






We examine the eigenvectors and eigenvalues computed exactly, using AMLS, and us-

ing the Kronecker method to help understand the performancedifferences. Since mountain

car is a two dimensional continuous domain, it is easy to visually compare the eigenvectors.

Figure 5.8 shows the second through sixth eigenvectors for all three methods. The

graph, which is from one of the 30 trials in the policy iteration experiments, contains 1050

vertices. The exact eigenvectors and those computed using AMLS are nearly identical.

Notice there are some similarities (2nd, 5th, and 6th) and some differences (3rd and 4th) for

the approximate eigenvectors computed using the Kroneckermethod.

Figure 5.8. The 2nd-6th eigenvectors computed exactly (top row), computed using AMLS
(middle row), and computed using the Kronecker method (bottom row) for the mountain
car domain. The approximate eigenvectors computed using AMLS are nearly identical to
the exact values.

The AMLS algorithm accurately computed 50 eigenvalues. Theexact eigenvalues as

well as those computed using AMLS are shown in Figure 5.9. Theplot on the left of Figure

5.9 show the eigenvalues in increasing order. Notice the twocurves are nearly identical. To

detect small differences, the plot on the right of Figure 5.9shows the difference between the

eigenvalues,(λAMLS
i − λi). This plot shows there is some discrepancy between the values

and that the discrepancy is greater for larger eigenvalues.This behavior is to be expected
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from AMLS because the projection method (i.e. using the eigenvectors from subproblems

as a basis for approximating the larger eigenvalue problem)naturally captures more of the

low frequency components of the Laplacian spectrum.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

ith Eigenvalue

E
ig

en
va

lu
e

 

 

Exact
AMLS

0 10 20 30 40 50
0

0.5

1

1.5x 10
−3

ith Eigenvalue

λ
A

M
L

S
i

−
λ

i

Figure 5.9.The first 50 eigenvalues of the normalized graph Laplacian for the mountain car
task computed exactly and approximated using the AMLS algorithm (left). The difference
between the approximate and exact eigenvalues (right) shows there is some discrepancy,
but the error in the approximation is small relative to the absolute value.

Another way to compare the exact eigenvectors with the AMLS approximation is to

compute the angle between the subspaces spanned by the eigenvectors. Before we define

the angle between two subspaces, note it is easy to compute the angle between two vectors.

Given two vectorsx andy of the same length, one can compute the angle betweenx andy

asarccos ( xT y
‖x‖‖y‖

). Now, assume we have two subspacesSX andSY . Using the definition

of Bjorck and Golub [14], the angle betweenSX andSY is defined to be the maximum

angle between any vector inSX and its closest vector inSY . This angle can be computed

given orthonormal matricesX andY spanning the subspacesSX andSY respectively as:

θ(SX , SY ) = max
i

min
j

arccos (XT
i Yj)

with column indicesi andj. Using this definition, the angle between the spaces spannedby

the first 50 eigenvectors computed exactly and computed using AMLS isθ = 0.128 radians,
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or θ = 7.3◦. Thus, the exact eigenvectors and the AMLS approximate eigenvectors span

similar spaces.

The bottom row of plots in Figure 5.8 shows the second throughsixth approximate

eigenvectors produced using the Kronecker product method.Recall these eigenvectors are

stored in a compressed form. They are formed by computing theKronecker product of

an eigenvector associated with a105×105 matrix with an eigenvector of a10×10 matrix.

As described in Section 5.2.2, one can interpret the Kronecker product as partitioning the

1050 samples into 105 clusters, each of size 10. Practically, this means the eigenvectors

produced using the Kronecker product method are more coarse(“blockier”) than those

produced using AMLS. This is evident in the jaggedness of thefunctions.

We also computed the angle between the subspaces spanned by the first 20 exact eigen-

vectors and the 20 eigenvectors computed using the Kronecker method. The angle was

θ = 0.751 radians, orθ = 43.0◦. As expected, this is larger than the angle between the sub-

spaces spanned by the exact and AMLS eigenvectors. However,θ = 43.0◦ indicates there

is still a significant degree of overlap between the exact andKronecker product eigenspaces

for mountain car. For graphs in acrobot, this angle was closer to 90◦ (meaning there was

at least one function in the span of the true eigenvectors nearly orthogonal to all functions

in the span of the approximate eigenvectors computed using the Kronecker method). This

does not fully explain why the Kronecker product eigenvectors performed poorly as basis

functions for the acrobot experiments, but it does provide evidence that graphs in acrobot

may be poorly approximated with the block structure of the Kronecker product.

We also attempted to use the theoretical analysis developedin Section 5.2.4 to un-

derstand the behavior of the Kronecker product method. However, we found that for

both mountain car and acrobot domains, the error in the Kronecker product approxima-

tion (‖E‖ = ‖A − B ⊗ C‖) was greater than the eigengap of matrixA (d in Theorem 2).

This violates one of the assumptions in the proof of Theorem 2.
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In this section, we visually compared the eigenvectors produced by the three methods

for the mountain car task, compared the eigenvalues produced using the exact and AMLS

methods, and computed the angles between subspaces spannedby the eigenvectors. This

analysis indicates the AMLS algorithm allows for a better approximation of the Laplacian

eigendecomposition. The fact that AMLS allows for computing thousands of eigenvectors

of sparse matrices with millions of entries makes it particularly attractive for generating

proto-value functions. The analysis also shows the qualityof the Kronecker product ap-

proximation depends more heavily on the specific graph beingfactorized. The Kronecker

method’s block structure allowed for a better approximation in the mountain car domain

than in acrobot. Whether or not the Kronecker method’s scalability and compression can

be leveraged appears domain dependent.

5.4 Conclusions

In this chapter, we presented three ways to scale the graph-based basis construction

method to larger problems. The greedy sampling procedure ensures the graph is con-

structed only using enough data points as necessary to ensure state space coverage. This

allows for removing redundant samples. Not only does this accelerate graph and basis con-

struction, but it also speeds up nearest neighbor searches when the features of a new state

(not in the graph) are needed.

We also proposed two approximation algorithms for scaling up graph-based basis con-

struction: the Kronecker product method and the Automated Multilevel Substructuring

(AMLS) algorithm. Both methods can be used to compute approximate eigenvectors and

the Kronecker product method can also be used to compute approximate diffusion wavelets.

The Kronecker method decomposes the problem into smaller problems that are combined

via the tensor product to approximate the original problem.Eigendecomposition or dif-

fusion wavelet tree construction occurs on the smaller problems. This method has two

substantial benefits: (1) basis construction only occurs onsmaller matrices, and (2) the ap-
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proximate eigenvectors or diffusion scaling and wavelet functions of the original problem

are never explicitly formed/stored. To achieve these benefits, the method makes the strong

assumption that the original problem has, to some degree, the block structure of the Kro-

necker product. The AMLS algorithm method does not make thisassumption. Indeed, it

can be used on any Laplacian matrix. AMLS recursively computes eigenvectors on smaller

problems and then uses those solutions to approximate eigenvectors on larger problems.

Experiments in the mountain car and acrobot tasks showed that the basis functions pro-

duced using AMLS resulted in very similar performance to thebasis functions produced

using exact eigendecomposition methods. We showed this wasdue to AMLS’s accuracy

in computing eigenvalues and eigenvectors. On the other hand, the results were mixed for

the Kronecker product method. The basis functions allowed for policies that could reach

the goal, albeit with some loss in performance, for mountaincar. For the acrobot domain,

the policies using Kronecker basis functions were significantly worse. This leads to the

conclusion that the block structure of the Kronecker product allows for compression, but

whether the compressed functions adequately represent theoriginal problem appears task

dependent.

The AMLS algorithm has been used on matrices with millions ofrows to compute

thousands of approximate eigenvectors. For some RL problems, a graph with millions of

vertices could provide adequate coverage over the domain’sstate space. In these situations,

we believe AMLS can be used to provide a useful set of basis functions for represent-

ing value functions. While AMLS can be used generally on all problems, the Kronecker

product method is applicable to domains where some block structure exists and can be

exploited.
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CHAPTER 6

BASIS SELECTION

RL feature construction algorithms can be categorized intotwo types: one that itera-

tively generates basis functions based upon the current Bellman error,T π(V̂ )− V̂ , and the

other that generates a dictionary of basis functions.1 Note the latter type requires aselec-

tion strategy to determine which elements from the dictionary toutilize. The graph-based

methods studied in this dissertation are an example of the dictionary approach to basis

construction. We propose three arguments for preferring this approach. First, a dictionary

offers the flexibility of approximating value functions associated with many different poli-

cies. The other basis construction type iteratively generates basis functions for fitting just

a single function based on the agent’s current policy. Second, there is significant interest

in the machine learning community on methods for generatingdata-dependent dictionar-

ies [77, 60, 22, 59, 42]. By creating algorithms that operate on such dictionaries, we can

naturally leverage future advances. Third, from a practical standpoint, we believe agents

should construct representations that are general and useful in the pursuit of a variety of

tasks. Over the course of an agent’s lifetime, it should be able to reuse representations

and knowledge from previous experience. The dictionary approach to basis construction is

more in line with this ideal.

The previous sections of this dissertation have used a simple method for selecting which

proto-value functions and diffusion wavelet functions to use when approximating a value

function. The heuristic is to always use theK most global, or smoothest, basis functions.

All prior applications of PVFs and diffusion wavelets in theliterature have also used this

1We focus here on techniques forexplicitlyconstructing features.
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heuristic [67, 63, 68, 79, 44, 95].2 This mechanism is independent of the policy being

evaluated, meaning that all value functions are represented with the same set of basis func-

tions. Using just the smoothest basis functions has the advantages of being computationally

simple and robust to overfitting (although too much regularization can be just as problem-

atic as too little regularization), but it does not exploit the full power of the basis function

dictionary. In this chapter, we explore different selection mechanisms to better utilize the

dictionary. This is an improvement over previous work for two reasons. First, it tailors

the representation to the specific function being approximated. Second, tailoring the rep-

resentation allows for using as few dictionary elements as possible, which is important for

computational efficiency.

We evaluate four sparse basis selection algorithms: orthogonal matching pursuit (OMP)

[82], order recursive matching pursuit (ORMP) [75], the LASSO [103], and least angle re-

gression (LARS) [33]. Although we tested the selection algorithms using graph-based basis

functions as a dictionary, the algorithms can be used withanyset of basis functions. Each

algorithm returns a subset of basis functions from the dictionary and a scalar coefficient

associated with each selected basis function. The selectedbasis functions and coefficients

are linearly combined to produce an approximate value function. We tested two different

schemes for combining approximate policy evaluation and basis selection. The factor dis-

tinguishing these two schemes is whether the basis selection algorithmdirectlyor indirectly

uses the Bellman equation. These two schemes differ in termsof sparsity (how many ba-

sis functions are used in the approximate value function) and computational efficiency. To

2Mahadevan and Maggioni [66, 63] demonstrated the potentialbenefits for basis selection in a restricted
setting where (1) the exact value functionV π is known, and (2) the dictionary is orthonormal (which is always
the case for PVFs, but not for diffusion wavelets). In that setting, the bestK basis functions are selected by
finding the elementsφi with the largestK values of|〈V π, φi〉|. This results in the best rank-K approximation
of V π representable with the given dictionary. The result does not hold, however, when the dictionary isnot
orthogonal. We develop algorithms in this chapter that apply basis selection for arbitrary dictionaries and
when the exact value function is unknown.

97



assess the combination of basis selection and approximate policy evaluation, both policy

evaluation and policy iteration experiments were conducted.

6.1 Relevant Work

We provide a brief introduction to the basis selection problem and a few of the major

algorithms. The basic formulation is that there is a signaly ∈ R
N to be represented with

elements from an overcomplete dictionaryΦ ∈ R
N×K . Each basis functionΦj ∈ R

N has

unit norm. The problem is to find a vectorw such thatΦw = y.3 The decomposition of

y is not unique; therefore, additional constraints are addedto prefer solutions with certain

qualities (e.g. sparseness, independence).

Two popular approaches to the sparse regression problem arematching pursuit and

basis pursuit. Matching pursuit is an iterative, greedy algorithm whereas basis pursuit is

an optimization principle that can be solved using any appropriate algorithm. Therefore,

matching pursuit and basis pursuit are not mutually exclusive approaches to sparse regres-

sion.

6.1.1 Matching Pursuit

Matching pursuit (MP) [69] is a greedy algorithm that selects elements sequentially to

best capture the signal. The algorithm begins with a coefficient vectorw equal to all zeros

and a residual vectoryres equal to the signaly. The first element is selected by scanning the

dictionary and finding the largest correlation with the residual:j∗ ← argmaxj |ΦT
j yres|, j ∈

[1, K]. The coefficient for the selected basis function is adjusted: wj∗ ← wj∗ + ΦT
j∗yres.

Then the residual signal is computedyres ← yres − (ΦT
j∗yres)Φj∗ and the process iterates.

With MP, a basis function can be selected many times. There are other variants of MP,

two of which are orthogonal matching pursuit (OMP) [82] and order recursive matching

pursuit (ORMP) [75]. OMP differs from MP in the way the residual signal is computed.

3The model could also include a noise term,Φw + e = y.
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OMP makes the residual orthogonal to the selected dictionary elements, which means OMP

will never select the same dictionary element more than oncewhereas MP can. ORMP

goes even further than OMP and adds the orthogonalization step into the selection process.

Moghaddam et al. [73] proposed an efficient implementation of ORMP using partitioned

matrix inverse techniques [39] and showed that sparse least-squares regression is equivalent

to a generalized eigenvalue problem.

Algorithm 5 is a side-by-side comparison of the pseudocode for MP, OMP, and ORMP.

We use the symbolI to refer to a set of indices in[1, K] that indicate the elements of the

dictionaryΦ that are selected by the algorithm. Similarly,wI refers to the scalar coefficients

applied to the selected basis functions. Basis functions that are not selected have a scalar

coefficient of 0. Thus, the signaly is approximated asΦ(:, I)w(I) = ΦIwI .

Algorithm 5 : Variants of Matching Pursuit
Input: Φ, y
Output: I, wI such that̂y ← ΦIwI

I ← ∅, ,w ← 0, yres ← y

while (not done)do
If (matching pursuit)

j∗ ← argmaxj |ΦT
j yres|

wj∗ ← wj∗ + ΦT
j∗yres

If (wj∗ 6= 0), I ← I ∪ {j∗}. Else, I ← I − {j∗}
yres ← yres − (ΦT

j∗yres)Φj∗

If (orthogonal matching pursuit)
j∗ ← argmaxj /∈I |ΦT

j yres|
I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

yres ← y − ΦIwI

If (order recursive matching pursuit)
j∗ ← argminj /∈I ‖ΦI+j

(ΦT
I+j

ΦI+j
)−1ΦT

I+j
y − y‖2 where: I+j ← I ∪ {j}

I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

end while
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6.1.2 Basis Pursuit

Matching pursuit finds a sparse representation by greedily selecting the most promising

elements. In contrast, basis pursuit (BP) [19] achieves sparsity by finding solutions to the

following optimization problem:min ‖w‖1 such thatΦw = y. Sparsity of the solution

comes from the use ofL1 norm. The BP problem can be solved using linear programming.

Note the hard constraintΦw = y is appropriate when the signal is noiseless. When the

signal is noisy, it is appropriate to require‖Φw − y‖2 to be small. The LASSO (least

absolute shrinkage and selection operator) [103] implements this noisy version of basis

pursuit in the following optimization problem:min ‖y − Φw‖2 subject to‖w‖1 ≤ k. The

LASSO can be solved using quadratic programming; however, amore efficient solution is

to use the recently introduced least angle regression (LARS) algorithm [33] with a minor

modification. LARS selects elements from the dictionary oneat a time, much in the same

way the matching pursuit algorithms work. The first element selected is the one that is

most correlated with the signaly. Then LARS adjusts the weight on the first element

until another element has as much correlation with the current residual. At that point,

LARS includes this second element and then proceeds in a direction (i.e. changing the

weights)equiangularbetween the first two elements. This strategy is less greedy than other

algorithms that sequentially add dictionary elements. Interestingly, a small modification

to the LARS algorithm produces the LASSO solution. While LARSby itself only adds

basis functions at each step, this modification for LASSO gives the algorithm the ability to

remove basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms. It iseasy to control the

sparsity of each of these algorithms by limiting the number of basis functions that can be

selected.
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6.2 Combining Basis Selection and Approximate Policy Evaluation

The basis selection problem involves choosing elements from a dictionary to efficiently

represent a target signal. The approximate policy evaluation problem is to represent the

true value functionV π with an accurate approximation̂V . If V π were known, then basis

selection could simply be performed with the target signal beingV π. However,V π only

becomes known through the Bellman equation:V π = Rπ + γP πV π = T π(V π). Thus,

some framework is needed that effectively combines approximate policy evaluation (i.e.

finding an accurate approximation̂V ) and basis selection (i.e. efficiently representingV̂ ).

We evaluate two schemes that achieve this combination. The difference between the two is

in how they use the Bellman equation.4 The first scheme uses the Bellman equation within

the basis selection algorithm. This means that when the basis selection algorithm adjusts

the weight vectorw, this not only changes the approximationΦw but alsochanges the

target signal based on a function of the Bellman equation. Wecall this the direct scheme

because the selection algorithm directly encodes the Bellman equation. The second, or

indirect, scheme doesnot use the Bellman equation within the basis selection algorithm.

Rather, there is an iterative process that alternates between (1) setting the target signal

using the Bellman equation, and (2) representing the targetsignal using the basis selection

algorithm. These two schemes are described below in a very general form where:

1. f (T π(Φw′)− Φw′) is a functionf of the Bellman residual,

2. BasisSelection is an algorithm that selects dictionary elementsI and computes

weightswI to minimize either(f (T π(Φw′)− Φw′)) or (y − Φw′), and

3. SetWeights is an optional function that uses the dictionary elements determined

by BasisSelection, but computes its own set of weightswI .

4Note the distinction we draw between thedirect and indirect schemes is not new to RL. For example,
the fitted Q-iteration algorithm [36] is an example of the indirect scheme, whereas the LARS-TD algorithm
[52] is an example of the direct scheme. We are not aware of anyother work that makes this distinction,
so we introduced the terminology ourselves. Our analysis and experiments show that the direct and indirect
schemes can behave very differently.
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Direct Scheme
[I, wI ]← BasisSelectionw′ (f (T π(Φw′)− Φw′))

wI ← SetWeightsw′ (f (T π(ΦIw
′)− ΦIw

′)) OPTIONAL

V̂ ← ΦIwI

Indirect Scheme
I ← ∅, wI ← ∅
while (not converged)

targety ← T π(ΦIwI)
[I, wI ]← BasisSelectionw′ (y − Φw′)

wI ← SetWeightsw′ (f (T π(ΦIw
′)− ΦIw

′)) OPTIONAL

V̂ ← ΦIwI

The direct and indirect schemes differ in their computational complexity and degree

of sparsity. The computational complexity of the indirect scheme has the potential to be

greater than the direct scheme because it iteratively callsthe basis selection algorithm.

This could be wasteful when the target signal given to the basis selection algorithm does

not change significantly between iterations. On the other hand, the direct scheme, by using

the Bellman residual as the target function for the basis selection algorithm, forces the

regression algorithm to follow a specific path. To see this, consider the beginning of the

basis selection algorithm when no basis functions have yet been selected. The Bellman

residual is equal to the immediate reward functionRπ. This means the first basis function

selected is attempting to fit the immediate reward. For the sake of argument, assume the

first basis function exactly fits the immediate reward. Now the Bellman residual is equal

to the Bellman backup of the immediate reward, or(T π(Rπ)− Rπ) = γP πRπ. This same

logic can be used inductively to show basis selection proceeds in order of the elements

in the Neumann series,
∑∞

i=0(γP
π)iRπ.5 Attempting to fit the elements in the Neumann

series can lead to inefficient use of the basis functions. This occurs when there is structure

5For a bounded operatorT , the Neumann series is defined as
∑

∞

i=0
T i. One can show

∑

∞

i=0
T i =

(I − T )−1. The value functionV π can be defined using the Neumann series asV π = (I − γPπ)−1Rπ =
∑

∞

i=0
(γPπ)iRπ.
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in V π that does not exist in the Neumann series; hence, the basis selection algorithm is

unable to exploit the structure. Since the indirect scheme is not confined to this path, it

has the potential to use fewer basis functions when representing the eventual approximate

value functionV̂ .

As an example of the potential inefficiency of the direct scheme, consider an undis-

counted, deterministic chain MDP with an absorbing state atone end of the chain. As-

sume the reward function is 0 everywhere except+1 at the absorbing state. The optimal

value function is a constant function equaling 1 in each state, but the Neumann series is

a sequence of delta functions from one end of the chain to the other. Given a dictionary

consisting of all the delta functions and a constant function, a basis selection algorithm

implementing the direct scheme will select all the delta functions rather than the constant

function. This may be an extreme example, but it is not uncommon for a MDP to have a

spiky reward function that would cause similar behavior. Note this behavior can be par-

ticularly problematic for the multiscale diffusion wavelet dictionary where very localized

basis functions (that are not necessary for representingV π) can get selected before larger

scale basis functions.

6.2.1 Direct Scheme

The next three sections outline the OMP-H2 algorithm (i.e. OMP for basis selection and

H2 for setting the coefficients), the ORMP-H2 algorithm, and the LASSO-H2 and LARS-

H2 algorithms. Laplacian-based regularization is used in each algorithm. The LASSO-H2

and LARS-H2 algorithms are nearly identical, so we describe them simultaneously. Recall

the BR and FP least-squares methods are easily instantiatedby setting the hybrid parameter

to ξ = 1 andξ = 0 respectively.

Each algorithm takes as input a set of MDP samples{si, ri, s
′
i}ni=1, the discount factor

γ, the hybrid parameterξ, the dictionaryΦ of basis functions, the graph LaplacianL along

with its regularization parameterβr, a distributionρ over the states for weighting the least-
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squares problem, and a maximum allowable number of basis functionsk′ that the algorithm

can select. Each algorithm returns a set of indicesI into the columns ofΦ and scalar

coefficientswI such that the approximate value functionV̂ = ΦIwI . The sparsity of the

solution is directly controlled by limiting the basis selection algorithm to at most|I| ≤ k′

basis functions. The parameterk′ also limits the basis selection algorithm’s computation

and memory usage. Since the selection algorithm builds up sample-based estimates of the

least-squares data structures (e.g.Â−1
H2,LR

andb̂H2,LR), the size of the data structures cannot

be larger thank′. This can be very important when the number of basis functions in the

dictionary is large. To further speed up OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2,

we take advantage of the fact that the algorithms insert or remove one basis function at a

time to the active setI. The matrixÂ−1
I,I can be incrementally formed. However, to keep

the pseudocode simple, the algorithms are not shown with this improvement. Appendix B

describes how the algorithms can incrementally updateÂ−1
I,I . Note that within this chapter

we only show pseudocode for the OMP-H2 algorithm. The other algorithms are similarly

described in Appendix C.

The OMP-H2 and ORMP-H2 algorithms terminate when eitherk′ basis functions have

been selected or when the change in the norm of the Bellman residual goes beneath a

threshold.6 The LASSO-H2 and LARS-H2 algorithms use both of those termination con-

ditions as well as one other condition (related to the parameter k′) that we discuss in that

section.

6.2.1.1 Direct Scheme with Hybrid Method H2

Algorithm 6 (OMP-H2) shows the direct approach for combining orthogonal match-

ing pursuit and the H2 least-squares algorithm with Laplacian-based regularization. The

algorithm maintains a sample-based estimate of the vectorc where

6Using the terminology described in the algorithm boxes, thesquared norm of the Bellman residual is
written

∑n
i=1

ρ(si)
[

ri − (φI(si) + βr gI(si)− γφI(s′i))
TwI

]2
. The change in the norm of the Bellman

residual can easily be computed when inserting or removing anew basis function from the active setI.
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cj =
[

(Φ− ξγP πΦ)TDρ(R
π − (Φ− γP πΦ)w)− βrΦ

TLDρLΦw
]

j

=
[

(Φ− ξγP πΦ)TDρ(R
π − (ΦI − γP πΦI)wI)− βrΦ

TLDρLΦIwI

]

j
. (6.1)

Each iteration of OMP-H2 selects a new basis function to add to the active set by find-

ing j /∈ I that maximizes|cj|. Then the weightswI are adjusted to make the residual

orthogonal toΦI .

Algorithm 6 : OMP-H2 with Laplacian-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←∑n
i=1 ρ(si)φ(si)ri

Initialize active setI ← ∅
while (|I| < k′) and(Bellman residual not converged) do

1. Find most correlated inactive element:
j∗ ← argmaxj /∈I(|cj |)

2. Adjust active set:
I ← I ∪ {j∗}

3. ComputeÂI,I andb̂I :
ÂI,I ←

∑n
i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))

T + . . .

βrgI(si)gI(si)
T ]

b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφ(s′i))ri

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr), ∀{snbr|snbr 6= s ∧ s ∼ snbr}

4. Compute least-squares weights:
wI ← Â−1

I,I b̂I
5. Compute updated correlations:

c←∑n
i=1 ρ(si)[(φ(si)− ξγφ(s′i))

(

ri − (φI(si)− γφI(s′i))
TwI

)

− . . .
βr g(si)gI(si)

TwI ]
end while

The next algorithm we consider is ORMP-H2. We present the direct approach for com-

bining ORMP and the H2 least-squares algorithm with Laplacian-based regularization. This
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is done to be consistent with our presentations of OMP-H2, LASSO-H2, and LARS-H2,

which helps make the pseudocode more readable since the H2 least-squares data structures

are identical from one algorithm to the next. However, we will show that it is only valid to

combine ORMP and the BR least-squares method (ξ = 1). The pseudocode for ORMP-H2

is provided in Appendix C (Algorithm 8).

The ORMP algorithm works by considering the impact each inactive basis function has

on the least-squares problem. We use the terminologyI+j to indicate the inclusion of basis

functionj in the active set (i.e.I+j ← I ∪ {j}). The first step of Algorithm 8 determines

the best inactive basis functionj /∈ I that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

.

Moghaddam et al. [73] point out that it is actually faster to find the inactive basis

function that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j
− b̂TI Â

−1
I,I b̂I

)

because some of the intermediate

computation cancels out. The intermediate terms cancel dueto properties of the partitioned

matrix inverse. Note that since the extra term
(

b̂TI Â
−1
I,I b̂I

)

is independent of all inactive

basis functions, it does not alter the result of the maximization problem. ORMP-H2 then

inserts the best basis function into the active set, updatesÂ−1
I,I andb̂I , and iterates.

The ORMP algorithm merits further attention. This algorithm is particularly interesting

because it uses the least-squares method to determine whichbasis function to include in

the active set. The best basis function is determined by:argmaxj /∈I

(

bTI+j
A−1

I+j ,I+j
bI+j

)

.

In other words, ORMP considers the impact of each inactive basis function on the least-

squares problem. When the BR least-squares algorithm is used, the best basis function

is:

j∗ ← argmax
j /∈I

(

(bBR

I+j
)T (ABR

I+j ,I+j
)−1bBR

I+j

)

← argmax
j /∈I

(

(bBR

I+j
)TwBR

I+j

)

← argmax
j /∈I

(

(Rπ)TDρ(ΦI+j
− γP πΦI+j

)wBR

I+j

)

← argmax
j /∈I

〈Rπ, V̂ BR

I+j
− γP πV̂ BR

I+j
〉ρ
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where〈·, ·〉ρ denotes theρ-weighted inner product. This makes intuitive sense since the BR

least-squares problem is fitting a functionV̂ BR that minimizes‖Rπ + γP πV̂ BR − V̂ BR‖2ρ.

Now consider the direct scheme for combining ORMP and the FP least-squares algorithm.

One can show the best inactive basis function for ORMP-FP is:argmaxj /∈I 〈Rπ, V̂ FP

I+j
〉ρ.

This maximization does not make sense since selecting basisfunctions using this criteria

leads to a value function that approximates the rewardRπ. A simple idea to try to rescue

ORMP-FP is to change the maximization to:argmaxj /∈I

(

(bBR

I+j
)T (AFP

I+j ,I+j
)−1bFP

I+j

)

. No-

tice the use of the two different vectorsbBR

I+j
andbFP

I+j
. This leads to selecting basis functions

according to:argmaxj /∈I 〈Rπ, V̂ FP

I+j
− γP πV̂ FP

I+j
〉ρ. Although this is seemingly more valid

than the original formulation, it is still problematic. Theunderlying problem is that the FP

objective function‖Πρ(R
π + γP πV̂ FP )− V̂ FP‖2ρ can always be set to0 for any set of basis

functions.

One must be careful when directly combining least-squares policy evaluation algo-

rithms and basis selection algorithms. The result of this analysis is that ORMP-FP isnot

valid but ORMP-BR is valid. However, ORMP can be used with both FP and BR in the

indirect scheme described in Section 6.2.2.

The last two direct algorithms that we consider are LASSO-H2 and LARS-H2. To

achieve sparsity, the LASSO algorithm takes the loss function from Equation 4.4 and in-

cludes anL1 constraint on the coefficient vector. This takes the form:

wH2,LR = argmin
w′∈RK

( ξ

2
‖T π(Φw′)− Φw′‖2ρ +

1− ξ
2
‖T π(u)− Φw′‖2ρ + . . .

+
βr

2
‖LΦw′‖2ρ + βs‖w′‖1

)

(6.2)

whereβs ∈ R
+ is a regularization parameter that dictates the sparsity ofthe solution.

Larger values ofβs result in a coefficient vectorw with more zero entries. In fact, there

exists a value ofβs for which the resulting vectorw has all zero entries.
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Loth et al. [62] and Kolter and Ng [52] recently proposed using the LASSO algorithm

for approximate policy evaluation. Our description of the algorithm and its derivation fol-

lows along the same lines as that of Kolter and Ng [52]. The only exception is that we

consider Laplacian-based regularization and they did not.Therefore, our LASSO-H2 algo-

rithm with ξ = 0 andβr = 0 exactly coincides with their algorithm.7

The minimization problem in Equation 6.2 can be converted into the following set of

optimality conditions:

−βs ≤ cj ≤ βs ∀j

cj = βs ⇒ wj ≥ 0

cj = −βs ⇒ wj ≤ 0

−βs < cj < βs ⇒ wj = 0, (6.3)

where variablecj is defined according to Equation 6.1. The LASSO-H2 algorithm contin-

ually adjusts the weight vector (by adding or subtracting basis functions from the active

set) while satisfying the optimality conditions. The algorithm is initialized withI ← ∅ and

w ← 0. The optimality conditions can be satisfied with this initialization for somēβs > βs.

The algorithm proceeds to reduceβ̄s (by inserting basis functions intoI and adjustingwI)

while satisfying the optimality conditions until̄βs = βs or some other termination crite-

ria is triggered. The other termination criteria we used were a maximum number of basis

functions (k′) and a threshold on the change in the norm of the Bellman residual.

The optimality conditions ensure that|cI | = β̄s for all basis functions in the active set.

This property is maintained by changing the weight vector according to:

7Our terminology is slightly different from that used by Kolter and Ng [52]. Their LARS-TD algorithm
is the same as our LASSO-H2 algorithm withξ = 0 andβr = 0. The distinction we draw between LARS
and LASSO is whether the algorithm only adds basis functionsto the active set (LARS) or both adds and
removes basis functions (LASSO).
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∆wI =
[

(ΦI − ξγP πΦI)
TDρ(ΦI − γP πΦI) + βrΦ

T
ILDρLΦI

]−1
sign(cI),

where sign(cI) replaces the entries incI with values±1 depending on the sign. The change

in the weight vector∆wI dictates how the vectorc changes:

∆c =
(

(Φ− ξγP πΦ)TDρ(ΦI − γP πΦI) + βrΦ
TLDρLΦI

)

∆wI .

The vector∆c allows one to compute if and when an inactive basis functionj /∈ I will

have a valuecj that reaches the same value as those in the active set. The first inactive basis

function that reaches this point is computed as:

[α∗, j∗] = [min+, argmin]j /∈I

(

cj − β̄s

∆cj − 1
,
cj + β̄s

∆cj + 1

)

,

wheremin+ indicates the minimization is only over positive values,α∗ is the minimizing

value, andj∗ is the minimizing argument.

Before adding basis functionj∗ to the active set, the LASSO-H2 algorithm must check

to see whether an element in the active setj ∈ I has a coefficientwj differing in sign with

cj as such an event would violate the optimality conditions.8 The first active basis function

that reaches this point is computed as:

[α#, j#] = [min+, argmin]j∈I

(

− wj

∆wj

)

.

If all elements in the minimization are negative, thenα# is set to∞. If the step size

α∗ < α#, then basis functionj∗ is added to the active set. If the reverse is true, then basis

function j# is removed from the active set. Pseudocode for LARS-H2 and LASSO-H2 is

given in Appendix C (Algorithm 9).

8Note this is the only difference between LASSO-H2 and LARS-H2. LARS-H2 is not required to ensure
wj andcj have the same sign. Therefore, LARS-H2 does not remove basis functions from the active set.
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The LARS-H2 and LASSO-H2 algorithms adjust the coefficient vectorwI in an equian-

gular direction. This means that the residual is never made completely orthogonal with the

selected basis functionsΦI . A common “fix” to this issue is to enforce orthogonality once

LARS-H2 and LASSO-H2 terminate. We list this as an optional step at the end of the

algorithm.

6.2.1.2 Direct Scheme with Hybrid Method H1

The previous three sections described the OMP-H2, ORMP-H2, LASSO-H2, and LARS-

H2 algorithms. By setting the hybrid parameterξ to 0 or 1, these algorithms implement the

FP and BR objective functions. We describe here how the algorithms would change to

handle the H1 objective function. We do this in detail for OMP and then simply highlight

where the (similar) changes need to be made in ORMP, LASSO, and LARS.

The memory and computation requirements are identical whether using the FP, BR, or

H2 least-squares criteria. The hybrid algorithm H1 however requires more memory and

computation time. As shown in the equations below, H1 requires forming two matrices

of sizeK × K whereK is the number of basis functions in the dictionary. This can be

prohibitively large depending on the size of the dictionary. Note that all basis selection

algorithms when using FP, BR, and H2 do not form matrices larger thank′ × k′ where

k′ ≤ K is specified by the user to be the maximum number of basis functions that the

algorithm can select.

The following four lines of Algorithm 6 (OMP-H2) would need to change to accommo-

date the H1 objective function.

1. The first timec is initialized:

c← ξb̂BR + (1− ξ)(ÂFP )T Ĉ−1b̂FP

where: b̂BR ←
∑n

i=1 ρ(si)(φ(si)− γφ(s′i))ri

b̂FP ←
∑n

i=1 ρ(si)φ(si)ri
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ÂFP ←∑n
i=1 ρ(si)

[

φ(si)(φ(si)− γφ(s′i))
T + βrg(si)g(si)

T
]

Ĉ ←∑n
i=1 ρ(si)φ(si)φ(si)

T .

2. ComputingÂI,I in Step 3:

ÂI,I ← ξÂBR

I,I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,IÂ

FP

I,I

where: ÂBR

I,I ←
∑n

i=1 ρ(si)
[

(φI(si)− γφI(s′i))(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T .

3. ComputinĝbI in Step 3:

b̂I ← ξb̂BR

I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,I b̂

FP

I

where: b̂BR

I ←∑n
i=1 ρ(si)(φI(si)− γφI(s′i))ri

b̂FP

I ←∑n
i=1 ρ(si)φI(si)ri

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T .

4. Updatingc in Step 5:

c← ξcBR + (1− ξ)(ÂFP )T Ĉ−1cFP

where:cBR ←
∑n

i=1 ρ(si)[(φ(si)− γφ(s′i))(ri − (φI(si)− γφI(s′i))
TwI)− . . .

βrg(si)gI(si)
TwI ]

cFP ←
∑n

i=1 ρ(si)
[

φ(si)(ri − (φI(si)− γφI(s′i))
TwI)− βrg(si)gI(si)

TwI

]

ÂFP ←∑n
i=1 ρ(si)

[

φ(si)(φ(si)− γφ(s′i))
T + βrg(si)g(si)

T
]

Ĉ ←∑n
i=1 ρ(si)φ(si)φ(si)

T .

The changes to ORMP, LARS, and LASSO are very similar to the changes made for

OMP; therefore, we just point out the lines that need to be edited. For ORMP, four lines

would need to change: computingb̂I+j
in Step 1, computinĝAI+j ,I+j

in Step 1, computing

ÂI,I in Step 3, and computinĝbI in Step 3. For LARS and LASSO, four lines would need

to change: the first timec is initialized, computingÂI,I in Step 1, computing∆c in Step 2,

and computinĝbI at the final optional step of the algorithm.
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6.2.2 Indirect Scheme

The indirect scheme uses an iterative approach to sparse approximate policy evaluation.

The iterative approach alternates between (1) setting the target function using the Bellman

backup operator, and (2) representing the the target function using the basis selection algo-

rithm. This potentially makes the indirect scheme more computationally intensive than the

direct scheme, but it frees up the basis selection algorithmto choose the best basis func-

tions for fitting the approximate value function (instead offitting the ordered elements in

the Neumann series). We describe the iterative, indirect scheme in Algorithm 7. This is a

general framework which can utilize any sparse basis selection (regression) algorithm. The

sparse basis selection algorithm is denoted as inputBSel(y) wherey is the target function

thatBSel fits using dictionaryΦ. For BSel, we evaluated the pure regression versions of

OMP, ORMP, LASSO, and LARS with the only exception being theywere augmented to

include Laplacian-based regularization. The pure regression versions of OMP and ORMP

without regularization were described in Algorithm 5.

6.3 Action-Value Function Approximation

The previous two sections described the direct and indirectschemes for approximating

the value function. The same algorithms can also be used to approximate the action-value

function. The graph-based basis functions, which are defined just over states, can be also

used to approximate the action-value function. This is accomplished by using the basis

functions for each discrete action. For example, consider aMDP with two actions,a1 and

a2. The approximate action-value function̂Q can take the form:

Q̂ =







Q̂(·, a1)

Q̂(·, a2)






=







ΦIa1
0

0 ΦIa2













wIa1

wIa2






= ΦI wI .

112



Algorithm 7 : Indirect Scheme for Sparse Approx. Pol. Eval.
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
maxIter ∈ N, maximum number of iterations
BSel(y), sparse basis selection algorithm that approximates a target functiony

using the dictionaryφ. The termination criteria forBSel includes:
k′ ≤ K, maximum allowable number of basis functions
a threshold on the residual‖y − Φw‖2ρ
any other algorithm specific parameters (e.g.βs for LASSO)

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅, ŵI ← ∅, iter ← 0

while (iter < maxIter) and(Bellman residual not converged) do
1. Form target vectory using the sampled Bellman backup:

yi ← ri + γφI(s′i)
TwI ∀i

2. Run the sparse basis selection (regression) algorithm to fity:
[I, wI ]← BSel(y)

3. OPTIONAL: AdjustwI using one of the least-squares methods:
wI ← Â−1

I,I b̂I
For example, if using FP least-squares method, then:

ÂI,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

b̂I ←
∑n

i=1 ρ(si)φI(si)ri
4. Increment the iteration count:

iter ← iter + 1
end while

Notice the approximate action-value function can use a different set of basis functions

for each action:Q̂(·, a1) uses the basis functions indexed byIa1
andQ̂(·, a2) uses basis

functions indexed byIa2
.

Algorithms 6, 7, 8, and 9 can be used with this definition without changing any steps.

However, if these algorithms are used without changes, the number of selected basis func-

tions per action may not be equal. For the MDP with two actionsa1 anda2, this means

|Ia1
| will not necessarily be equal to|Ia2

|. It may be desirable to require the number of

basis functions per action to be equal (or approximately equal). This constraint can easily

be added to the indirect scheme (Algorithm 7) and to the direct schemes involving OMP
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and ORMP (Algorithms 6 and 8). It does not seem possible to addthis constraint to the

direct scheme involving LASSO and LARS (Algorithm 9) because of the way these al-

gorithms control the correlation between the basis functions and the target function. For

example, step 3 of Algorithm 9 relies on the fact that all basis functionsnot in I (i.e. basis

functions that have not been selected) have a correlation|cj| < β̄s. Adding a constraint

that the number of basis functions per action should be roughly equal (which would entail

changing step 3 to not just select the minimizing element) would seem to break this logic.

Algorithms 6, 7, 8, and 9 can produce approximate action-value functions for a specific

policy. These algorithms can also be used within least-squares policy iteration (LSPI) [56].

One LSPI iteration takes a batch of MDP samples{si, ai, ri, s
′
i}ni=1 and a policyπ and

producesQ̂, an approximation ofQπ. The greedy policy implicitly defined bŷQ is then

used in the next iteration of LSPI.

6.4 Experiments

6.4.1 Approximate Policy Evaluation

The following components were varied in the experiments:

• least-squares method (FP, BR, and H2)

• basis selection method (OMP, ORMP, LASSO, and LARS)

• scheme for sparse approximate policy evaluation (direct and indirect)

• amount of Laplacian-based regularization (βr)

• dictionary (PVFs and diffusion wavelet functions).

To get a solid understanding of how each component influencesthe policy evaluation

problem, we chose the 50 state chain MDP [56]. This domain is easily visualized. The

problem consists of 50 states (si, i ∈ [1, 50]) and two actions moving the agent left (si  
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si−1) or right (si  si+1). The reward function is defined as+1 in statess10 ands41 and

zero everywhere else. The discount factor isγ = 0.9.

We consider the task of evaluating the optimal policyπ∗. Rather than sampling fromπ∗

to generate a data set, we used the true modelP π∗

andRπ∗

in the following experiments.

This choice was made to remove the influence of sampling so that we can adequately com-

pare and contrast performance. However, we note that using the model rather than samples

eliminates the bias of the BR method.

The graph used to form the PVFs and diffusion wavelets consists of 50 vertices with

self-edges and edges between “adjacent” vertices. The PVF dictionary, which was con-

structed using the combinatorial Laplacian, consists of 50global basis functions. The dif-

fusion wavelet tree was constructed using the parameterǫ = 10−4. The number of scaling

and wavelet functions is shown in Table 6.4.1. We evaluated three dictionaries constructed

Tree Levelj |ψj−1| |φj |
1 0 50
2 9 41
3 13 28
4 7 21
5 5 16
6 5 11
7 3 8
8 2 6
9 2 4
10 1 3

Table 6.1.Number of wavelet and scaling functions at each tree level for the 50 statechain MDP.

from this tree. The first dictionary consisted of all 235 functions in the tree (47 wavelet and

188 scaling functions). The second dictionary consisted ofthe 135 functions at tree level 3

or greater (38 wavelet and 97 scaling functions). The 100 extra functions in the first dictio-

nary consist of very localized basis functions as well as some oscillatory functions. Note

that both the first and second dictionaries are overcomplete, so selecting elements from

these dictionaries can lead to linear dependence in the basis functions. The third dictionary
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consisted of all 47 wavelet functions and the 3 scaling functions at tree level 10. This third

dictionary is orthonormal whereas the first two dictionaries are overcomplete. A further

optimization that we did not pursue would be to select the “best” such orthonormal dictio-

nary (amongst the 10 possible orthonormal dictionaries) instead of just using the dictionary

that reaches to tree level 10.

We systematically tested different combinations of dictionary, least-squares algorithm,

policy evaluation scheme, amount of Laplacian regularization, and basis selection method.

The list of these combinations is shown in Table 6.4.1. We present the main findings of

these experiments along with supporting figures. For a description of all the experiments

and resulting value function plots, we refer the reader to our technical report [45].

The result of each experiment is an approximate value function V̂ . Rather than simply

report a number (such as the Bellman residual norm,‖T π(V̂ ) − V̂ ‖, or the true error,

‖V ∗ − V̂ ‖), we found it much more illuminating to qualitatively assess the approximate

value functions. This leads to some interesting insights into the interaction among the basis

selection algorithm, least-squares method, and dictionary. The policy iteration experiments

in the next section provide a more quantitative measure of performance.

We summarize the policy evaluation experiments with the following findings.

• OMP-FP & the effect of Laplacian regularization

Figure 6.1 shows the results of using the OMP-FP algorithm, avarying number of

basis functions (4, 8, and 12), and a different amount of Laplacian regularization

(βr = 0 andβr = 0.1). The captions under the plots show the different dictionaries

used to produce the approximate value function. We use the shorthand DWT(50) to

refer to the diffusion wavelet dictionary with 50 orthonormal bases, DWT(135) to re-

fer to the diffusion wavelet dictionary with 135 functions at tree level 3 or greater, and

DWT(235) to refer to the dictionary containing all 235 scaling and wavelet functions

in the tree.
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Scheme Algorithm Dictionary

Direct OMP-FP, LASSO-FP PVFs
Direct OMP-BR, ORMP-BR, LASSO-BR PVFs
Direct OMP-H2 PVFs

Indirect FP & BR OMP PVFs
Indirect FP & BR ORMP PVFs
Indirect FP & BR LASSO PVFs

Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets
Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets
Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
Direct ORMP-BR 235 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelets

Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets

Table 6.2. Parameters varied in the policy evaluation experiments forthe 50 state chain
MDP.

The approximate value functions learned using either of theorthogonal dictionaries

(PVFs or DWT(50)) accurately captured the shape of the exact value functionV ∗

when using at least 8 basis functions. The approximations produced using the dif-

fusion wavelet dictionary DWT(50) were more accurate than those using the PVF

dictionary. In fact, even using just 4 basis functions from the DWT(50) dictionary

resulted in an approximate value function that tracked the shape (not magnitude) of

V ∗.

The approximate value function learned using DWT(235) became unstable when

12 basis functions were used. This occurs because the matrixÂ−1
I,I became nearly

singular. The results were slightly better when using the DWT(135) dictionary, which

removes some of the most localized and oscillatory functions in DWT(235). This

indicates the aggressiveness of OMP-FP may be a potential problem with a highly
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overcomplete dictionary. It is possible though to make the algorithm more stable by

checking the condition number of̂A−1
I,I before inserting a basis function.

Lastly, notice the influence Laplacian regularization has on the value functions pro-

duced from the PVF and DWT(50) dictionaries. The approximations with regular-

ization (βr = 0.1) clearly are smoother with respect to the topology of the chain.

This had a noticeable effect on the basis selection process for the PVF dictionary.
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Figure 6.1. Results of OMP-FP with the PVF and diffusion wavelet dictionaries.

• ORMP-BR

Figure 6.2 shows results using ORMP-BR and OMP-BR with the PVF and diffusion

wavelet dictionaries. Interestingly, the only basis selection algorithm that worked in

conjunction with the BR least-squares method was ORMP. Notice the approximate

value function learned using OMP-BR is very poor (which was also the case for both

LASSO-BR and LARS-BR). We show the value function from OMP-BR with 20
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basis functions, which is more than enough for an excellent approximation ofV ∗.

On the other hand, ORMP-BR produced excellent approximations when using 8 or

12 basis functions.
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Figure 6.2. Results of ORMP-BR and OMP-BR with different dictionaries.

• OMP-H2 with the PVF dictionary

Figure 6.3 shows results using OMP-H2 and LASSO-H2 with the PVF dictionary. In-

termediate values ofξ between 0 and 1 tend to produce approximate value functions

between the extremes produced by the FP and BR algorithms.
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Figure 6.3. Results of OMP-H2 and LASSO-H2 with the PVF dictionary using 12 basis
functions while varyingξ (ξ = 0 is equivalent to FP andξ = 1 is equivalent to BR).
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• LASSO-FP

The LASSO-FP algorithm performed very differently depending on whether the

dictionary was orthogonal (PVFs and DWT(50)) or overcomplete (DWT(135) and

DWT(235)). Figure 6.4 shows the results using LASSO-FP both with and without

the optional orthogonalization step at the end of Algorithm9. The magnitude of the

approximate value function without the orthogonalizationstep was very small when

using the orthogonal dictionaries. This occurs because theLASSO algorithm, which

is conservative in its setting of the coefficientswI by design, moves in an equiangular

direction amongst orthogonal elementsΦI . When the elementsΦI are not orthogo-

nal, as in the results with DWT(235), adjusting the coefficient vectorwI can lead to

larger steps in approximating the value function.

When the orthogonalization step in Algorithm 9 is used (whichmeans the LASSO-

FP algorithm is used just for basis selection, not for setting the coefficients), the

magnitude of the approximate value functions naturally becomes larger. The approx-

imate value functions were very accurate when 8 and 12 basis functions were used

from the dictionary DWT(235).

Note we do not show results using LARS-FP because they are nearly identical, and

in some instances exactly identical, to LASSO-FP.

• Indirect scheme with an orthogonal dictionary

The experiments in this section were conducted using Algorithm 7 under three con-

ditions. First, the while loop in Algorithm 7 was executed for 10 iterations. Second,

we used a single termination criterion for the basis selection algorithm. The algo-

rithm stopped when it had selected a specified number of basisfunctions. Third, we

always used the optional third step in Algorithm 7 which is toset the weights on the

selected features using a least-squares method. We used theBR and FP least-squares
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Figure 6.4. Results of LASSO-FP using diffusion wavelet dictionaries. The value functions are
shown with and without the (optional) orthogonalization step in Algorithm 9.

methods. Since BR and FP produced similar results, we do not report results using

the hybrid method H2.

The indirect scheme with an orthogonal dictionary (both PVFs and DWT(50)) pro-

duced accurate approximate value functions for all basis selection methods (OMP,

ORMP, LASSO, LARS) and both the FP and BR least-squares methods. Figure 6.5

shows results using the OMP and ORMP algorithms with FP and the LASSO algo-

rithm with BR. For the OMP algorithm with FP, there is also a plot of the Bellman

error norm‖T π(ΦIwI)−ΦIwI‖2 after each iteration of Algorithm 7. We just show

the Bellman error plots for the OMP algorithm to point out that the Bellman error is

not monotonically decreasing. The Bellman error plots for ORMP and LASSO were

very similar to those for OMP.
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The resulting value functions were noticeably better than those produced using the

direct scheme for approximate policy evaluation. The difference is easily recognized

by looking at the value functions estimated using 4 basis functions. Most of the

results using the direct scheme produced very poor approximations with just 4 basis

functions. But the results were quite good when using the indirect scheme. This

supports our hypothesis that the direct policy evaluation scheme can limit the efficacy

of the basis selection algorithm by forcing it to follow the Neumann series.
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Figure 6.5. Results using the indirect policy evaluation scheme with orthogonal PVF and
diffusion wavelet dictionaries.

• Indirect scheme with an overcomplete dictionary

Figure 6.6 shows the results using the indirect policy evaluation scheme with over-

complete diffusion wavelet dictionaries. Since all basis selection algorithms per-

formed similarly, we just show plots for the OMP algorithm. This is done for both
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the FP and BR least-squares methods. Overall, the results using FP were better than

those using BR (especially when fewer basis functions were used).

The approximate value functions are less smooth than those produced using orthog-

onal dictionaries. The results with only 4 basis functions are significantly worse than

when 4 basis functions are used from an orthogonal dictionary.
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Figure 6.6. Results using the indirect policy evaluation scheme with overcomplete diffusion
wavelet dictionaries.

6.4.2 Approximate Policy Iteration

The simple policy evaluation experiments in the previous section were completed using

the MDP model and evaluating just a single policy. In this section, we extend beyond

this idealized setting to the full approximate policy iteration problem where a policy must

be learned from a fixed set of samples. Furthermore, we combine all three components

of the dissertation (regularized hybrid least-squares algorithms, efficient basis construction

algorithms for graphs, and the basis selection methods) into a single combined architecture.

We try to provide intuition as to how these different components interact to produce a final

approximate value function and corresponding policy.

Experiments were conducted on the mountain car task using samples from 100 episodes,

each of at most 100 steps, of a random policy. The results fromChapter 5 (Figure 5.7) on

this domain showed that it was possible to learn policies that could reach the goal, albeit
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not optimally, without performing basis selection. This was done using the 20 smoothest

Laplacian eigenvectors as a basis. To make the problem somewhat more complex, we re-

strict the algorithm to only 8 basis functions computed using the AMLS algorithm. With

this limited representational capacity, neither the fixed point nor Bellman residual least-

squares algorithms were able to learn a policy that reliablyattains the goal. It is instructive,

however, to see what type of action-value functions these methods do learn. Figure 6.7

shows the action-value functions and corresponding greedypolicies for both the BR and

FP least-squares methods.9 There are four plots per method. The first three plots are the

action-value functions for the actions coast, forward, andreverse. The fourth plot shows

the greedy policy attained from the action-value functions(where the color corresponds to

the action). All of these plots are shown from a top-down viewof the two dimensional

state space. To keep the figures legible, we only show the axislabels for the first of the four

plots; the remaining three plots are on the same scale.

(a) Bellman Residual (b) Fixed Point

Figure 6.7.Action-value functions and policies learned using the BR and FP least-squares
policy iteration algorithms and using the 8 smoothest Laplacian eigenvectors (computed
using the AMLS algorithm) as a basis.

9Strictly speaking, we plot thenegativeof the action-value function as is customary in the RL literature.
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There are two interesting things to point out about the action-value functions in Figure

6.7. For the BR least-squares algorithm, notice that the action-value functions are very

smooth and that the values range from 0 to -15. The action-value functions learned using

the FP method have a much larger gradient. Further, the values range from 50 to 200.

That the maximum value is 200 (instead of 0) is less relevant than the fact the spread of

values is 150 versus a spread of just 15 for the action-value functions learned using the

BR method. This indicates the BR algorithm, via its objective function that minimizes the

Bellman residual norm, isconstrainingthe range of values as opposed to the basis func-

tions not being expressive enough. This leads to the hypothesis that if the FP method were

appropriately regularized, then it could compute an accurate action-value function using

these same 8 basis functions. To test this hypothesis, we evaluated two ideas. First, we

added Laplacian-based regularization (βr = 0.1) to the FP method. Second, we used the

hybrid least-squares algorithm with an intermediate weighting (ξ = 0.5) to enforce some

penalty for having a large Bellman residual norm. Both ideasresulted in better action-value

functions and better policies. Starting from the typical start state at the bottom of the hill,

the goal is reached in 160 steps (on average) for the policy from the FP method with Lapla-

cian regularization and 219 steps for the policy from the hybrid method (the results were

even better - 130 steps to goal - when the hybrid method was used with Laplacian regular-

ization). The action-value functions and greedy plots are shown in Figure 6.8. Notice the

range of values for the action-value functions is more in line with the optimal action-value

function’s range.

This is an interesting result that captures the idea behind the hybrid least-squares algo-

rithm. By placing some weight on minimizing the Bellman residual norm, hybrid methods

in effect regularize the solutions produced by the fixed point methods. One can argue this

is a more natural form of regularization for MDPs than using graph-based regularization

(since it stems from the Bellman equation), but on this task both forms of regularization
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(a) Fixed Point, Laplacian Regularization (b) Hybrid H2

Figure 6.8.Action-value functions and policies learned using approximate policy iteration
with the FP method including Laplacian-based regularization (βr = 0.1) and the hybrid H2
method (ξ = 0.5).

have a similar effect. We found the results were more sensitive to the Laplacian regulariza-

tion parameterβr than to the hybrid parameterξ.

These results show that even with this limited set of basis functions, it is possible to

learn a policy that can reach the goal. However, notice the action-value functions in Figure

6.8 do not accurately capture the optimal action-value function. The only portion of the

state space that should have a value close to 0 (which corresponds to dark blue in the plots)

is the region in the upper right-hand corner near the goal. The plots show the dark blue

values encircle the outside of the state space, which is clearly incorrect. It is interesting to

consider whether basis selection algorithms can choose a better subset of basis functions.

We still limit the algorithms to 8 basis functions per action, but they are free to select from

a dictionary. For this data set, we used a graph containing 700 vertices and computed

100 approximate Laplacian eigenvectors using the AMLS algorithm. The 100 approximate

eigenvectors constitute the dictionary.

We limit our presentation of the results to a few interestingcases. First, for the indi-

rect scheme including the optional orthogonalization stepin Algorithm 7, the action-value

functions were unstable when using the FP least-squares algorithm and any of the basis
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selection methods. When using the Bellman residual least-squares algorithm, the action-

value functions were too smooth. The hybrid least-squares algorithm, however, resulted

in both good policies and accurate action-value functions.Figure 6.9 shows the action-

value functions and policies learned using the hybrid least-squares method with OMP and

LASSO for basis selection. In particular, notice how the dark blue region of the action-

value function plots is confined to just the region near the goal state. This improvement

in the representation of the action-value function came as aresult of the basis selection al-

gorithms picking elements useful for representing the steep cliff in the mountain car value

function. Figure 6.10 shows two such basis functions that the algorithms selected. These

are the 12th and 14th smoothest Laplacian eigenvectors in the dictionary.

(a) OMP with H2 (b) LASSO with H2

Figure 6.9. Action-value functions and policies learned using the indirect policy itera-
tion scheme with the hybrid least-squares method and the OMP(left) and LASSO (right)
algorithms.

We also used the indirect scheme without the orthogonalization step. Note that, without

orthogonalization, the indirect scheme in Algorithm 7 is equivalent to Ernst’s fitted Q-

iteration algorithm [36] with the exception being that the value function in Algorithm 7

is linear in the features. Figure 6.11 shows the action-value function and policy learned

using this scheme with LASSO. The approximate action-valuefunction is not close to the

optimal action-value function, but its greedy policy is effective (reaching the goal in 131
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Figure 6.10.The 12th (left) and 14th (right) elements from the Laplacian eigenvector dictio-
nary. The basis selection algorithms chose these elements,which are useful for capturing
the steep cliff in the mountain car value function (near the goal region).

steps). Interestingly, although it had the ability to do so,this technique did not change the

basis functions from the original 8 smoothest elements in the dictionary.

Figure 6.11.The action-value function and greedy policy when using LASSO in the indi-
rect scheme without orthogonalization.

In general, we found the direct schemes for combining approximate policy evaluation

and basis selection to be less stable. LASSO-H2 AND LARS-H2 produced the best results.

This is due to their conservative updates to the basis function coefficients. On the other

hand, when OMP-H2 and ORMP-H2 select a new feature, the coefficients are set by making

the residual completely orthogonal to the selected basis functions. This method is overly

aggressive and lead to instability in the action-value function representation. We believe it

128



is possible to dampen this aggressive behavior by constraining the weights (using Laplacian

regularization or a simpleL2 penalty‖w‖2).

We draw two conclusions from the experiments in this section. First, the hybrid least-

squares method provides regularization to the approximatevalue function. This occurs

because the hybrid method’s objective function includes the Bellman residual norm, which

constrains a state to have a similar value to its preceding and succeeding states. We demon-

strated the usefulness of the hybrid algorithm, in spite of its single sample bias, both in

this section and in Chapter 4. Second, we found that basis selection algorithms can find a

better set of basis functionsprovidedthe policy evaluation algorithm is stable. When the

policy evaluation algorithm is unstable, the basis selection algorithms can select a poor set

of elements and further exacerbate the problem. Thus, we believe regularization is very

important. We selected regularization parameters by hand in this section. In the future, we

plan to automate this process.

6.5 Conclusions

Proto-value functions and diffusion wavelets are graph-based basis functions that cap-

ture topological structure of the MDP state space. The basisfunctions are independent

of any policy and therefore can be used to approximate any policy’s value function. A

mechanism is required though to select a subset of the basis functions for approximating a

value function. The previous approach to using PVFs and diffusion wavelets used the fol-

lowing basis selection heuristic: the most global functions were selected regardless of the

policy being evaluated. This heuristic is simple and leads to smooth approximations, but it

does not fully utilize the graph-based dictionaries. To make better use of the dictionaries,

a sparse basis selection algorithm must be combined with approximate policy evaluation.

We evaluated a scheme that directly combines basis selection and policy evaluation and a

scheme that indirectly combines them via an iterative process. Both schemes are general

and can be used with any set of basis functions. The hybrid least-squares method was used
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for approximate policy evaluation. Specifically, we used the Laplacian-based regularized

form of the hybrid algorithm developed in Section 4.4. For the basis selection algorithm,

we implemented orthogonal matching pursuit (OMP), order recursive matching pursuit

(ORMP), and LASSO and LARS. A systematic study was conductedon a simple chain

MDP to determine the most promising way(s) of combining these various components.

From these experiments, we summarize with the following four findings.

1. We showed that the direct scheme for sparse approximate policy evaluation, when

combined with the fixed point least-squares method, constrains the order in which a

basis selection algorithm selects elements from a dictionary. The order is dictated by

the elements in the Neumann series,
∑∞

i=0(γP
π)iRπ. This can lead to the selection

of basis functions that fit some of the early terms in the series, but are in fact not

useful for representing the underlying value function. Of course, an algorithm like

LASSO that can prune basis functions has the possibility of removing basis functions

that become useless. The indirect scheme for sparse approximate policy evaluation

sidesteps this issue by separating the Bellman equation from the basis selection algo-

rithm. This adds computational complexity, but frees up thebasis selection algorithm

to represent the value function in the order it sees fit.

2. The graph Laplacian, which is used in constructing PVFs and diffusion wavelets,

can also be used to provide regularization. Laplacian-based regularization can help

smooth out the approximate value function. It also providesa bias toward smoother

basis functions in the dictionary. This bias can be helpful when using the direct

scheme for sparse approximate policy evaluation. We speculate that in an online

setting, it may be beneficial to adjust the amount of regularization over time as more

samples are seen.

3. For direct sparse approximate policy evaluation:

The OMP-FP algorithm produced accurate approximations when using an orthonor-
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mal dictionary, but became unstable when using an overcomplete dictionary due to

matrix Â−1
I,I becoming nearly singular. The algorithm could be made more robust

by checking the condition number of the matrix before including a new basis func-

tion. The more conservative nature of LASSO-FP and LARS-FP lead to accurate

approximate value functions; however, when using an orthonormal dictionary, these

algorithms generated approximate value functions with small magnitude (without the

orthogonalization step at the end of Algorithm 9). The only algorithm that worked

using the Bellman residual least-squares method was ORMP-BR. This was an in-

teresting result that shows one must be careful when combining basis selection and

approximate policy evaluation algorithms.

4. For indirect sparse approximate policy evaluation:

OMP, ORMP, and LASSO all produced accurate approximate value functions while

using both the fixed point and Bellman residual least-squares methods. When using a

small number of basis functions, the algorithms performed better with an orthogonal

dictionary as opposed to an overcomplete dictionary. Overall, the results were no-

ticeably better than using an orthonormal dictionary with the direct scheme for sparse

approximate policy evaluation. This provides some evidence for the hypothesis that

the indirect scheme can select a more efficient set of basis functions than the direct

scheme.

In the approximate policy iteration experiments, policieswere learned from a set of

samples. The results attained with and without basis selection indicate the importance

of regularization. In particular, when changing the basis functions, the Bellman residual

should be controlled for basis selection to remain stable. There are multiple ways to ensure

stability: graph-based regularization, use of the hybrid least-squares algorithm, and/or use

of a conservative basis selection algorithm like LARS/LASSO. Each of these methods helps

protect against large Bellman residuals.
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The policy evaluation experiments partially demonstrate the expressiveness and flexi-

bility of the diffusion wavelet dictionary. However, we believe the true value of diffusion

wavelets will be evident on more challenging value functions with discontinuities and dif-

ferent degrees of smoothness. For future work, it would be worthwhile further decompos-

ing the diffusion wavelet tree using diffusion wavelet packets [18]. This increases the size

of the dictionary and provides even more flexibility for function approximation.

The benefit of maintaining a basis function dictionary is theflexibility to approximate

many different functions. This benefit comes at the cost of storing a potentially large num-

ber of elements in the dictionary; therefore, efficient storage schemes are very important.

As an example, recall the Kronecker product method from Chapter 5 stores the dictionary

in a compressed format. Parametric methods for representing the dictionary could also

prove useful.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this dissertation, we proposed automatic basis construction algorithms and an accom-

panying approximate policy evaluation method for Markov decision processes. The ability

to automatically learn useful representations is an important and fundamental challenge for

an autonomous agent. RL agents must be able to meet this challenge to both deal with the

complexity of real world environments and to go beyond theirinitial representations given

by human designers.

Our work builds upon a recently introduced graph-based approach to generating rep-

resentations [67, 63]. In this application, graphs reflect the geometric structure of a MDP

state space. An important attribute of the graph-based approach is that it circumvents the

dimensionality of the state space. While a MDP state space maynominally be very high

dimensional, if the reachable state space in fact lies on a lower dimensional surface, then

the graph-based approach can leverage this information to avoid the “curse of dimension-

ality.” Basis functions generated from these state space graphs are well-suited to represent

certain classes of value functions.

The goal of this dissertation was twofold: (1) to scale the graph-based approach to

handle larger amounts of data, and (2) to effectively and efficiently use the basis func-

tions to perform approximate policy evaluation. To scale the graph-based approach, we

proposed one matrix factorization algorithm and another multiscale algorithm. Both algo-

rithms produce basis functions that approximate the original bases proposed by Mahadevan

and Maggioni [67, 63]. Once constructed, the basis functions act as a dictionary. Repre-
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senting a particular policy’s value function using a linearapproximation is accomplished

by selecting elements from the dictionary and assigning each element a scalar weight. We

evaluated several basis selection algorithms and introduced a hybrid least-squares method

for setting the weights. Although we mostly explore using the basis selection algorithms

and the hybrid least-squares method with the graph-based basis functions, these algorithms

can be applied to other types of basis functions as well. The remainder of this summary

covers our contributions in greater detail.

In Chapter 4, we presented hybrid least-squares algorithms for approximate policy eval-

uation. The term “hybrid” is used to emphasize the fact that the algorithm parametrically

combines (and generalizes) two common RL least-squares methods. At one extreme, the

hybrid algorithm defaults to minimizing the norm of the Bellman residual (BR). At the

other extreme, the norm of the projected Bellman residual isminimized (we refer to this as

the fixed point (FP) method).

By using a linear combination of the BR and FP objective functions, hybrid algorithms

allow for finding solutions in between those computed by the BR and FP methods. This can

be useful when the hybrid least-squares algorithm is used within a policy iteration loop. We

do not have a theoretical explanation of this result; rather, empirical results show the hybrid

method appears to temper large changes to the value functionthat the FP method can make

between rounds of policy iteration. Experiments in a discrete grid MDP, the challenging

problem of Tetris, and mountain car demonstrated that the hybrid algorithm can, in some

cases, find better policies. We also proposed aregularizedhybrid least-squares algorithm

which uses the graph Laplacian [20]. The Laplacian penalizes functions that are not smooth

according to the structure of the graph. This type of regularization is useful for MDPs when

the domain is stochastic and relatively few samples are available for learning a policy.

Two recently introduced approaches to automatically generating basis functions from

a MDP state space graph are to form graph Laplacian eigenvectors (proto-value functions

[67]) and diffusion wavelets [63]. Computing eigenvectors and diffusion wavelet trees from
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large, sparse matrices can be computationally intensive. To scale these basis construction

methods to larger graphs and thus larger MDP state spaces, weintroduced two algorithms in

Chapter 5. The first algorithm is based on matrix factorization using the Kronecker product.

The Kronecker product is particularly relevant because it preserves the spectral structure

of matrices. In this approach, smaller matrices are automatically computed and combined

together via the Kronecker product to approximate the (larger) original matrix. Laplacian

eigenvectors or diffusion wavelet trees can then be generated from these smaller matrices.

We showed how the Kronecker product method significantly saves both time and memory.

Experiments using the basis functions produced by the Kronecker product method were

mixed. We attribute this result to the Kronecker product’s block structure not allowing for

sufficient representation of arbitrary matrices. To overcome this limitation, we proposed

using a second algorithm called Automated Multilevel Substructuring (AMLS). AMLS

recursively decomposes a matrix into smaller submatrices,computes eigenvectors for the

submatrices, and uses those solutions to approximate eigenvectors of the original matrix.

We proved the algorithm is applicable to graph Laplacian matrices. The recursive nature of

AMLS allows for a very fast parallel implementation. The algorithm can handle graphs up

to one hundred times larger than standard eigensolvers can manage (given equal computing

resources). Aside from its scalability, we also demonstrated the basis functions computed

by AMLS performed just as well in policy iteration experiments as those computed using

exact eigensolvers.

In Chapter 6, we evaluated four well-established basis selection algorithms: orthogonal

matching pursuit [82], order recursive matching pursuit [75], the LASSO [103], and least

angle regression [33]. Basis selection algorithms choose as few elements as possible from a

dictionary in order to represent a value function. In tailoring the representation to a partic-

ular value function, selection algorithms provide flexibility and computational efficiency.

We employed these algorithms using graph-based basis functions as a dictionary. Other
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types of basis functions could also be used with the selection algorithms. Our work [45] is

the first time Laplacian eigenvectors and diffusion wavelets have been used in this manner.

Along with choosing elements from the dictionary, basis selection algorithms must also

assign weights to the basis functions. This was accomplished using the regularized hy-

brid least-squares method developed in Section 4.4. We evaluated two different ways of

combining the policy evaluation method and the basis selection algorithm. The distinction

between the two ways is whether the policy evaluation methodis directly encoded in the ba-

sis selection algorithm. We showed this distinction can have a significant effect on how the

dictionary is utilized. Interestingly, our experiments showed that the basis selection algo-

rithms perform differently depending on whether the dictionary consists of an orthonormal

or overcomplete set of basis functions. When the dictionary is overcomplete (as is the

case with the complete diffusion wavelet tree), the conservative nature of the LASSO and

least angle regression algorithms proved more useful than the aggressive matching pursuit

methods.

7.2 Future Work

There are a number of interesting directions for future work.

• Learning algorithms

The hybrid least-squares algorithm presented in Chapter 4 requires setting a scalar

parameter to a value between 0 and 1. For Baird’s incrementalversion of the hybrid

algorithm [3], he proposed setting this parameter to guarantee convergence. Since en-

suring convergence is unnecessary for the least-squares version, we have more flexi-

bility. In the experiments, we selected a particular value and held it fixed throughout

the policy iteration loop. In future work, we would like to provide a framework

for automatically setting the parameter’s value. This should be done separately for

each round of policy iteration. One of the factors determining the parameter’s value

should be the impact of the Bellman residual method’s bias. We showed that the bias
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is linearly impacted by the parameter (i.e. setting the hybrid method’s parameter to

0 causes the solution to be unbiased).

We used least-squares algorithms for approximate policy evaluation because of their

data efficiency and because they do not require setting a step-size parameter. How-

ever, it is interesting to consider other methods and how they might impact the basis

construction and selection problems. We suggest one possibility that focuses more

on policies than on value functions. To motivate this changefrom value functions

to policies, we mention an interesting example from the Tetris domain. Using 22

hand-coded basis functions defined in [12], Szita and Lörincz [100] showed that the

cross-entropy method (which searched directly for a set of 22 coefficients resulting

in good policies) can learn policies that score100 times betterthan policies learned

using the same 22 basis functions and a temporal difference algorithm.

The least-squares algorithms minimize different functions of the Bellman residual.

The rationale for doing so is based on the fact that the expected Bellman residual is

0 for the exact value function. An alternative to this approach is to try to represent

the greedy policy associated with the exact value function rather than representing

the exact value function itself. This idea was explored in a few different contexts

[105, 10, 107], but the main theme uniting this work is to havethe algorithm learn

the relative value of a state (which is what determines the policy) as opposed to the

absolute value of a state. This type of algorithm may make thebasis construction and

selection problems easier since representing a policy may be simpler than represent-

ing a value function. In effect, the algorithm can make larger errors in the Bellman

residual as long as it orders the states correctly. We believe this is an interesting area

for future work.
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• Basis selection and diffusion wavelets

The basis selection framework presented in Chapter 6 in conjunction with an ex-

pressive, overcomplete dictionary like the diffusion wavelet dictionary provides a

powerful tool for value function approximation. There are three immediate ways to

extend this work. First, the main component, and thus bottleneck, in constructing a

diffusion wavelet tree is the sparse QR decomposition algorithm. The QR decom-

position algorithm is used to compute both the scaling functions and the wavelet

functions. A faster implementation of the algorithm is needed. Also, to scale up, it

may be beneficial to approximate the QR decomposition. This might result in the

loss of orthogonality between the scaling and wavelet functions at each level of the

tree, but that might not be a crucial factor when approximating a value function. The

second extension is to exploit the structure of the diffusion wavelet tree when per-

forming basis selection. Our current implementation simply takes each element in

the tree, which is stored in a compressed format, and unrollsthe element back to an

uncompressed format before using the basis selection algorithm. This is inefficient.

A faster implementation here can significantly affect the runtime since basis selec-

tion occurs each time a new policy is evaluated. The third extension is to explore the

use of diffusion wavelet packets [18]. Diffusion wavelet packets allow for splitting

the wavelet spaces into an orthogonal sum of smaller subspaces. This creates a larger

number of elements in the diffusion wavelet tree which are more localized and thus

offer greater flexibility in terms of function approximation.

• Graph construction

An advantage of the graph-based approach to basis construction in Markov deci-

sion processes is its flexibility. As we we have demonstratedin this dissertation,

the approach is amenable to both discrete and continuous state spaces. The graphs

we constructed from MDP samples were simply based on a user-specified distance
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function. One obvious extension is to automatically learn the distance function based

on actual transitions. In fact, it is possible to learn several distance functions where

each one is responsible for a different portion of the state space. Bowling et al. [15]

proposed a simple method accomplishing this.

While the user has the ability to specify the distance function that creates the graph

from samples, this is typically done just based on the dynamics of the domain. An

interesting extension would be to form the graph not solely based on structural sim-

ilarity but also based on the type of value functions the learning algorithm is likely

to encounter. For example, if two states that are topologically close but in fact have

different values for many policies, then the edge weight between these two states in

the graph can be decreased. Decreasing the edge weight in turn alters the shape of

the basis functions generated from the graph. We proposed anad-hoc method for

adjusting edge weights based on the Bellman residual [47]. This earlier work was a

proof of concept, but in the future we hope to determine a moreprincipled approach

that is also scalable.

• Instance-based representations

In order to use the graph-based approach to basis construction for MDPs, the sam-

ples/states forming the vertices of the graph must be stored. In other words, the graph

and its associated features are an instance-based representation. This should be con-

trasted with representations using a fixed number of parameters, such as neural net-

works with a prescribed connectivity. While we have proposedmethods for dealing

with large graphs, scalability is a concern for any algorithm using an instance-based

representation. This issue is not unique to reinforcement learning. Indeed, this is an

issue with any kernel method (note the graph Laplacian induces a reproducing kernel

Hilbert space [92] and can be considered a kernel method). Understanding the practi-

cal limitations of instance-based representations and if and how these limitations can
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be circumvented is an ongoing area of research in machine learning. One interesting

possibility is to see if instance-based features can be stored more compactly using a

parametric representation.

7.3 Final Remarks

A hallmark of human-level intelligence is the ability to successfully perform many tasks

across a wide range of environments. In order for autonomousagents to approach this level

of flexibility, they must be able to adapt their internal representations of the environments

in which they reside. The graph-based methods [67, 63] we considered in this dissertation

provide one way to generate flexible representations that capture structural information

about an environment. In the reinforcement learning paradigm, an autonomous agent forms

such representations and then uses them to learn how to act. We addressed these two

interrelated aspects in the context of value function approximation:

1. Given a set of samples from an environment, can we generategraph-based features

associated with the samples in a manner that scales well?

2. Given a set of samples from an environment and the graph-based features, how

should the features be used to compute a (good) policy?

The set of features dictates the space of approximate value functions that can be repre-

sented. The algorithm utilizing the features determines how a policy will be found. We

believe a thorough understanding of the confluence of these two areas, automatic feature

construction and feature utilization, is an interesting and worthwhile topic for continued

RL research.
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APPENDIX A

DOMAINS

A.1 Chain MDP

We used the 50 state chain MDP described by Lagoudakis and Parr [56]. Figure A.1

shows a depiction of the problem and the optimal value function. There are 50 discrete

states{si}50i=1 and two actions moving the agent left (si  smax(i−1,1)) and right (si  

smin(i+1,50)). The actions succeed with probability 0.9; failed actionsmove the agent in the

opposite direction. The discount factor isγ = 0.9. The agent receives a reward of+1 when

in statess10 ands41. All other states have a reward of 0.

... 4948321 50 0 10 20 30 40 50
0

1

2

3

4

5

State

V
∗

Figure A.1. The chain MDP and the optimal value function.

A.2 Grid MDP

Grid MDPs are simply two dimensional versions of the aforementioned chain MDP. A

simple square grid and a two-room grid with one state adjoining the two rooms are shown
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in Figure A.2. There are four canonical actions that move theagent up, down, left, or right.

The actions succeed with probability 0.9. Unsuccessful actions result in a transition in one

of the other three directions (with equal probability). Episodes begin in a random state

in the MDP. The discount factor is assumed to beγ = 0.95 unless otherwise stated. The

reward function is 0 except for a few goal states (which are specified on an individual basis

for each grid MDP used throughout this dissertation) that have a positive reward.

Figure A.2. A 10× 10 grid MDP and a two-room version with a single “hallway” state.

A.3 Inverted Pendulum

The inverted pendulum problem requires balancing a pendulum by applying force to

the cart to which the pendulum is attached. We used the implementation described by

Lagoudakis and Parr [56]. The state space is defined by two variables:θ, the vertical angle

of the pendulum, anḋθ, the angular velocity of the pendulum. The three discrete actions

are applying a force of -50, 0, or 50 Newtons. Uniform noise from -10 and 10 is added to

the chosen action. State transitions are described by the following nonlinear equation

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)a

4l/3− αml cos2(θ)
,

wherea is the noisy control signal,g = 9.8m/s2 is gravity,m = 2.0 kg is the mass of the

pendulum,M = 8.0 kg is the mass of the cart,l = 0.5 m is the length of the pendulum,

andα = 1/(m +M). The simulation time step is set to 0.1 seconds. The agent is given a
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reward of 0 as long as the absolute value of the angle of the pendulum does not exceedπ/2,

otherwise the episode ends with a reward of -1. The discount factor was set toγ = 0.9.

Episodes begin with both state variables at value 0.

A.4 Mountain Car

The task in the mountain car domain is to drive an underpowered vehicle, situated in

a valley, to the top of the mountain on the right [98]. Figure A.3 shows a depiction of the

problem. There are two state variables: the position (x) and velocity (̇x) of the car. There

are three actions corresponding to a positive (a = 1), negative (a = −1), and zero (a = 0)

force. The equations of motion are:

ẋt+1 = bound[ẋt + 0.001at − 0.0025 cos(3xt)]

xt+1 = bound[xt + ẋt+1]

where the bound operation ensures−1.2 ≤ xt+1 ≤ 0.5 and−0.07 ≤ ẋt+1 ≤ 0.07. The

velocity ẋt+1 is reset to 0 when the positionxt+1 becomes less than−1.2. When the

position exceeds0.5, the car has reached the top of the hill on the right and the episode is

terminated. The reward for reaching the goal is 0; every stepwhere the goal is not achieved

results in a reward of−1. The discount factor isγ = 0.99. Episodes begin in a state with

x1 = −0.5 and ẋ1 randomly selected from the set[−0.07,−0.06, . . . , 0.06, 0.07]. The

distribution overẋ1 allows for easy exploration of the state space.

A.5 Acrobot

The acrobot [98] is an underactuated double pendulum. This is an interesting and well-

studied problem due to the nonlinearity of the dynamics. It consists of two links where

torque can only be applied at the second joint (Figure A.4). The system is described by

four continuous variables: the two joint angles,θ1 andθ2, and the angular velocities,θ̇1
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Goal

Figure A.3. The mountain car domain.

andθ̇2. There are three actions corresponding to positive (a = 1), negative (a = −1), and

zero (a = 0) torque. We use the same equation of motions and problem parameters as

described in Chapter 11.3 of [98]. The time step was set to 0.05and actions were selected

after every fourth update to the state variables according to the equations of motion [97].

The goal for this domain is to raise the tip of the second link above a certain height in

minimum time (we used a height of 1, where both links have a length of 1). The reward

function is therefore−1 for each time step until the goal is achieved and the discountfactor

is γ = 0.99. Episodes begin with the all state variables at value 0 whichcorresponds to the

two links hanging straight down and motionless.

Figure A.4. The acrobot domain.
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A.6 Tetris

The game of Tetris was designed by Alexey Pajitnov in 1985. Itconsists of a board

with 20 rows and 10 columns as shown in Figure A.5. Puzzle pieces, each containing four

blocks in different positions, fall vertically down the board. The player’s objective is to

orient the piece as it is falling to create a horizontal row ofblocks with no gaps. When this

is accomplished, the completed row disappears and any blocks above the row fall down.

The game ends when a block is placed in the top row, not allowing further game pieces to

enter the board.

Figure A.5. The Tetris domain.
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APPENDIX B

PARTITIONED MATRIX INVERSE

The OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2 algorithms in Section 6.2.1 formed

the matrixÂI,I and vector̂bI . Each algorithm then inverts the matrix̂AI,I . This is very

wasteful when the active setI only changes by one element at a time. To take advantage

of the single element insertion and removal,Â−1
I,I can be incrementally formed using the

following partitioned matrix inverse property. Consider a square matrixA′ partitioned as

follows:

A′ =







A b

cT d







where matrixA is square,b andc are vectors, andd is a scalar. Then the inverse ofA′ can

be computed from the inverse ofA as:

A′−1
= e







(e−1A−1 + A−1bcTA−1) −A−1b

−cTA−1 1







wheree = (d − cTA−1b)−1. ComputingA′−1 in this manner has quadratic complexity

instead of cubic. OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2 can exploit this property

by maintaining the matrix̂A−1
I,I . When inserting a new elementj∗ into I, the update is as

follows:
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I ← I ∪ {j∗}

Â−1
I,I ←







(Â−1
I,I + uj∗Â

−1
I,IÂI,j∗Âj∗,IÂ

−1
I,I) −uj∗Â

−1
I,IÂI,j∗

−uj∗Âj∗,IÂ
−1
I,I uj∗







b̂I ←







b̂I

b̂j∗






,

where:

uj∗ ← (Âj∗,j∗ − Âj∗,IÂ
−1
I,IÂI,j∗)

−1

Âj∗,j∗ ←
n

∑

i=1

ρ(si) [φj∗(si)(φj∗(si)− γφj∗(s
′
i)) + βrgj∗(si)gj∗(si)]

ÂI,j∗ ←
n

∑

i=1

ρ(si) [φI(si)(φj∗(si)− γφj∗(s
′
i)) + βrgI(si)gj∗(si)]

Âj∗,I ←
n

∑

i=1

ρ(si)
[

φj∗(si)(φI(si)− γφI(s
′
i))

T + βrgj∗(si)gI(si)
T
]

b̂j∗ ←
n

∑

i=1

ρ(si)φj∗(si)ri.

Similarly, when LASSO-FP removes an elementj# from I, the matrixÂ−1
I,I can be shrunk

with the following update:

I ← I − {j#}

Partition the currentÂ−1
I,I ←







U xj#

yT
j# zj#






to isolate the influence ofj#

Â−1
I,I ← U − xj#yT

j#/zj# .
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APPENDIX C

BASIS SELECTION PSEUDOCODE

The ORMP-H2 algorithm was described in Section 6.2.1.1. Pseudocode forORMP-H2

is shown below in Algorithm 8.

Algorithm 8 : ORMP-H2 with Laplacian-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅
while (|I| < k′) and(Bellman residual not converged) do

1. Find best inactive element:
j∗ ← argmaxj /∈I

(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

where: I+j ← I ∪ {j}
b̂I+j

←∑n
i=1 ρ(si)(φI+j

(si)− ξγφI+j
(s′i))ri

ÂI+j ,I+j
←∑n

i=1 ρ(si)[(φI+j
(si)− ξγφI+j

(s′i))(φI+j
(si)− γφI+j

(s′i))
T + . . .

βrgI+j
(si)gI+j

(si)
T ]

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr), ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Adjust active set:
I ← I ∪ {j∗}

3. ComputeÂI,I andb̂I :
ÂI,I ←

∑n
i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))

T + βrgI(si)gI(si)
T ]

b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφI(s′i))ri
4. Compute least-squares weights:

wI ← Â−1
I,I b̂I

end while
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The LASSO-H2 and LARS-H2 algorithm were described in Section 6.2.1.1. Algorithm

9 shows the pseudocode implementing LASSO-H2 and LARS-H2.

Algorithm 9 : LARS-H2/LASSO-H2 with Lap.-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

γ ∈ [0, 1], discount factor
ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
βr ∈ R

+, Laplacian-based regularization parameter
βs ∈ R

+, L1 regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←∑n
i=1 ρ(si)(φ(si)− ξγφ(s′i))ri

[

β̄s, j
∗
]

← [max, argmax]j (|cj |)
Initialize active setI ← {j∗}, w ← 0

while (β̄s > βs) and(|I| ≤ k′) and(Bellman residual not converged) do
1. Compute weight update direction∆wI :

∆wI ← Â−1
I,I sign(cI)

where: ÂI,I ←
∑n

i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))
T + . . .

βrgI(si)gI(si)
T ]

g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Compute correlation update direction∆c:
∆c←∑n

i=1 ρ(si)[(φ(si)− ξγφ(s′i)) (φI(si)− γφI(s′i))
T ∆wI + . . .

βr g(si)gI (si)
T ∆wI ]

3. Find step size to add element to active set:

[α∗, j∗]←
[

min+, argmin
]

j /∈I

(

cj−β̄s

∆cj−1 ,
cj+β̄s

∆cj+1

)

4. Find step size to remove element from active set:
If (using LARS-FP), α# ←∞
Else,

[

α#, j#
]

←
[

min+, argmin
]

j∈I

(

− wj

∆wj

)

5. Updateβ̄s, wI , c:
α← min(α∗, α#, β̄s − βs)
β̄s ← β̄s − α, wI ← wI + α∆wI , c← c− α∆c

6. Adjust active set:
If (α∗ < α#), I ← I ∪ {j∗}
Else, I ← I − {j#}

end while
OPTIONAL: wI ← Â−1

I,I b̂I where: b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφI(s′i))ri
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