penalty||w||2).

We draw two conclusions from the experiments in this sectfrst, the hybrid least-
squares method provides regularization to the approximalige function. This occurs
because the hybrid method’s objective function includesBaliman residual norm, which
constrains a state to have a similar value to its precedidgaoceeding states. We demon-
strated the usefulness of the hybrid algorithm, in spitet®kingle sample bias, both in
this section and in Chapter 4. Second, we found that basiste#ielgorithms can find a
better set of basis functionsovidedthe policy evaluation algorithm is stable. When the
policy evaluation algorithm is unstable, the basis sebectilgorithms can select a poor set
of elements and further exacerbate the problem. Thus, wevieetegularization is very
important. We selected regularization parameters by hatitis section. In the future, we

plan to automate this process.

6.5 Conclusions

Proto-value functions and diffusion wavelets are grapsebabasis functions that cap-
ture topological structure of the MDP state space. The Hasistions are independent
of any policy and therefore can be used to approximate angy®lvalue function. A
mechanism is required though to select a subset of the hasiidns for approximating a
value function. The previous approach to using PVFs andslh wavelets used the fol-
lowing basis selection heuristic: the most global funcéiorere selected regardless of the
policy being evaluated. This heuristic is simple and leadsmooth approximations, but it
does not fully utilize the graph-based dictionaries. To enb&tter use of the dictionaries,
a sparse basis selection algorithm must be combined witloajppate policy evaluation.
We evaluated a scheme that directly combines basis saieatio policy evaluation and a
scheme that indirectly combines them via an iterative ppec@&oth schemes are general

and can be used with any set of basis functions. The hybred-Esguares method was used
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for approximate policy evaluation. Specifically, we used taplacian-based regularized
form of the hybrid algorithm developed in Section 4.4. Far thasis selection algorithm,
we implemented orthogonal matching pursuit (OMP), ordeursive matching pursuit
(ORMP), and LASSO and LARS. A systematic study was conducted simple chain
MDP to determine the most promising way(s) of combining ¢hearious components.

From these experiments, we summarize with the following fowdings.

1. We showed that the direct scheme for sparse approximéity gvaluation, when
combined with the fixed point least-squares method, canstthe order in which a
basis selection algorithm selects elements from a dictyoride order is dictated by
the elements in the Neumann seri®s;”,(vP™)"R™. This can lead to the selection
of basis functions that fit some of the early terms in the seteit are in fact not
useful for representing the underlying value function. Ofise, an algorithm like
LASSO that can prune basis functions has the possibilitgwfaving basis functions
that become useless. The indirect scheme for sparse apm@texpolicy evaluation
sidesteps this issue by separating the Bellman equatiantfie basis selection algo-
rithm. This adds computational complexity, but frees upldasis selection algorithm

to represent the value function in the order it sees fit.

2. The graph Laplacian, which is used in constructing PVFs diffusion wavelets,
can also be used to provide regularization. Laplaciandasgularization can help
smooth out the approximate value function. It also proviaésas toward smoother
basis functions in the dictionary. This bias can be helpfokew using the direct
scheme for sparse approximate policy evaluation. We spetihat in an online
setting, it may be beneficial to adjust the amount of regeddion over time as more

samples are seen.

3. For direct sparse approximate policy evaluation:

The OMP-FP algorithm produced accurate approximationgwiséng an orthonor-
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mal dictionary, but became unstable when using an overcatmplictionary due to
matrix Ag}z becoming nearly singular. The algorithm could be made mobeist
by checking the condition number of the matrix before inahgda new basis func-
tion. The more conservative nature of LASSO-FP and LARS€d? Ito accurate
approximate value functions; however, when using an odhmoal dictionary, these
algorithms generated approximate value functions withllsmagnitude (without the
orthogonalization step at the end of Algorithm 9). The ortyoaithm that worked
using the Bellman residual least-squares method was ORRIPTRis was an in-
teresting result that shows one must be careful when comipioasis selection and

approximate policy evaluation algorithms.

4. Forindirect sparse approximate policy evaluation:

OMP, ORMP, and LASSO all produced accurate approximatesvainctions while
using both the fixed point and Bellman residual least-scuarethods. When using a
small number of basis functions, the algorithms performeittido with an orthogonal
dictionary as opposed to an overcomplete dictionary. Qlvehee results were no-
ticeably better than using an orthonormal dictionary wité dlirect scheme for sparse
approximate policy evaluation. This provides some eviédoc the hypothesis that
the indirect scheme can select a more efficient set of basatituns than the direct

scheme.

In the approximate policy iteration experiments, policvesre learned from a set of
samples. The results attained with and without basis sefeatdicate the importance
of regularization. In particular, when changing the basisctions, the Bellman residual
should be controlled for basis selection to remain staberd are multiple ways to ensure
stability: graph-based regularization, use of the hybemkt-squares algorithm, and/or use
of a conservative basis selection algorithm like LARS/LAS&ach of these methods helps

protect against large Bellman residuals.
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The policy evaluation experiments partially demonstrate éxpressiveness and flexi-
bility of the diffusion wavelet dictionary. However, we Imle the true value of diffusion
wavelets will be evident on more challenging value funcsianth discontinuities and dif-
ferent degrees of smoothness. For future work, it would betwdhile further decompos-
ing the diffusion wavelet tree using diffusion wavelet paisk{18]. This increases the size
of the dictionary and provides even more flexibility for fuion approximation.

The benefit of maintaining a basis function dictionary is flegibility to approximate
many different functions. This benefit comes at the costarirgg a potentially large num-
ber of elements in the dictionary; therefore, efficient at@ schemes are very important.
As an example, recall the Kronecker product method from Grdpstores the dictionary
in a compressed format. Parametric methods for repreggtiim dictionary could also

prove useful.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this dissertation, we proposed automatic basis cortsbrualgorithms and an accom-
panying approximate policy evaluation method for Markoeidien processes. The ability
to automatically learn useful representations is an ingedrand fundamental challenge for
an autonomous agent. RL agents must be able to meet thispalto both deal with the
complexity of real world environments and to go beyond tivétral representations given
by human designers.

Our work builds upon a recently introduced graph-based @pgr to generating rep-
resentations [67, 63]. In this application, graphs reflaetgeometric structure of a MDP
state space. An important attribute of the graph-basedoagfris that it circumvents the
dimensionality of the state space. While a MDP state spacenoaynally be very high
dimensional, if the reachable state space in fact lies omvarldimensional surface, then
the graph-based approach can leverage this informationdio #he “curse of dimension-
ality.” Basis functions generated from these state spaaehgrare well-suited to represent
certain classes of value functions.

The goal of this dissertation was twofold: (1) to scale thap@rbased approach to
handle larger amounts of data, and (2) to effectively anaiefitly use the basis func-
tions to perform approximate policy evaluation. To scale ¢inaph-based approach, we
proposed one matrix factorization algorithm and anotheltisaale algorithm. Both algo-
rithms produce basis functions that approximate the oaigiases proposed by Mahadevan

and Maggioni [67, 63]. Once constructed, the basis funstext as a dictionary. Repre-
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senting a particular policy’s value function using a lin@gproximation is accomplished

by selecting elements from the dictionary and assigningy eeement a scalar weight. We
evaluated several basis selection algorithms and intexiachybrid least-squares method
for setting the weights. Although we mostly explore using Hasis selection algorithms

and the hybrid least-squares method with the graph-basasl foactions, these algorithms
can be applied to other types of basis functions as well. Eheimder of this summary

covers our contributions in greater detail.

In Chapter 4, we presented hybrid least-squares algoritbnagpproximate policy eval-
uation. The term “hybrid” is used to emphasize the fact thatdlgorithm parametrically
combines (and generalizes) two common RL least-squardsoaiet At one extreme, the
hybrid algorithm defaults to minimizing the norm of the Be#n residual (BR). At the
other extreme, the norm of the projected Bellman residualirsmized (we refer to this as
the fixed point (FP) method).

By using a linear combination of the BR and FP objective fiomst, hybrid algorithms
allow for finding solutions in between those computed by tReeBd FP methods. This can
be useful when the hybrid least-squares algorithm is usédma policy iteration loop. We
do not have a theoretical explanation of this result; ratl@pirical results show the hybrid
method appears to temper large changes to the value furibibthe FP method can make
between rounds of policy iteration. Experiments in a disegrid MDP, the challenging
problem of Tetris, and mountain car demonstrated that theithyalgorithm can, in some
cases, find better policies. We also proposeégalarizedhybrid least-squares algorithm
which uses the graph Laplacian [20]. The Laplacian pensifiziections that are not smooth
according to the structure of the graph. This type of regedaion is useful for MDPs when
the domain is stochastic and relatively few samples ardabtaifor learning a policy.

Two recently introduced approaches to automatically getimeg basis functions from
a MDP state space graph are to form graph Laplacian eigeargggtroto-value functions

[67]) and diffusion wavelets [63]. Computing eigenvectard diffusion wavelet trees from

134



large, sparse matrices can be computationally intensigescé@le these basis construction
methods to larger graphs and thus larger MDP state spacéstraduced two algorithms in
Chapter 5. The first algorithm is based on matrix factorizatising the Kronecker product.
The Kronecker product is particularly relevant becauseaserves the spectral structure
of matrices. In this approach, smaller matrices are autimadt computed and combined
together via the Kronecker product to approximate the @grgriginal matrix. Laplacian
eigenvectors or diffusion wavelet trees can then be geegfadm these smaller matrices.
We showed how the Kronecker product method significantlgséoth time and memory.
Experiments using the basis functions produced by the Kikareproduct method were
mixed. We attribute this result to the Kronecker productéchk structure not allowing for
sufficient representation of arbitrary matrices. To ovemecathis limitation, we proposed
using a second algorithm called Automated Multilevel Suuttiring (AMLS). AMLS
recursively decomposes a matrix into smaller submatricesyputes eigenvectors for the
submatrices, and uses those solutions to approximateveigtans of the original matrix.
We proved the algorithm is applicable to graph Laplacianrives. The recursive nature of
AMLS allows for a very fast parallel implementation. The @ighm can handle graphs up
to one hundred times larger than standard eigensolvers aaage (given equal computing
resources). Aside from its scalability, we also demonsttdhe basis functions computed
by AMLS performed just as well in policy iteration experimieras those computed using
exact eigensolvers.

In Chapter 6, we evaluated four well-established basis setealgorithms: orthogonal
matching pursuit [82], order recursive matching pursu][Zhe LASSO [103], and least
angle regression [33]. Basis selection algorithms chos$evaelements as possible from a
dictionary in order to represent a value function. In tangrthe representation to a partic-
ular value function, selection algorithms provide flextyiland computational efficiency.

We employed these algorithms using graph-based basisiduscas a dictionary. Other
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types of basis functions could also be used with the selealigorithms. Our work [45] is
the first time Laplacian eigenvectors and diffusion waveklgtve been used in this manner.
Along with choosing elements from the dictionary, basiesgbn algorithms must also
assign weights to the basis functions. This was accomglisiseng the regularized hy-
brid least-squares method developed in Section 4.4. Weiaeal two different ways of
combining the policy evaluation method and the basis seleetigorithm. The distinction
between the two ways is whether the policy evaluation meithdatectly encoded in the ba-
sis selection algorithm. We showed this distinction caretesignificant effect on how the
dictionary is utilized. Interestingly, our experimentsled that the basis selection algo-
rithms perform differently depending on whether the diotioy consists of an orthonormal
or overcomplete set of basis functions. When the dictionargviercomplete (as is the
case with the complete diffusion wavelet tree), the coregem nature of the LASSO and
least angle regression algorithms proved more useful thamggressive matching pursuit

methods.

7.2 Future Work

There are a number of interesting directions for future work

e Learning algorithms

The hybrid least-squares algorithm presented in Chapteqdines setting a scalar
parameter to a value between 0 and 1. For Baird’s incremgatalon of the hybrid
algorithm [3], he proposed setting this parameter to guaeoonvergence. Since en-
suring convergence is unnecessary for the least-squargswewe have more flexi-
bility. In the experiments, we selected a particular valné keld it fixed throughout
the policy iteration loop. In future work, we would like toguide a framework
for automatically setting the parameter’s value. This $thdne done separately for
each round of policy iteration. One of the factors determgrthe parameter’s value

should be the impact of the Bellman residual method’s bias sidéwed that the bias
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is linearly impacted by the parameter (i.e. setting the taybrethod’s parameter to

0 causes the solution to be unbiased).

We used least-squares algorithms for approximate poliajuetion because of their
data efficiency and because they do not require setting assteparameter. How-
ever, it is interesting to consider other methods and how thight impact the basis
construction and selection problems. We suggest one plitysibat focuses more
on policies than on value functions. To motivate this chainge value functions
to policies, we mention an interesting example from thei§etomain. Using 22
hand-coded basis functions defined in [12], Szita addricz [100] showed that the
cross-entropy method (which searched directly for a seRot@fficients resulting
in good policies) can learn policies that scd@0 times bettethan policies learned

using the same 22 basis functions and a temporal differdgoeitam.

The least-squares algorithms minimize different fundiof the Bellman residual.
The rationale for doing so is based on the fact that the egdeBéllman residual is
0 for the exact value function. An alternative to this appiog to try to represent
the greedy policy associated with the exact value functaghar than representing
the exact value function itself. This idea was explored irea tlifferent contexts
[105, 10, 107], but the main theme uniting this work is to h#we algorithm learn
the relative value of a state (which is what determines tHieyjoas opposed to the
absolute value of a state. This type of algorithm may maké#sés construction and
selection problems easier since representing a policy raajrbpler than represent-
ing a value function. In effect, the algorithm can make lamgeors in the Bellman
residual as long as it orders the states correctly. We keeti@g is an interesting area

for future work.
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e Basis selection and diffusion wavelets

The basis selection framework presented in Chapter 6 in oohipn with an ex-
pressive, overcomplete dictionary like the diffusion wavelictionary provides a
powerful tool for value function approximation. There aneete immediate ways to
extend this work. First, the main component, and thus bwatlk, in constructing a
diffusion wavelet tree is the sparse QR decomposition dlgor The QR decom-
position algorithm is used to compute both the scaling fionst and the wavelet
functions. A faster implementation of the algorithm is ne@dAlso, to scale up, it
may be beneficial to approximate the QR decomposition. Thighiresult in the
loss of orthogonality between the scaling and wavelet fonstat each level of the
tree, but that might not be a crucial factor when approxintaé value function. The
second extension is to exploit the structure of the diffnsi@velet tree when per-
forming basis selection. Our current implementation syrtpkes each element in
the tree, which is stored in a compressed format, and urtfel€lement back to an
uncompressed format before using the basis selectionitigorThis is inefficient.
A faster implementation here can significantly affect thetime since basis selec-
tion occurs each time a new policy is evaluated. The thirdmresibn is to explore the
use of diffusion wavelet packets [18]. Diffusion waveletkets allow for splitting
the wavelet spaces into an orthogonal sum of smaller subspaabis creates a larger
number of elements in the diffusion wavelet tree which areemocalized and thus

offer greater flexibility in terms of function approximatio

e Graph construction

An advantage of the graph-based approach to basis congtruotMarkov deci-
sion processes is its flexibility. As we we have demonstratetthis dissertation,
the approach is amenable to both discrete and continuotessgtaces. The graphs

we constructed from MDP samples were simply based on a peeffied distance
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function. One obvious extension is to automatically lemndistance function based
on actual transitions. In fact, it is possible to learn saldistance functions where
each one is responsible for a different portion of the stpges. Bowling et al. [15]

proposed a simple method accomplishing this.

While the user has the ability to specify the distance fumctiwat creates the graph
from samples, this is typically done just based on the dynarof the domain. An
interesting extension would be to form the graph not solelgda on structural sim-
ilarity but also based on the type of value functions therdewmy algorithm is likely
to encounter. For example, if two states that are topoldigictéose but in fact have
different values for many policies, then the edge weighivieen these two states in
the graph can be decreased. Decreasing the edge weighhialters the shape of
the basis functions generated from the graph. We proposexatldroc method for
adjusting edge weights based on the Bellman residual [4Tis @arlier work was a
proof of concept, but in the future we hope to determine a mareipled approach

that is also scalable.

Instance-based representations

In order to use the graph-based approach to basis constidcti MDPs, the sam-
ples/states forming the vertices of the graph must be stdnemther words, the graph
and its associated features are an instance-based rejatesenT his should be con-
trasted with representations using a fixed number of paensiegtuch as neural net-
works with a prescribed connectivity. While we have proposesdhods for dealing
with large graphs, scalability is a concern for any algenthsing an instance-based
representation. This issue is not unique to reinforcemearing. Indeed, this is an
issue with any kernel method (note the graph Laplacian ieslaareproducing kernel
Hilbert space [92] and can be considered a kernel method)etdtanding the practi-

cal limitations of instance-based representations anadfreow these limitations can
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be circumvented is an ongoing area of research in machineihga One interesting
possibility is to see if instance-based features can bedtoore compactly using a

parametric representation.

7.3 Final Remarks

A hallmark of human-level intelligence is the ability to sessfully perform many tasks
across a wide range of environments. In order for autonoragaests to approach this level
of flexibility, they must be able to adapt their internal regentations of the environments
in which they reside. The graph-based methods [67, 63] weidered in this dissertation
provide one way to generate flexible representations thatiuca structural information
about an environment. In the reinforcement learning pgragan autonomous agent forms
such representations and then uses them to learn how to agtaddfessed these two

interrelated aspects in the context of value function axpration:

1. Given a set of samples from an environment, can we gengraph-based features

associated with the samples in a manner that scales well?

2. Given a set of samples from an environment and the grapeeb&eatures, how

should the features be used to compute a (good) policy?

The set of features dictates the space of approximate valusibns that can be repre-
sented. The algorithm utilizing the features determines hgolicy will be found. We
believe a thorough understanding of the confluence of theseateas, automatic feature
construction and feature utilization, is an interesting &arorthwhile topic for continued

RL research.
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APPENDIX A

DOMAINS

A.1 Chain MDP

We used the 50 state chain MDP described by Lagoudakis amd38&r Figure A.1
shows a depiction of the problem and the optimal value fonctiThere are 50 discrete
states{s,; }3°, and two actions moving the agent lef (~ Smax(i—1,1y) and right ¢; ~
Smin(i+1,50))- 1€ actions succeed with probability 0.9; failed actiormve the agent in the
opposite direction. The discount factornis= 0.9. The agent receives a reward-pt when

in statess;, ands,;. All other states have a reward of 0.

Figure A.1. The chain MDP and the optimal value function.

A.2 Grid MDP
Grid MDPs are simply two dimensional versions of the aforetiomed chain MDP. A

simple square grid and a two-room grid with one state adpginihe two rooms are shown
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in Figure A.2. There are four canonical actions that moveatent up, down, left, or right.
The actions succeed with probability 0.9. Unsuccessfubastresult in a transition in one
of the other three directions (with equal probability). &gies begin in a random state
in the MDP. The discount factor is assumed toybe: 0.95 unless otherwise stated. The
reward function is 0 except for a few goal states (which aezd@d on an individual basis

for each grid MDP used throughout this dissertation) thaehapositive reward.

Figure A.2. A 10 x 10 grid MDP and a two-room version with a single “hallway” state

A.3 Inverted Pendulum

The inverted pendulum problem requires balancing a pemdddy applying force to
the cart to which the pendulum is attached. We used the ingoléation described by
Lagoudakis and Parr [56]. The state space is defined by twablas:d, the vertical angle
of the pendulum, and, the angular velocity of the pendulum. The three discret®as
are applying a force of -50, 0, or 50 Newtons. Uniform noigerir-10 and 10 is added to

the chosen action. State transitions are described by Hog/fog nonlinear equation

i gsin(6) — amlf?sin(26) /2 — o cos(6)a
B 41/3 — aml cos?(0) ’

whereaq is the noisy control signal = 9.8m/s* is gravity,m = 2.0 kg is the mass of the
pendulum,M = 8.0 kg is the mass of the cart,= 0.5 m is the length of the pendulum,

anda = 1/(m + M). The simulation time step is set to 0.1 seconds. The ageités @
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reward of O as long as the absolute value of the angle of theéybem does not exceed/ 2,
otherwise the episode ends with a reward of -1. The discagtbf was set toy = 0.9.

Episodes begin with both state variables at value O.

A.4 Mountain Car

The task in the mountain car domain is to drive an underpaiveehicle, situated in
a valley, to the top of the mountain on the right [98]. Figur&Ahows a depiction of the
problem. There are two state variables: the positionafd velocity {) of the car. There
are three actions corresponding to a positive=(1), negative ¢ = —1), and zero¢ = 0)

force. The equations of motion are:

i1 = boundi; 4+ 0.001a; — 0.0025 cos(3z;)]

Tir1 = bOUﬂdxt + it—l—l]

where the bound operation ensure$.2 < z;,,; < 0.5 and—-0.07 < 7,1 < 0.07. The
velocity ,,, is reset to 0 when the positiary.; becomes less thar1.2. When the
position exceeds.5, the car has reached the top of the hill on the right and theoelgi is
terminated. The reward for reaching the goal is O; every ategre the goal is not achieved
results in a reward of-1. The discount factor is = 0.99. Episodes begin in a state with
x; = —0.5 and#; randomly selected from the set0.07, —0.06,...,0.06,0.07]. The

distribution overz; allows for easy exploration of the state space.

A.5 Acrobot

The acrobot [98] is an underactuated double pendulum. $las interesting and well-
studied problem due to the nonlinearity of the dynamics.ohsists of two links where
torque can only be applied at the second joint (Figure A.4)e $ystem is described by

four continuous variables: the two joint anglés,and ., and the angular velocities,
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Goal

Figure A.3. The mountain car domain.

andd,. There are three actions corresponding to positive-(1), negative ¢ = —1), and
zero @ = 0) torque. We use the same equation of motions and problenmeteas as
described in Chapter 11.3 of [98]. The time step was set to &@5actions were selected
after every fourth update to the state variables accordinge equations of motion [97].
The goal for this domain is to raise the tip of the second libk\wee a certain height in
minimum time (we used a height of 1, where both links have gtlewnf 1). The reward
function is therefore-1 for each time step until the goal is achieved and the disciawatr
isy = 0.99. Episodes begin with the all state variables at value 0 wbazhesponds to the

two links hanging straight down and motionless.

Goal: Raise tip above line

Figure A.4. The acrobot domain.
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A.6 Tetris

The game of Tetris was designed by Alexey Pajitnov in 198%oitsists of a board
with 20 rows and 10 columns as shown in Figure A.5. Puzzlegsieeach containing four
blocks in different positions, fall vertically down the krda The player’'s objective is to
orient the piece as it is falling to create a horizontal rovibloicks with no gaps. When this
is accomplished, the completed row disappears and any blao&ve the row fall down.
The game ends when a block is placed in the top row, not allpfirther game pieces to

enter the board.

Figure A.5. The Tetris domain.
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APPENDIX B

PARTITIONED MATRIX INVERSE

The OMP-H, ORMP-H,, LASSO-H,, and LARS-H algorithms in Section 6.2.1 formed
the matrix Az 7 and vectom;. Each algorithm then inverts the matrik ;. This is very
wasteful when the active sé&tonly changes by one element at a time. To take advantage
of the single element insertion and remO\LeiII’,}I can be incrementally formed using the
following partitioned matrix inverse property. Considerguare matrixA’ partitioned as

follows:

A=

where matrixA is squarep andc are vectors, and is a scalar. Then the inverse df can

be computed from the inverse dfas:

! (e AL+ A7 hcTATY) —AN
=e
—cTA™? 1

wheree = (d — ¢’ A='b)~'. ComputingA’~" in this manner has quadratic complexity
instead of cubic. OMP-§ ORMP-H,, LASSO-H,, and LARS-H can exploit this property
by maintaining the matrixﬁig}z. When inserting a new elemeyit into Z, the update is as

follows:
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T—Tui{j}

i-1 i-1 A i i-1 i-1 4
At (AI,I+uj*AI,IAIJ*Aj*7IAI,I) _Uj*AI,IAI,j*
7.7 R .
JAIAT T J*
R br
bI — N )
b«

where:

A S R
Uje — (Ajrjr — Aje 7A7 7 AT j)

Ajejr — Z p(5:) (5= (8:) (D= (5i) — v (5)) + Brgj=(5:)gj+(8i)]
Az — Z p(8i) [Dz(8:) (D¢ (5:) — Y+ (57)) + Brgz(si)gs+(8i)]

Ajez =Y p(s:) [95(s)(D2(si) = 192(s))" + Brgs-(si)92(5:)"]

i=1

bjr — > plsi)ye(si)rs.
=1

Similarly, when LASSO-FP removes an elemgtitfrom Z, the matrixflg}z can be shrunk

with the following update:

T—7T-{%}
X j# . .
to isolate the influence of*

Partition the currentd; ) —
' T
yj# Zj#

A1—1 T
AZ,I «— U — x]#y]#/zj#
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APPENDIX C
BASIS SELECTION PSEUDOCODE

The ORMP-H algorithm was described in Section 6.2.1.1. Pseudocod®@RWMP-H,

is shown below in Algorithm 8.

Algorithm 8 : ORMP-H, with Lapl aci an- based Regul ari zati on

Input:  {s;,7,s,}" ,, samples generated using policy

¢: S — RE, basis function

p: S — RT, weighting over the states

¢ €[0,1], hybrid parameter{= 0is FP,{ = 1is BR)

L, graph Laplacian defined over stafes}!" ; (graph edges denoted with)

v € [0,1], discount factor

B- € RT, Laplacian-based regularization parameter

k' < K, maximum allowable number of basis functions
Output: Z, setof selected basis functions (indices injo

wz, weight vector such that (s) = ¢7(s) wz

Initialize active sefl «— ()
while (|Z| < k") and(Bellman residual not converggdo
1. Find best inactive element:
J* < argmax;gr i’%ﬂ- Aﬁjlﬂ Bf+j)
where: 7 ; —Z U{j}
) Ezﬂ- — > iy p(si) (b1, (si) — Evor,, (s7))rs
Az 1 — S plso)l(ozy, (si) — &z, (s)) (o1, (si) — voz., (si) T + ...

ﬁTgI_'.j (S’L')gl-_;'_]' (SZ)T]
where: g(s;) <« L(si, s;) ¢(s:)
g(sl) — g(sz) + L(Sia San) ¢(Snbr)l V{Snb'r|$nl7'r ?é S /\ s~ San}
2. Adjust active set:
T —Tu{j}

3. Computedz 7 andbz:
Az = 3L p(s)l(9z(si) — €10z(s7))(¢z(si) —102(s))T + Brgz(si)gz(si)T]
bz Dy p(si)(9z(si) — §voz(si))mi
4, ComputeAIeaAst—squares weights:
Wz < Aia—bz
end while
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The LASSO-H and LARS-H algorithm were described in Section 6.2.1.1. Algorithm
9 shows the pseudocode implementing LASS©OaHd LARS-H.

Algorithm 9 : LARS- H,/ LASSO- H, with Lap. -based Regul ari zati on
Input:  {s;, 7, s,}",, samples generated using policy
¢: S — RE, basis function
p: S — RT, weighting over the states
v € [0,1], discount factor
¢ €[0,1], hybrid parameter{= 0is FP,§ = 1is BR)
L, graph Laplacian defined over stafes}! ; (graph edges denoted with)
B- € RT, Laplacian-based regularization parameter
Bs € RT, L; regularization parameter
k' < K, maximum allowable number of basis functions
Output: Z, set of selected basis functions (indices injo
wr, Wweight vector such that (s) = ¢z(s) wz

¢ 2 p(si)(D(si) — e (sy))ri
s, 3*] « [max, argmax]; (|c;|)
Initialize active se «— {j*}, w0

while (s > 3) and(|Z| < k') and(Bellman residual not converggdo
1. Compute weigpt update directid¥wz:
Awr — A7 sign(cr)

where: Azz — S0 p(si)[(¢z(si) — Evdz(s)))(dz(s:) — vdz(sp)T + ...
Brgz(si)gz(si)"]
9(si) < L(si, si) o(si)
9(8:) < g(5i) + L(5i, Supr) P(Sner) V{Supr|Snpr 7 8 N 8~ 50}
2. Compute correlation update directigye:
Ac = 3 p(si)[(@(si) — Ev0(s))) ($2(si) — vez(s)) Awr + ...
By g(si)gz (si)" Awg]
3. Find step size to add element to active set:
‘ ¢i—Bs  ¢j+Bs )
j¢T \Ac;—1° Ac;+1
4. Find step size to remove element from active set:
If (using LARS-FB, o « oo
Else [o#, j#] — [minﬂargmin]j.eI <_Aw—1f)]>
5. Updates,, wr, c:
a « min(a*, o, Bs — Bs)
Bs — Bs —a, wg— wr+alAwz, c—c—alc
6. Adjust active set:
If (a* <o), T« ZU{j*}
Else Z — 7 — {j#}

[a*, j*] < [min™, argmin]

end while o A
OPTIONAL: wy — A7 7br where: bz «— "7 p(si)(oz(si) — Evor(sh))r
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