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ABSTRACT 

AN ASSESSMENT OF THE NONPARAMETRIC APPROACH  

FOR EVALUATING THE FIT OF ITEM RESPONSE MODELS 

FEBRUARY, 2010 

TIE LIANG, B.S., CAPITAL UNIVERSITY OF ECONOMICS AND BUSINESS 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Craig S. Wells 

    As item response theory (IRT) has developed and is widely applied, investigating 

the fit of a parametric model becomes an important part of the measurement process 

when implementing IRT. The usefulness and successes of IRT applications rely heavily 

on the extent to which the model reflects the data, so it is necessary to evaluate 

model-data fit by gathering sufficient evidence before any model application. There is a 

lack of promising solutions on the detection of model misfit in IRT. In addition, 

commonly used fit statistics are not satisfactory in that they often do not possess 

desirable statistical properties and lack a means of examining the magnitude of misfit 

(e.g., via graphical inspections).  

In this dissertation, a newly-proposed nonparametric approach, RISE was 

thoroughly and comprehensively studied. Specifically, the purposes of this study are to 

(a) examine the promising fit procedure, RISE, (b) compare the statistical properties of 

RISE with that of the commonly used goodness-of-fit procedures, and (c) investigate 

how RISE may be used to examine the consequences of model misfit.  

To reach the above-mentioned goals, both a simulation study and empirical study 

were conducted. In the simulation study, four factors including ability distribution, 

sample size, test length and model were varied as the factors which may influence the 
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performance of a fit statistic. The results demonstrated that RISE outperformed G2 and 

S-X2 in that it controlled Type I error rates and provided adequate power under all 

conditions. In the empirical study, the three fit statistics were applied to one empirical 

data and the misfitting items were flagged. RISE and S-X2 detected reasonable numbers 

of misfitting items while G2 detected almost all items when sample size is large. To 

further demonstrate an advantage of RISE, the residual plot on each misfitting item was 

shown. Compared to G2 and S-X2, RISE gave a much clearer picture of the location and 

magnitude of misfit for each misfitting item.  

Other than statistical properties and graphical displays, the score distribution and 

test characteristic curve (TCC) were investigated as model misfit consequence. The 

results indicated that for the given data, there was no practical consequence on 

classification before and after replacement of misfitting items detected by three fit 

statistics.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Item response theory (IRT) is a powerful scaling technique that provides appealing 

features such as the invariance of item and ability parameter values. Because of the 

attractive features IRT provides, parametric IRT models are used for a variety of 

measurement applications such as constructing tests, equating test scores, estimating 

proficiency levels, identifying differential item functioning (DIF), and selecting items 

for computerized adaptive testing (Embretson & Reise, 2000; Hambleton, Swaminathan, 

& Rogers, 1991). However, the success of specific IRT applications and the advantages 

of item response models are obtained when the fit between the model and the test data 

is satisfactory. Thus, it is crucial to understand the possible reasons for misfit and 

evaluate model-data fit as part of the process of validating the use of IRT models.  

There are two general sources of misfit in IRT models: (1) violation of model 

assumptions pertaining to dimensionality/local independence and (2) failure to capture 

model-data relationships. For the most commonly-used IRT models to be applicable, 

the item pool must produce item responses that are predominately unidimensional. 

Fitting a unidimensional model to multidimensional data may produce model misfit that 

may have a consequential impact on the test results. Failure to capture model-data 

relationships is a specific type of assumption violation in which the model does not 

accurately reflect the true probabilities of a correct response (or does not accurately 

reflect the true probabilities of responding in a particular category for polytomous item 

responses). There are a few reasons why the model may not accurately reflect the true 

item characteristic curve (ICC). For example, for a multiple-choice item, the item may 
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contain multiple correct answers. Also, the wrong model may be selected (e.g., using a 

model that does not consider the influence of guessing on multiple choice test items). 

1.2 Statement of the Problem 

While many of the technical challenges that arise when applying IRT models to 

educational and psychological data have been resolved to some extent (e.g., model 

parameter estimation), the assessment of model fit remains a major hurdle to overcome 

for effective implementation (Hambleton & Han, 2004). Various methods and 

approaches have been suggested for detecting model misfit. Traditional methods for 

assessing goodness-of-fit in IRT are based on Pearson-type 2χ  statistics which are 

most widely used to assess model fit (e.g., Yen’s (1981) Q1 statistic). However, there 

are several drawbacks to using Pearson 2χ  statistics in assessing model fit. The two 

most common critiques about the 2χ -based statistics are first, they are sensitive to 

sample size (Hambleton & Swaminathan, 1985). The distribution theory of 2χ  

statistics, as well as most other formal tests of fit, is a large-sample theory. When the 

sample size is large, the statistical test rejects just about every model since with large 

sample sizes, statistical power is available to detect even very small model-test data 

discrepancies, and no statistical model for educational testing data is ever going to be 

strictly correct (i.e., the model will not reflect the true ICC exactly for all ability levels). 

Therefore, the first criticism is not necessarily because the 2χ -based statistics are 

sensitive to sample size but that the hypothesis being tested is meaningless since it is 

always false (Cohen, 1994). Second, several popular fit statistics (e.g., 2G and Yen’s Q1) 

are not distributed as a 2χ . One reason is that the examinees are grouped based on IRT 

θ  estimates, which contain error. Particularly speaking, parameter values are never 

known so the estimators of the parameters are treated as true values, which violates the 
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assumption underlying the 2χ distribution (Stone & Zhang, 2003). Another reason is 

that the degrees of freedom are in question (Orlando & Thissen, 2000). As a result, the 

Type I error rate is inflated, in other words, many valid items are falsely identified as 

misfitting when in fact the model fits the data (Orlando & Thissen, 2000; Reise, 1990; 

Glas & Falcon ,2003; Stone & Hansen, 2000; DeMars, 2005). 

Due to the limitations of 2χ -based statistical methods for assessing model fit, it is 

prudent that another fit statistic be developed that avoids or limits the previous 

criticisms. This dissertation will focus on studying an approach for assessing model-fit 

proposed by Douglas & Cohen (2001) that compares a nonparametrically-derived ICC 

to the parametric ICC. This nonparametric approach, hereafter referred to as RISE, has 

exhibited controlled Type I error rates and adequate power in the dichotomous and 

polytomous case and provides a graphical representation of the misfit that may be used 

to judge the severity of the misfit (Wells & Bolt, 2008; Li & Wells, 2006; Liang & 

Wells, 2009, Liang & Wells, 2008). Beyond its attractive statistical properties, an 

additional advantage of the nonparametric approach is that it provides a convenient 

graphical representation of model misfit. This feature can provide the researcher or 

practitioner visual guidance about the location and type of misfit. 

Concluding that a model is misfitting according to the hypothesis test allows a test 

developer to conclude that the model does not fit exactly in the population. However, it 

is possible that a misfitting model is still useful in that it approximates the true ICC 

very closely and that the consequences of the misfit are minimal. Therefore, it is 

important to consider the consequences of the misfit prior to rejecting the use of a 

model or item. In other words, it is worthwhile to investigate whether the misfit of the 

model has substantial practical consequences for the particular situation. The issue of 

evaluating practical consequences of model misfit has been given little attention in the 
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model checking literature in IRT (Hambleton & Han, 2004). However, it deserves more 

attention because it is possible that a statistical test indicates misfit while discrepancies 

between the test data and predictions from a model are of no practical consequence (van 

der Linden & Hambleton, 1997). Thus, this dissertation will also evaluate the 

importance of the practical consequences of model misfit together with statistical 

analyses and diagnostic plots for a fuller picture of fit assessment.  

1.3 Objectives of the Study 

The purposes of this study are to (a) review the currently used goodness-of-fit 

procedures, (b) further examine the promising fit procedure, RISE, (c) compare the 

statistical properties of RISE with that of the commonly used goodness-of-fit 

procedures, and (d) investigate how RISE may be used to examine the consequences of 

model misfit. 

 
1.4 Outline of the Study 
 

This study consists of five chapters. In this first chapter, the importance of 

model-data fit, an introduction of model-data fit problems, the purposes of the study 

and the outline of the study have been described. Chapter 2 presents a literature review 

of the IRT models in which the fit statistics will be applied, including RISE, and the 

comparative research on currently used goodness-of-fit test statistics. Chapter 3 

describes the method for the study and also the design of the simulation studies that are 

conducted. Results will be summarized in Chapter 4. Finally, Chapter 5 will discuss the 

importance of the results and future research. 
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CHAPTER 2  

REVIEW OF LITERATURE 

This chapter begins with an introduction to assumptions of commonly used IRT 

models as well as a description of the models that will be used in the current 

dissertation. The fit statistics will then be briefly described followed by findings from 

empirical research on the fit statistics. Finally, based on the literature, the reasons for 

further exploring the fit statistic, RISE, are discussed.   

2.1 IRT Assumptions and Models 

� IRT Models for Dichotomously Scored Data 

The three most popular unidimensional IRT models are the one-, two-, and 

three-parameter logistic models (1PLM, 2PLM and 3PLM, respectively). They have 

similar conceptual and mathematical formulations. The 3PLM may be expressed as 

follows: 

 
exp[ ( )]

( ) (1 )
1 exp[ ( )]

i i
i i i

i i

Da b
P c c

Da b
θθ

θ
−= + −

+ −
, (1) 

where ( )iP θ  is the probability that an examinee with ability θ  answers item i 

correctly, ia  is the slope (item discrimination) parameter, ib  is the location (item 

difficulty) parameter, ic  is the lower asymptote (pseudo-chance-level) parameter, and 

D  is a scaling parameter. When D is 1.702, the probabilities will be within 0.01 of the 

normal ogive model. 

The 2PLM and 1PLM are based on constraints or restrictions of the 3PLM. For 

example, the 2PLM sets the c-parameter to zero for all items. The 1PLM sets the 

c-parameter to zero and constrains the a-parameters to be equal for all items on an 

assessment.  

� IRT Models for Polytomously Scored Data 
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1. Graded Response Model. The graded response model, developed by Samejima 

(1969), is appropriate to use when item responses are ordered categorical responses. For 

example, when Likert-type items are applied in surveys or questionnaires, GRM can be 

used to analyze those items. Two steps are needed to obtain the probability that an 

examinee responds to a particular category. The first step in estimating response 

probabilities involves computation of operating characteristic curves (OCCs), or in 

other words, measuring the probability that an examinee’s response falls in or above a 

particular category givenθ . The OCCs are an extension of the 2PLM and may be 

expressed as follows: 

                        * exp[ ( )]
( )

1 exp[ ( )]
i ij

ij
i ij

a b
P

a b

−
=

+ −
θ

θ
θ

,                   (2) 

where j =1,…, im , im is equal to number of categories minus 1; * ( )ijP θ is the probability 

of a randomly chosen examinee with proficiency of � scoring x or above on item i; ia  

is the slope (item discrimination) parameter for item i. ijb is the threshold (item 

difficulty) parameter, which is commonly interpreted as the trait level to respond in or 

above the particular threshold j of item i with 0.5 probability. GRM is an extension of 

2PLM and belongs to “difference models.” Once OCCs are estimated, the actual 

category response curves (CRCs), which represent the probability of scoring in a 

particular category, are calculated by subtraction between two adjacent OCCs: 

                        * *
( 1)( ) ( ) ( )ij ij i jP P Pθ θ θ+= − .                  (3) 

2. Generalized Partial Credit Model. Muraki (1992) developed the generalized 

partial credit model (GPCM) to be used for polytomous data that are based on 

completing steps (e.g., partial-credit items). The GPCM, classified as a 

“divide-by-total” model, may be expressed as follows: 
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 0
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� �
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� �
,      (4) 

where
0

0

( ) 0i ij

j

a bθ
=

− ≡� . In the GPCM, ijb is interpreted as the intersection (difficulty) 

parameters where one category response is more likely to happen than previous 

responses given that the examinee has reached the previous step. Thus, ijb is not 

necessarily ordered as occurs in the GRM. For example, if a GPCM item has 5 score 

categories, there are 4 difficulty parameters with each value at 1b = 0.2, 2b = -1.3, 3b = 

1.7, 4b = -0.5, which indicate that the difficulty levels from easiest to hardest are step 2, 

step 4, step 1 and step 3. In addition, when the a parameter is constrained to be equal 

across items, the GPCM simplifies to the partial credit model (PCM; Masters, 1982).  

� Assumptions of IRT Models 

Three important assumptions must be met before the previously IRT models are 

employed. The first assumption, unidimensionality, states that one ability is measured 

in a test. Although unidimensionality will not be strictly satisfied since there a several 

factors that influence test performance, IRT models are still useful as long as there is 

one predominate factor underlying the test data. The second assumption is local 

independence which states that the items are uncorrelated after controlling for the 

ability on the test. A third assumption is placed on the ICC shape. To apply a parametric 

model, it is assumed that the shape of the true ICC is the same as that posited by the 

parametric model. 

2.2 Model-Data Fit Procedures 

A general strategy for evaluating model fit at the item level involves comparing 
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observed data with model-predicted expectations (Hambleton & Han, 2005; Hambleton, 

Swaminathan, & Rogers, 1991; Rogers & Hattie, 1987). Both statistical significance 

tests and graphical analyses based on the residuals can be used for this purpose. 

Broadly defined, a goodness-of-fit study is the evaluation of the similarity between 

observed and expected (predicted) outcomes. Within the context of IRT, this typically 

involves (1) estimating the parameters of an IRT model, (2) using those parameter 

estimates to predict, by way of the IRT model, examinee response patterns, and (3) 

comparing the predicted response patterns to actual observed examinee response 

patterns.  

� Traditional Method: 2χ -Based Fit Statistics 

Many of the traditional 2χ -based methods for assessing model fit are based on the 

following steps:  

1. Estimate item and ability parameters. 

2. Place examinees into groups along the ability scale using proficiency estimates. 

3. Construct an observed score response distribution for each ability group by 

cross-classifying examinees using their ability estimates and score responses. 

4. Form an expected score response distribution across score categories using item 

parameter estimates and ability estimates representing each ability group. 

5. Compare observed and expected score response distributions using a 2χ  fit 

statistic or examination of residuals. 

1. Yen’s Q1. Yen’s (1981) Q1 index, proposed for use with dichotomous items, is 

calculated as follows: 

 
210

1
1

( )
,

(1 )
j ij ij

j ij ij

N O E
Q

E E

−

=
=

−�  (5) 
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where Nj is the number of examinees in ability interval j; Oij is the observed proportion 

of examinees in interval j who answer item i correctly; and Eij is the probability based 

on the model in interval j answering item i correctly. The number of intervals is fixed to 

be 10 (although, if the expected frequency in an interval is less than five, then the 

groups may be combined so that the expected frequency is greater than 5). Under the 

null hypothesis, Yen’s Q1 is distributed as a 2χ  with degrees of freedom equal 10 

minus the number of parameters being estimated. 

2. Likelihood Ratio Test. The likelihood ratio test fit statistic (McKinley & Mills, 

1985), denoted 2G , is reported by two commonly used commercial IRT software 

packages, BILOG-MG (Zimowski, Muraki, Mislevy & Bock, 2003) and PARSCALE 

(Muraki & Bock, 2003). 2G
 
is calculated for item i as follows: 

 2

1

2 log ( ) log ,
( ) 1 ( )
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hi h hi
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i hh h i h
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� �� �−� �� �
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where ng indicates the number of intervals; r
hi 

represents the observed frequency of 

correct responses for item i in interval h; N
h 
is the number of individuals in interval h; 

and ( )i hP θ refers to the model-predicted proportion correct for item i at hθ . hθ  is the 

average of theta estimates in interval h. 2G is distributed under the null hypothesis 

approximately as a 2χ  with degrees of freedom equal to the number of intervals. 

2G is basically a log-likelihood based statistic in which examinees are grouped into 

ability intervals based on their ability estimates, and then the empirical proportion 

correct against the model-based proportion correct within that interval is evaluated, 

accumulating across intervals. 

3. Orlando and Thissen’s S-X2. Orlando and Thissen (2000) addressed the 

weakness of Yen’s Q1 statistic by grouping examinees based on their number correct 
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(NC) scores instead of their model-based ability estimates. The fit statistic, S-X2, based 

on Yen’s (1981) Q
1 

statistic, is approximately distributed as a 2χ  with G-m degrees of 

freedom, where m indicates the number of item parameters estimated and G is the 

number of score groups (G=n-1 when no groups have been collapsed, where n=number 

of score points). S-X2 has been extended to test the fit of polytomous models (Bjorner, 

Smith, Stone & Sun, 2007; Kang & Chen, 2008). The general formula for testing the fit 

of a polytmous or dichotomous items is as follows:  

 

max

min

2
2

1

( )i

i

t m
tci tci

t t c tci

O E
S X

E= =

−− = � � , (7) 

where t is sum score, m is number of categories, O is observed frequency and E is 

expected frequency, i is item. Before calculating S-X2, cells are collapsed to achieve 

expected cell frequencies above a certain number in order to avoid sparse expected 

frequencies.  

4. Lagrange Multiplier (LM) Test. Glas (1998) proposed a Lagrange Multiplier 

(LM) procedure to evaluate item and ability parameter estimates for 2PLM and 3PLM. 

The rationale of LM tests is to test a restricted model against a more general alternative, 

where the restricted model is derived from the general model by imposing constraints 

on one or more parameters. The LM test is based on the evaluation of the first-order 

partial derivatives of the log-likelihood function of the general model, evaluated using 

the maximum likelihood estimates of the restricted model (Glas, 1998). As suggested 

by Glas, one advantage of using LM method for evaluation of item fit is that the 

asymptotic distribution of the statistics involved follows directly from asymptotic 

theory (Glas & Falcón, 2003). 

� Graphical Displays of Model Data Fit 
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In contrast to statistical analyses, the discrepancy between the model-based 

expectations and the observed data (i.e., residuals) may be examined visually via 

graphical representations to examine model fit. Such graphical displays, while less 

objective in that they do not provide error rate control as opposed to a strict statistical 

test, have proven to be useful in evaluating the complex relationship between model 

and data (Hambleton, Swaminathan, & Rogers, 1991). Residual plots provide 

information on the location and magnitude of possible misfit. Graphical displays are 

often best used in conjunction with statistical tests in that the test provides information 

regarding whether the model fits and the practical significance of the misfit.  

� Methods Involving Comparison of Observed Data with Simulated Data 

Hambleton and Han (2005) suggested assessing the goodness-of-fit of 

commonly used IRT models by comparing the observed score distribution to the 

distribution from simulated data according to the selected model, and using 

Komogrov-Smirnov test as a descriptive indicator of the difference in the distributions. 

The comparison of the observed and simulated score distribution can be based on all 

examinees to evaluate fit at the test level, or conditional on the observed performance 

of a particular item to evaluate fit at the item level. To compute the conditional test 

score given ability, the Lord-Wingersky recursive formula (Lord & Wingersky, 1984), 

and an extension of the Lord-Wingersky formula proposed by Wang, Kolen, and Harris 

(2000) are applied. Readers are referred to Wainer and Mislevy (1990), Kingston and 

Dorans (1985), Ankenmann (1994), Sinharay (2005) for illustrative examples of model 

data fit.   

� Bayesian Approach 

Under Bayesian framework, the posterior predictive model checking (PPMC) 

technique was proposed by Guttman (1967). It makes use of the posterior predictive 
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distribution of replicated data as a reference distribution for the observed data. In 

practice, data sets are simulated by generating parameter values from the predictive 

distribution. If the simulations and the data differ systematically, it is an indication of a 

potential model misfit.  

Donoghue and Hombo (1999, 2001) derived a distribution for the fit statistic DHQ 

for dichotomous items. Their method uses posterior probabilities in computing item fit. 

The fit statistics proposed by Donoghue and Hombo (1999) are based on the 

assumption that the item parameters are fixed and known. Under this restrictive 

assumption, they demonstrated that the fit measure is asymptotically distributed as a 

quadratic form of a normal random variable. Donoghue and Hombo (2001) extended 

this method for use with polytomous data, and showed that the statistic is a quadratic 

form of normals as well in the extended application. 

� Nonparametric Approach (RISE) 

Douglas and Cohen (2001) proposed an approach in which a 

nonparametrically-based ICC is compared to the best-fitting parametric ICC. If the two 

ICCs differ substantially, then the parametric model is considered to be misfitting. The 

concept underlying this approach is based on the fact that a nonparametrically-derived 

ICC (e.g., kernel-smoothed estimates) provides a reasonable estimate to the true ICC 

under a weak set of assumptions (Douglas, 1997). Kernel smoothing is a popular 

nonparametric method developed by Ramsay (1991) and is based on the concept of 

local averaging. Local averaging is useful in estimating points on an ICC 

because ( 1 �) ( � �)P u E Y= = = . Therefore, a reasonable estimate of ( 1 �)P u =  can 

be obtained by taking a weighted average of the response variable Y in which responses 

for examinees whose θ -value is close to a focal ability level, referred to as an 

evaluation point, contribute most heavily in estimating ( 1 �)P u = . Since the 
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nonparametric approach imposes fewer restrictions on the shape of the ICC, it is 

concluded that the parametrically-based model is incorrect if it differs from the 

nonparametric ICC substantially. The following describes the steps used in the 

procedure of RISE.  

• Estimate the category curve(s) using kernel smoothing, which is computed as 

follows: 
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where K is Gussian kernel, jθ is evaluation point, iθ is theta estimate, iY is 

examinee’s response. 

• Compute the optimal item parameter values for the parametric model of interest. 

• Summarize the difference between the nonparametric and parametrically-based 

step ICCs for each item using the following statistic: 
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 (9) 

where q̂kP  and ˆ non
qkP  represent points on the ICCs for the model-based and 

nonparametric methods for each category; Q is the number of evaluation points 

(e.g., Q=100); and K is the total number of categories. In the dichotomous case, 

K=2. 

• To determine the significance level of the observed statistic, the following 

parametric bootstrapping procedure is performed to construct an empirical 

distribution for iRISE under H0 (i.e., model fit). 
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1. Simulate item response data using the optimal item parameter estimates for 

each model obtained previously and N sθ  sampled from a standard normal 

distribution. 

2. Estimate the category curves and ICCs for the simulated data using kernel 

smoothing. 

3. Compute the optimal values for item parameter estimates for each model, as 

described previously. 

4. Compute iRISE  for each item using equation (9). 

5. Repeat steps 1 to 4 M times (e.g., M=500).  

If the observed RISEi is greater than the 95th percentile of the constructed iRISE , the 

conclusion is the model does not fit the data. In addition, for the nonparametric family, 

Wells and Bolt (2008), Li and Wells (2006), and Wells (2009), and Liang and Wells 

(2008) described the graphical representation of model misfit between nonparametric 

and parametric ICC to provide visual guidance about the location, type of misfit and 

magnitude of misfit.   

2.3 Empirical Research on Fit Indices 

In this section, a number of studies comparing the fit procedures are reviewed. The 

Type I error rate and power are two commonly used criteria that provide useful 

information regarding the statistical properties of a test statistic. As for graphical 

analysis, there are usually no clear criteria because it is more subjective and used as a 

supplement to significance tests. Model misfit consequence is one important issue as 

part of the fit procedure; therefore, a number of studies on this topic are also reviewed 

here. A summary of results from these studies is provided afterwards. 

For dichotomous items, McKinley and Mills (1985) compared the performances of 

traditional goodness of fit statistics in detecting misfit. The fit statistics included were 
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Bock’s 2χ , Yen’s Q1, Wright and Mead 2χ  (Wright & Mead, 1977; Yen, 1981), and 

the likelihood ratio 2χ  ( 2G ). Data were simulated to fit four models: 1PLM, 2PLM, 

3PLM, and a two-factor linear model. Misfit was examined using an IRT model that 

was different from the model used to simulate item responses. By comparing Type I 

error rates, they found that the likelihood ratio statistics yielded the fewest erroneous 

rejections of fit when the data were simulated and calibrated using the same model. 

However, given controlled Type I error rates, Bock’s (1972) index appeared to yield 

slightly better performances in terms of correct rejections of fit when the model used to 

simulate the items differed from the model used to calibrate the items. As a result, the 

authors could not conclude which measure was the best. Instead, they suggested that the 

choice of the fit procedures depend on the type of error that is considered to be the 

more serious error in a particular setting. With regard to the sample size issue, they 

concluded that sample sizes of 500 to 1000 were likely to yield the best results while a 

sample of 2000 seemed to make the fit procedures too sensitive.  

Orlando and Thissen (2000) conducted a simulation study investigating the Type I 

error rates and empirical power for their new proposals of item fit statistics for 

dichotomously scored items. They compared S-X2 and 2S G−  statistics with Yen’s Q1 

and McKinley and Mills’ log likelihood ratio statistic. They conducted three conditions 

in which the simulating and fitting models were identical to compute Type I error rates 

and three conditions involving model misspecifications to compute power. Results 

indicated that both Yen’s (1981) Q1 and McKinley and Mills’s (1985) index had very 

high Type I error rates for dichotomous items, particularly for short tests. With sample 

sizes of 1,000, for a nominalα  level of 0.05, empirical Type I error rate was around 

0.95 for 10-item tests, between 0.10 and 0.29 for 40-item tests, and somewhat lower but 

still inflated for 80-item tests. The results also showed that S-X2 
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performed better than the other statistics, in that its Type I error rates were close to the 

specified significance level while the others tended to reject the null hypothesis too 

often. In another study, Orlando & Thissen (2003) further investigated the utility of 

S-X2 as a model fit index for the 3PLM. Three types of item misfit were simulated: An 

item that followed a nonmonotonic shaped; an item in which the probability of 

answering correctly does not reach 1 (i.e., the upper-asymptote is not 1); an item that 

exhibits a plateau over middle values of � but follows a logistic curve before and after 

the plateau. The simulation compared the performance of S-X2 to that of 2
1Q X− , a 

Pearson 2χ  form of Yen’s 1Q  index. Results indicated that the performance of S-X2 

was improved with increasing test length and sample size, and was superior to that of 

2
1Q X−  under most conditions. 

Stone and Zhang (2003) presented results comparing the Type I error rates and 

empirical power for three alternatives for dichotomously scored items, including 

Orlando and Thissen’s (2000) method, Stone’s (2000a) resampling or 

pseudocounts-based method, and Donoghue and Hombo’s (1999) DHQ index. As a 

frame of reference with traditional approaches to assessing model-data fit, Bock’s 

(1972) 2χ statistic was also examined. They reported excessively unacceptable Type I 

error rates for Bock’s (1972) statistic, which is consistent with previous research. By 

contrast, the three new approaches appeared to offer promising alternatives to 

traditional methods. Among the three methods, they found that Stone’s method tended 

to display more power to detect misfit in smaller samples, while Orlando and Thissen’s 

method showed adequate power to detect misfit with a sample size of 2000 under the 

2PLM or 3PLM simulated and 1PLM calibrated conditions, and the Donoghue and 

Hombo’s method lacked adequate power at all sample sizes. However, none of the 

methods showed adequate power in detecting misfit under the 3PLM simulated and 
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2PLM calibrated conditions, which corroborates previous research (McKinley & Mills, 

1985; Yen, 1981).  

Glas and Falcón (2003) proposed another index based on a Lagrange multiplier 

(LM) test and compared this index with Orlando and Thissen’s (2000) 2S G−  and the 

log-likelihood ratio test. The Type I error rate and power of the test of fit of the 3PLM 

was investigated. The test lengths in the simulation studies were 10, 20 and 40, and the 

examinee sample sizes were 500, 1000, and 4000. The results showed that the overall 

characteristics of the 2S G−  test, in terms of the ratio of hits and false alarms, were 

better than the overall characteristics of the LM test. They suggested that this difference 

could be due to differences in item parameters. As in Orlando and Thissen’s procedure, 

for this index, examinees are grouped by number-correct scores rather than IRT 

estimated trait scores which were the grouping basis of the usual log-likelihood ratio 

index, and the LM index also takes into account the standard errors in the item 

parameter estimates. 

For polytomous items, Stone and Hansen (2000) examined a Pearson’s 2χ  type 

index similar to Yen’s Q1 (1981) or Bock’s (1972) 2χ and a log-likelihood ratio index 

similar to the statistic reported in PARSCALE’s. Using true item parameters and true 

abilities, Type I error rates were somewhat more inflated for the log likelihood ratio 

index than for Pearson’s 2χ . However, using estimated abilities and true item 

parameters, Type I error rates were extremely inflated, especially for short tests. For 

example, for an eight-item test with a nominalα of 0.05, the Type I error rate ranged 

from 0.75 to 1.00 for the selected items displayed. The inflation was smaller with 

longer tests and for smaller sample sizes. The log likelihood index studied by Stone and 

Hansen differed somewhat from PARSCALE’s index; item parameters were known 

rather than estimated, and .000001 was added to cells with an expected frequency of 0, 
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compared with PARSCALE’s procedure of combining groups so that all cells have an 

expected frequency of at least 5.  

DeMars (2005) examined the Type I error rates for PARSCALE’s fit statistic 2G  

for polytomous items. Using either the GRM or the PCM, data were simulated with 10 

and 20 items. Type I error rates were found to be inflated for the shorter test length and 

for the GRM, and also for the longer test length when the ability distribution was 

uniform. Given the findings, the conclusion was that the fit index cannot be 

recommended for short tests. 

Schrader, Ansley, and Kim (2004) examined the behavior of Q1 and two new 

indices proposed by Orlando and Thissen (2000), S-X2 and 2S G− , on polytomous data 

(e.g., constructed-response data) fit by the GPCM. In the study, those indices originally 

developed for dichotomous data were extended to more general forms for use with 

polytomous data. The misfitting items were from simulating a two-dimensional version 

of GPCM. They found that the Type I error rates from S-X2 were very close to the 

significance level for various test lengths, while the Q1 indices had inflated Type I error 

rates for shorter test lengths and more reasonable rates for the longest test. However, 

none of the selected indices had sufficient power to detect misfit under most of the two 

dimensional conditions. Based on the results, the authors suggested that the Q1 indices 

were not useful in testing model fit, either due to inflated Type I error rates or 

insufficient power. Most of their results for polytomous data were found to be 

consistent with results found in Orlando and Thissen’s studies for dichotomous data.  

For a mix of dichotomous and polytomous items, Chon, Lee, and Ansley (2007) 

compared three different approaches for assessing IRT model-data fit using real test 

data containing both multiple choice and constructed response items. In order to 

evaluate fit for mixed data, they compared PARSCALE’s 2G as a traditional approach 
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with the generalized forms of Orlando and Thissen’s S-X2 and 2S G− . Some 

inconsistencies were found between traditional and new indices for assessing the fit of 

IRT models based on a mixed-format test. It was reported that the new indices indicated 

considerable better model fit than the traditional indices. Thus, the results from Chon, 

Lee, and Ansley (2007) provide a preliminary investigation for the model-data fit 

procedures.  

Due to the unappealing features of statistical tests of misfit (e.g., a significant 

result does not imply a practically meaningful misfit), there is an urgent need for 

graphical procedures and displays for assessing model fit for both dichotomous and 

polytomous data. Some commercial IRT estimation software includes raw residual plots 

in the standard output—e.g., BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003). 

Among the widely used commercial software packages, BILOG-MG is one of the few 

that plots high quality graphs for identifying the fit in IRT models. The residual plots in 

BILOG-MG are proving to be popular and helpful in explaining model fit. 

Unfortunately, such fit plots are not available in PARSCALE (Mislevy & Bock, 2003), 

one of the most popular IRT software packages, which can handle polytomously-scored 

items.  

Liang, Han and Hambleton (2009) developed software called ResidPlots-2 which 

visually represents the discrepancy between the model-based expectations and the 

observed data. It provides a powerful tool for graphical residual analyses and is a 

valuable advance in convenience and flexibility for researchers and practitioners 

wishing to do graphical residual analysis. The advantages of this software include 

several features. First, it supports the most widely used IRT models including three 

dichotomous models (1PLM, 2PLM, 3PLM) and three polytomous models (GRM, 

GPCM, NRM). Second, it provides considerable flexibility with respect to the number 
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and size of the intervals for which the residuals are computed. Users are able to decide 

the number of intervals, choose the interval size to provide equal width or equal 

frequency, select the location of the data plot in each interval, eliminate intervals at the 

lower or higher end of the proficiency scale if desired, etc. Third, it allows users to 

decide what type of error bars they wish to have displayed. Users can specify the 

number of standard errors represented by the error bars (e.g., 2 SE). Fourth, it provides 

three sets of plots: (1) the item level, raw residual plots and standardized residual plots 

with error bars; (2) the test level, ResidPlots-2 can show standardized residual 

distributions (PDF and CDF) with corresponding tables, item fit plots and score fit plots 

from both empirical and simulated data; and (3), observed test score distributions and 

predictive score distributions (PDF and CDF) are produced as well. The predictive test 

score distribution is based on simulation data generated from item and ability parameter 

estimates from the observed data. Fifth, some tables including basic item fit and person 

fit statistics and summaries of residuals are provided.   

While the nonparametric approach, RISE, has exhibited controlled Type I error 

rates and adequate power under the studied conditions, a further promising advantage 

of this nonparametric approach demonstrated that it provides a graphical inspection of 

possible misfit. Wells and Bolt (2008) and Li and Wells (2006) examined RISE’s 

performance on 2PLM and GRM, respectively. Recently, Liang and Wells (2009) 

applied this nonparametric approach, RISE, to test the fit of the GPCM. In their study, 

the empirical Type I error rate and power of RISE were assessed for various test lengths 

(10-, 20-, and 40 items), sample sizes (500, 1000 and 2000), and type of assessment. 

What’s more, Liang and Wells (2008) further explored the statistical properties of the 

proposed fit statistic, RISE on a mixed format test that included the 3PLM, 2PLM, and 

GPCM. The empirical Type I error rate and power of RISE were assessed for various 
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sample sizes (2000, 3000 and 5000). The results were compared to 2G  in PARSCALE 

(Muraki & Bock, 2003) and S-X2 (Orlando & Thissen, 2000). The conclusion from the 

two papers was that compared to the two popular parametric methods, PARSCALE’S 

G2 (Muraki & Bock, 2003) and S-X2 (Orlando & Thissen, 2000), RISE better controlled 

Type I error rate and exhibited more power than S-X2 and 2G . 

2.4 Summary  

The review of literature in this chapter highlights the limitations of statistical tests. 

Generally speaking, such tests tend to be narrowly focused on a particular aspect of the 

relationship between the model and the data, often summarizing the evaluation using a 

descriptive statistic or test result. Specifically speaking, there are three general 

problems with several of the commonly-used model fit statistics. First, it is well known 

that several of the statistics (e.g., 2G  and Yen’s Q1) are not distributed as a 2χ  

because the examinees are grouped based on IRT θ  estimates, which contain error, 

and because the degrees of freedom are in question (Orlando & Thissen, 2000); as a 

result, the Type I error rate is inflated under many conditions (when the Type I error 

rate is inflated, many valid items are falsely identified as misfitting when in fact the 

model fits the data). Second, even when the fit statistic is able to control the Type I 

error rate, at least for most test lengths (e.g., Orlando and Thissen’s S-X2), there is no 

accompanying method of assessing how poorly a model fits given a statistic that 

indicates misfit. This is problematic when assessing fit using very large samples 

because trivial misfit often leads to the rejection of the hypothesis that the model fits 

the data exactly in the population. Third, there are a limited number of statistical tests 

that can assess the fit of multiple IRT models used in a mixed format test. This is 

particularly problematic since many large-scale assessments utilize both dichotomous 

and polytomously-scored data. Graphical residual analyses, on the other hand, have 
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proven to be useful in evaluating the complex relationship between model and data 

(Hambleton, Swaminathan, & Rogers, 1991). The problem of relying on graphical 

evidence only is that it is less objective than a statistical test; as a result, it can be 

difficult to judge whether an item is providing reasonable fit or if the item misfit is 

practically meaningful. Therefore, it is helpful to use both statistical tests and graphical 

analysis to determine how well a model fits. 

As discussed previously, the nonparametric approach for assessing fit appears to 

be promising due to the controlled Type I error rate, sufficient power to detect misfit, 

and the convenient graphical display of possible misfit that is available. The promising 

results of RISE support further study of the method in different testing contexts (e.g., 

non-normal ability distributions) and in exploring its use in examining the potential 

consequences of the misfit. Under these circumstances, the current study extends the 

use of RISE to more general and comprehensive applications by manipulating variety of 

factors (e.g., test length, sample size, IRT models, ability distribution). Results (e.g., 

type I error rate and power) will be compared to 2G  in PARSCALE (Muraki & Bock, 

2003) and S-X2 (Orlando & Thissen, 2000). In order to demonstrate its advantage of 

graphical representation of model misfit, some residual plots will be displayed from 

empirical data. Lastly, the consequences of potential misfit will be explored via the 

nonparametric approach using empirical data.  
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CHAPTER 3 

METHOD 

The nonparametric approach for assessing model fit was examined via a Monte 

Carlo simulation study and an analysis of empirical data. The Monte Carlo simulation 

study was performed to examine the empirical Type I error rate and power of the 

proposed statistic to detect misfitting items in a mixed format test under thirty-six 

conditions. In addition, the statistical properties of RISE were compared to a commonly 

reported fit statistic, 2G , provided by the computer package, PARSCALE (Muraki & 

Bock, 2003), and a presently developed fit statistic, S-X2, provided by the computer 

software, IRTFIT (Bjorner, Smith, Stone & Sun, 2007). An empirical data set was 

analyzed to explore the use of the nonparametric approach for assessing the practical 

meaningfulness of the misfit via the hypothesis test provided by RISE, inspection of 

residuals. Comparison of score distributions and test characteristic curves (TCCs) were 

also addressed as two aspects of model misfit consequence. 

3.1 The Procedure of RISE 

The RISE statistic was implemented for assessing the fit of multiple IRT models in 

a mixed-format as follows: 

• Kernel smoothing was used to estimate the ICC for dichotomous data and  

OCC or CRC for polytomous data. In order to increase computational speed, the 

Fast Fourier Transformation (FFT) will be applied (Ramsay, 1991).  

• Compute the optimal item parameter values for the parametric model of interest 

(i.e., 2PLM or 3PLM for dichotomous data, and GRM or GPCM for 

polytomous item responses). For the 2PLM and GRM, the optimal item 

parameter values were based on the nonparametric ICC using maximum 

likelihood estimation, the EM algorithm (Wells & Bolt, 2008, Li & Wells, 2006). 
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To maximize the log-likelihood, the Newton-Raphson procedure was conducted. 

However, two modifications were needed. One was to replace the observed 

proportion of correct response at each theta level by the kernel-smoothed 

probability at each evaluation point. The other was to compute the weight for 

each evaluation point instead of each theta value. For the 3PLM, a nonlinear 

model was fitted with three unknown parameters (a, b, c). The nonlinear model 

used a 2χ merit function (Press, Teukolsky, Vetterling & Flannery, 1992) which 

was defined to determine best-fit parameters. The minimization procedure 

proceeded iteratively until 2χ  statistic stopped decreasing. And for the GPCM, 

least squares were used on the logit deviates (Liang & Wells, 2009). In other 

words, although the relationship between �  and each step ICC was nonlinear, 

the relationship between the logistic deviate, 1log k

k
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P

+
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, for each step ICC 

and �  was linear allowing the use of least squares to estimate the slope and 

difficulty for each step ICC. 

• Summarize the difference between the nonparametric and parametrically-based 

step ICCs for each item using the following statistic: 

 

( )2

1
1

1

ˆ ˆ

1

Q
non

qk qkK
q

k

i

P P

Q

RISE
K

−
=

=

� �
−� �

� �
� �
� �
� �=

−

�
�

 (10) 

where q̂kP  and ˆ non
qkP  represent points on the ICCs for the model-based and 

nonparametric methods for each category; Q is the number of evaluation points 

(e.g., Q=100); and K is the total number of categories. In the dichotomous case, 

K=2. 
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• To determine the significance level of the observed statistic, the following 

parametric bootstrapping procedure was performed to construct an empirical 

distribution for RISE under H0 (i.e., model fit). 

1. Simulate item response data using the optimal item parameter estimates for 

each model obtained previously and N sθ  sampled from a standard normal 

distribution. 

2. Estimate the category curves and ICCs for the simulated data using kernel 

smoothing. 

3. Compute the optimal values for item parameter estimates for each model, as 

described previously. 

4. Compute RISE for each item using equation (10). 

5. Repeat steps 1 to 4 M times (e.g., M=500).  

If the observed RISEi was greater than the 95th percentile of the constructed iRISE , then 

we concluded that the model did not fit the data.  

3.2 Four Factors 

A Monte Carlo simulation study was employed to examine the statistical 

properties of RISE for a mixed-format test. Four factors were varied: ability distribution, 

sample size, test length, and models.  

Three ability distributions were considered to represent three shapes which are 

commonly found in practice. In particular, they were normal with mean of 0 and 

standard deviation of 1, positively skewed ( 1γ = 0.95) and negatively skewed 

distributions ( 1γ = -0.95).  

The sample sizes were 500, 2,000 and 10,000 to represent small, medium and 

large sample sizes. Sample size 2,000 is typically used in many testing programs for 

anchor items; however, the small sample size 500 and large sample size 10,000 were 
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also examined for not only the purpose of generality but also the practical use since 

most traditional fit statistics do not perform well under these sample sizes which are 

actually not uncommon in some testing scenario.  

Two test lengths that represent a small and relatively large assessment were 

investigated: 30 and 60 items. Those were typical test lengths in some testing programs.  

Oftentimes, large-scale standardized tests, such as those used in statewide 

assessments, comprise both dichotomous (e.g., multiple-choice and short-answer) and 

polytomous (e.g., partial credit) item responses used to define the latent theta metric. To 

represent this context and cover variety of models efficiently, mixed format tests were 

simulated, so a mixture of binary and polytomous IRT models (3PLM, 2PLM, and 

GRM//GPCM) were assessed in terms of goodness-of-fit.  

The percentage of misfitting items was not considered in the study because this 

factor does not influence either Type I error or power (Wells & Bolt, 2008). In summary, 

there were 36 conditions (3 ability distributions X 3 sample sizes X 2 test lengths X 2 

formats).    

In addition, the consequence of the misfit was explored by comparing the test 

distribution based on the raw data (or the nonparametric ICCs) versus the test 

distribution based on the parametric models. The procedure was illustrated below: 

� Pick one simulation data (10,000 by 60) and identify misfitting items based on 

fit statistics 

� Compute observed score distribution (CDF) and expected score distribution 

(CDF) 

� Select score cuts and compute the CDF differences at those cuts 

� Replace those detected misfitting items by fitting items based on item and 

ability parameter estimates to form a new dataset 
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� Compute observed score distribution (CDF) and expected score distribution 

(CDF) from the new dataset 

� Compute the new CDF differences at the cuts again 

� If the new difference was not significantly different from the old difference, 

then there was no model misfit consequence on those cuts of score 

distribution. 

The true TCCs were compared with the estimated TCCs to illustrate model misfit 

consequences. The procedure for investigating misfit consequence on TCC is shown 

below: 

� Pick one simulation data (10,000 by 60) and identify misfitting items based on 

fit statistics 

� Compute true TCC and estimated TCC 

� Select theta cuts and compute the TCC differences at those cuts 

� Replace those detected misfitting items by fitting items based on item and 

ability parameter estimates to form a new dataset 

� Compute true TCC and estimated TCC from the new dataset 

� Compute the new TCC differences at the cuts again 

� If the new difference was not significantly different from the old difference, 

then there was no model misfit consequence on those cuts of TCC. 

3.3 Data Generation 

Item response data were generated for each of the thirty-six conditions. The 

30-item test consisted of twenty 3PLM items (representing multiple-choice items), five 

2PLM items (representing short-answer items), and five GPCM (or GRM) items 

(representing five-category, polytomous responses) for three sample sizes: 500-, 2,000-, 

and 10,000-examinees. The item responses were simulated from three ability 
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distributions, respectively. Similarly, the 60-item test consisted of forty 3PLM items 

(representing multiple-choice items), ten 2PLM items (representing short-answer items), 

and ten GPCM (GRM) items (representing five-category, polytomous responses).  

To assess the Type I error rate, 80% of the 3PLM items (16 items in the 30-item 

test, 32 items in the 60-item test), 80% of the 2PLM items (4 items in the 30-item test, 8 

items in the 60-item test) and 80% of the GPCM (GRM) items (4 items in the 30-item 

test, 8 items in the 60-item test) were simulated from the respective parametric model. 

The generating item parameter values were obtained from a state-wide test that used a 

similar test format. Table 3.1 reports the generating item parameter values for the 

60-item test. The values used in the 30-item conditions were a subset of those used in 

the 60-item condition. 

To assess power, the remaining 20% of the total items were simulated from 

empirically-derived ICCs that did not follow their respective parametric models. The 

ICCs were obtained from a statewide assessment. Figure 1 reports the underlying ICCs 

for generating misfit based on kernel smoothed estimates for the 60-item test. Note that 

the percentage of misfitting items does not appear to influence either Type I error rate 

or power (Wells & Bolt, 2008), so other percentages were not examined in the study. 

One-hundred replications were performed for each of the three sample size 

conditions. The underlying θ  values were sampled from the three ability distributions. 

3.4 Data Analyses 

FORTRAN code was written and implemented to perform the nonparametric 

approach to assess misfit and perform the parametric bootstrapping procedure. The 

computer software package, PARSCALE (Muraki & Bock, 2003), was used to obtain 

the fit statistic, G2, the computer software, IRTFIT (Bjorner et al.,2007) was used to 

obtain the fit statistic, S-X2. All residual plots and score distribution plots based on 
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parametric approach were produced by the computer software ResidPlots-2 (Liang, Han 

& Hambleton, 2009).   

Simulation Analyses. The empirical Type I error rate and power were assessed for 

RISE as well as G2 and S-X2. The empirical Type I error rate was based on the 

proportion of items simulated using the three model combinations that were detected as 

misfitting at .01α = and .05α = . Power was assessed based on the proportion of items 

simulated using the empirically-derived category curves shown at .01α =  and .05α = . 

However, power was interpreted for the specific statistic only for conditions in which 

the Type I error rate was controlled. Score distributions and TCCs before and after 

replacement of misfitting items were plotted to illustrate model misfit consequence.  

Empirical Analyses. An additional advantage of the nonparametric approach, RISE, 

was the convenient graphical representation of model misfit. This feature can provide 

visual guidance about the location and type of misfit. The graphical features of the 

nonparametric approach were explored via the analysis of empirical data. The fit of the 

three model combinations was tested using RISE as well as G2 and S-X2. The data came 

from a large-scale assessment with thirty-two multiple-choice items, four short-answer 

items, and six partial-credit, five-category, polytomous items at sample sizes of 500, 

2,000, and 10,000. Items flagged as misfitting according to the three statistical test 

statistics were compared. The misfit was further explored via a graphical representation. 

For each detected misfitting polytomous item, the empirical data and item characteristic 

curves were aggregated to form one raw residual plot. Model misfit consequence on 

score distribution was also investigated using the same procedure as the simulation 

study.  
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Table 3.1 Generating Item Parameter Values 

Item �  �  �  1�  2�  3�  4�  

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

 
1.027 
0.985 
1.098 
1.379 
1.429 
0.957 
1.099 
1.268 
0.968 
1.414 
1.464 
1.415 
0.880 
0.882 
1.054 
1.096 
0.996 
1.499 
1.541 
1.724 
1.460 
0.680 
0.959 
1.017 
1.011 
0.948 
0.675 
1.450 
0.721 
0.839 
1.496 
0.995 
0.952 
0.985 
1.151 
0.986 
0.876 
0.946 
1.013 
1.202 
1.137 
0.796 
1.213 
1.004 
1.026 

 
-0.750 
-0.660 
-0.404 
0.247 
-0.850 
0.734 
-0.078 
0.122 
-0.334 
-0.041 
-0.382 
0.539 
0.228 
-0.674 
-0.460 
0.363 
-0.161 
-0.286 
-0.810 
-0.634 
0.747 
-0.418 
-0.300 
0.144 
0.134 
-0.298 
-0.400 
0.737 
-0.629 
-0.798 
-0.282 
-0.151 
0.267 
0.060 
0.284 
-1.311 
0.145 
-0.977 
0.173 
-0.004 

 
0.096 
0.084 
0.095 
0.135 
0.094 
0.343 
0.298 
0.221 
0.134 
0.156 
0.306 
0.169 
0.159 
0.158 
0.239 
0.288 
0.193 
0.273 
0.259 
0.258 
0.070 
0.191 
0.284 
0.165 
0.162 
0.281 
0.189 
0.050 
0.255 
0.257 
0.269 
0.189 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1.054 
-0.090 
-0.030 
-0.839 
-1.035 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1.025 
-1.277 
-0.461 
-1.224 
-1.060 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.344 
0.053 
1.013 
-1.083 
0.267 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.681 
0.215 
0.421 
-0.068 
0.534 
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46 
47 
48 

 
 

0.724 
0.945 
0.893 

-0.010 
-0.777 
-1.001 

-1.255 
-1.201 
-1.924 

0.023 
-1.139 
0.004 

0.210 
-0.016 
-0.237 
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Figure 3.1.Generating Empirical ICCs. 
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CHAPTER 4 
 
RESULTS 

4.1 Study 1-Simulation Study 

4.1.1 Statistical Properties 

    Study 1 was a simulation study. In this study, the statistical properties of the three 

fit statistics were compared. Tables 4.1 through 4.12 summarize the Type I error rate  

and power for 0.05α =  and 0.01α =  under the thirty-six conditions from three fit 

statistics, RISE, 2G and S-X2 . Each table covered results for one ability distribution, one 

model combination, three sample sizes, and two test lengths.  

Table 4.1 reports the empirical Type I error rates for RISE, G2 and S-X2 based on 

normal ability distribution and 3PLM/2PLM/GPCM model combination. Table 4.2 

reports results for 3PLM/2PLM/GRM model combination. Based on the two tables, the 

Type I error rate was controlled for RISE and highly deflated for S-X2 especially under 

500- and 2,000-examinee conditions for each model. On the other hand, G2 exhibited 

inflated Type I error rates. For the 3PLM, the Type I error rate was slightly inflated for 

the 500- and 2,000-examinee conditions, moderately inflated for the 10,000-examinee 

condition. For the 2PLM, G2 was slightly inflated for the 500- and 2,000-examinee 

conditions; it was highly inflated for the 10,000-examinee conditions. For the GPCM 

and GRM, G2 was slightly inflated for the 500-examinee condition, moderately inflated 

for the 2,000-examinee condition and highly inflated for the10,000-examinee condition.  

In summary, RISE performed satisfactorily in that the Type I error rates were not 

inflated or affected by sample size and test length. S-X2 exhibited highly deflated Type I 

error rates; however, as sample size increased and test length decreased, the Type I 

error rates increased toward the nominal alpha level. G2 did not control Type I error 
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rates for most conditions and Type I error rates increased while sample size increased; 

however, test length did not have any impact on it.  

Tables 4.3 and 4.4 report the empirical power rates for RISE, G2 and S-X2 across 

the conditions for the two model combinations in the mixed format test respectively. 

Because power is conditional on controlling the Type I error rate at the nominal alpha 

level (α =0.05 and 0.01α = ), the power rates corresponding to the Type I error rates 

greater than 0.07 were X-ed out forα =0.05 and those greater than 0.03 were X-ed out 

for 0.01α = . It was not appropriate to compare power rates between the three fit 

statistics for those X-ed out cases.  

In summary, as sample size increased, all three fit statistics exhibited increased 

power for each model. RISE exhibited more power than the valid power values of G2. 

On the other hand, compared to S-X2, RISE exhibited more power to detect misfit under 

500- and 2,000-examinee conditions for each model.  

Table 4.5 reports the empirical Type I error rates for RISE, G2 and S-X2 based on 

negatively-skewed ability distribution and 3PLM/2PLM/GPCM model combination. 

Table 4.6 reports results for 3PLM/2PLM/GRM model combination. The two tables 

indicated that the Type I error rate across all conditions was controlled for RISE only. 

G2 exhibited inflated Type I error rates. For the 3PLM, the Type I error rate was slightly 

inflated for the 500- and 2,000-examinee conditions and it was moderately inflated for 

the 10,000-examinee condition. For the 2PLM, G2 was slightly inflated for the 500- and 

2,000-examinee conditions; it was highly inflated for the 10,000-examinee conditions. 

For the GPCM and GRM, G2 was slightly inflated for the 500-examinee condition, 

moderately inflated for the 2,000-examinee condition and highly inflated for 

the10,000-examinee condition. S-X2 only controlled Type I error rates for 500-examinee 

and 60-item condition for each model. It exhibited inflated Type I error rates for all 
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other conditions. For the 3PLM, the Type I error rate was slightly inflated for the 

500-examinee with 30-item and 2,000-examinee with 60-item conditions; it was highly 

inflated for other conditions. For the 2PLM, S-X2 was moderately inflated for the 

500-examinee with 30-item and 2,000-examinee with 60-item conditions, highly 

inflated for other conditions. For the GPCM and GRM, S-X2 was highly inflated for all 

conditions.  

In summary, under the negatively-skewed ability distribution, RISE also 

outperformed the other two fit statistics in that the Type I error rates were not inflated 

and not affected by sample size and test length. G2 did not control Type I error rates and 

showed increasingly inflated Type I error rates as sample size increased. S-X2 did not 

control Type I error rates and exhibited a clear pattern that Type I error rates increased 

while sample size increased and test length decreased.  

    Tables 4.7 and 4.8 report the empirical power rates for RISE, G2 and S-X2 across 

the conditions for the two model combinations in the mixed format test respectively. 

Because power is conditional on controlling the Type I error rate at the nominal alpha 

level (α =0.05 and 0.01α = ), the power rates corresponding to the Type I error rates 

greater than 0.07 were X-ed out forα =0.05 and those greater than 0.03 were X-ed out 

for 0.01α = . It was not appropriate to compare power rates between G2, S-X2 and RISE 

for those X-ed out cases.  

In summary, as sample size increased, all three fit statistics exhibited increased 

power for each model. RISE exhibited much more power than the valid power values of 

G2 and S-X2.  

Table 4.9 reports the empirical Type I error rates for RISE, G2 and S-X2 based on 

positively-skewed ability distribution and 3PLM/2PLM/GPCM model combination. 

Table 4.10 reports results for 3PLM/2PLM/GRM model combination. The two tables 
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demonstrated that the Type I error rate was controlled for RISE across all conditions. G2 

exhibited inflated Type I error rates. For the 3PLM and 2PLM, the Type I error rate was 

slightly inflated for the 500- and 2,000-examinee conditions, highly inflated for the 

10,000-examinee condition. For the GPCM and GRM, G2 was moderately inflated for 

the 500-examinee and the 2,000-examinee conditions and highly inflated for 

the10,000-examinee condition. S-X2 only controlled Type I error rates for 500-examinee 

and 60-item condition for 3PLM and 2PLM. It exhibited inflated Type I error rates for 

all other conditions. For the 3PLM, the Type I error rate was moderately inflated for the 

500-examinee with 30-item and 2,000-examinee with 60-item conditions, highly 

inflated for other conditions. For the 2PLM, S-X2 was moderately inflated for the 

500-examinee with 30-item and 2,000-examinee with 60-item conditions, highly 

inflated for other conditions. For the GPCM and GRM, S-X2 was highly inflated for all 

conditions.  

In summary, under the positively-skewed ability distribution, RISE also 

outperformed the other two fit statistics in that the Type I error rates were not inflated 

and not affected by sample size and test length. G2 did not control Type I error rates and 

showed increasingly inflated Type I error rates as sample size increased. S-X2 did not 

control Type I error rates and had clear pattern that Type I error rates increased while 

sample size increased and test length decreased.  

Tables 4.11 and 4.12 report the empirical power rates for RISE, G2 and S-X2 across 

the conditions for the two model combinations in the mixed format test respectively. 

Because power is conditional on controlling the Type I error rate at the nominal alpha 

level (α =0.05 and 0.01α = ), the power rates corresponding to the Type I error rates 

greater than 0.07 were X-ed out forα =0.05 and those greater than 0.03 were X-ed out 
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for 0.01α = . It was not appropriate to compare power rates between G2, S-X2 and RISE 

for those X-ed out cases.  

In summary, as sample size increased, all three fit statistics exhibited increased 

power for each model. RISE exhibited much more power than the valid power values of 

G2 and S-X2.  

 
4.1.2 Model Misfit Consequence 
 
4.1.2.1 Score Distribution 
 

One of the simulated data sets (normal ability distribution, 10,000-examinee, 

60-item and 3PLM/2PLM/GPCM) was used to address the model misfit consequence 

on score distribution. Figures 4.1 through 4.3 report the observed score distribution 

(blue solid line) and the expected score distribution (red dotted line) before and after 

replacement of misfitting items detected by three fit statistics. However, to illustrate the 

misfit consequence on practical use, three cuts (40, 60, 80) were selected to quantify the 

difference in distributions attributed to the replacement of misfitting items. The 

difference in the percentage of examinees at each cut was 1%, 2% and 2% respectively. 

0.005 was chosen to be a criterion, so the impact on score distribution before and after 

replacement was significant if the value in each cell was greater than 0.005. The reason 

to choose 0.005 as the criterion was because it was average of differences at all score 

points. Table 4.13 reports the results. Based on both the table and the plots, there was 

no significant model misfit consequence on score distribution for the given simulated 

data. It is important to note that this result may have occurred because the simulated 

misfit did not have a consequential effect on test score distributions. 

4.1.2.2 TCC 
 

The same simulation data were used to address the model misfit consequence on 

TCC. Figure 4.4 reports the nonparametric TCC (blue solid line) and the parametric 
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TCC (red dotted line) before and after replacement of misfitting items detected by RISE. 

However, to illustrate the misfit consequence on practical use, three cuts, -1.41, 0.33 

and1.11 were transformed from raw score scale to quantify the change of TCC 

difference. The cut of 0.5 was chosen because if the difference is larger than 0.5, it 

would be rounded to 1.0. Table 4.14 reports the results. Based on the table and the plots, 

there was no significant model misfit consequence on TCC for the given simulated data 

at the cuts. 

 
4.2 Study 2-Empirical Study 
4.2.1 Residual Plots on Misfitting Items 
 

Three fit statistics were applied to one empirical data which contained 32 multiple 

choice items fitted by 3PLM, 4 short answer items fitted by 2PLM and 6 constructed 

response items fitted by GPCM. Three sample sizes (500, 2,000 and 10,000) were 

randomly drawn without replacement from a larger sample size. Table 4.15 summarized 

the number and percentage of misfitting items detected by each fit statistic at each 

sample size. The misfitting items were listed in the last column. At sample size 10,000, 

RISE and S-X2 flagged very similar misfitting items while G2 flagged almost all items 

as misfitting. Figure 4.5 through 4.12 show the residual plots on misfitting items 

detected by three fit statistics. Each misfitting polytomous item had one aggregated raw 

residual plot weighted by score categories.  

4.2.2 Model Misfit Consequence on Score Distribution 
 

Figure 4.13 through 4.15 report the observed score distribution (blue solid line) 

and the expected score distribution (red dotted line) before and after replacement of 

misfitting items detected by three fit statistics at three sample sizes. To further illustrate 

the misfit consequence quantitatively and practically, three cuts (25, 40, 55) were 

selected to assess the change of distribution difference. The percentage of examinees at 
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each cut was 1%, 2% and 4% respectively. Table 4.16 reports the results. Based on both 

the table and the plots, there was no meaningful model misfit consequence on score 

distribution for the given data at each sample size. In addition, the three fit statistics did 

not lead to any meaningful distribution difference before and after replacement. The 

finding was consistent with the examination of statistical properties in simulation study.   
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Table 4.1 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Normal Ability Distribution, 3PLM/2PLM/GPCM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.038 0.069 0.027 0.009 0.026 0.007 

  2PLM 0.041 0.085 0.005 0.011 0.045 0.000 
  GPCM 0.050 0.060 0.008 0.012 0.008 0.000 

 
 60 3PLM 0.036 0.070 0.008 0.007 0.031 0.003 
  2PLM 0.045 0.070 0.003 0.009 0.023 0.001 
  GPCM 0.052 0.079 0.001 0.010 0.021 0.000 

 
2,000 30 3PLM 0.029 0.073 0.036 0.000 0.016 0.008 

  2PLM 0.045 0.085 0.018 0.006 0.013 0.003 
  GPCM 0.042 0.225 0.005 0.001 0.070 0.000 

 
 60 3PLM 0.034 0.061 0.018 0.008 0.019 0.006 
  2PLM 0.049 0.074 0.010 0.013 0.011 0.001 
  GPCM 0.032 0.119 0.001 0.011 0.029 0.000 

 
10,000 30 3PLM 0.040 0.251 0.040 0.004 0.095 0.006 

  2PLM 0.039 0.538 0.055 0.002 0.283 0.008 
  GPCM 0.053 0.995 0.063 0.012 0.995 0.013 

 
 60 3PLM 0.036 0.321 0.032 0.000 0.139 0.005 
  2PLM 0.042 0.466 0.031 0.004 0.230 0.004 
  GPCM 0.048 0.931 0.026 0.005 0.843 0.008 
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Table 4.2 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Normal Ability Distribution, 3PLM/2PLM/GRM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.031 0.063 0.022 0.011 0.016 0.008 

  2PLM 0.041 0.065 0.010 0.006 0.040 0.004 
  GRM 0.032 0.078 0.009 0.010 0.018 0.001 

 
 60 3PLM 0.043 0.083 0.013 0.005 0.038 0.002 
  2PLM 0.045 0.085 0.003 0.008 0.038 0.000 
  GRM 0.036 0.064 0.001 0.007 0.013 0.000 

 
2,000 30 3PLM 0.041 0.076 0.037 0.000 0.021 0.011 

  2PLM 0.047 0.063 0.025 0.012 0.010 0.009 
  GRM 0.040 0.420 0.016 0.009 0.185 0.005 

 
 60 3PLM 0.039 0.064 0.018 0.007 0.016 0.006 
  2PLM 0.050 0.073 0.011 0.010 0.009 0.002 
  GRM 0.032 0.398 0.007 0.000 0.176 0.000 

 
10,000 30 3PLM 0.048 0.484 0.043 0.004 0.241 0.013 

  2PLM 0.046 0.843 0.051 0.002 0.618 0.010 
  GRM 0.053 1.000 0.064 0.005 1.000 0.008 

 
 60 3PLM 0.042 0.293 0.039 0.006 0.114 0.007 
  2PLM 0.052 0.489 0.040 0.001 0.223 0.004 
  GRM 0.044 1.000 0.050 0.005 1.000 0.001 
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Table 4.3 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Normal Ability Distribution, 3PLM/2PLM/GPCM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.298 0.153 0.035 0.145 0.028 0.010 

  2PLM 0.270 0.140 0.070 0.129 0.010 0.010 
  GPCM 0.341 0.130 0.150 0.172 0.010 0.080 

 
 60 3PLM 0.369 0.489 0.021 0.200 0.049 0.006 
  2PLM 0.310 0.095 0.010 0.178 0.015 0.005 
  GPCM 0.289 0.160 0.050 0.103 0.045 0.020 

 
2,000 30 3PLM 0.596 0.288 0.253 0.371 0.138 0.103 

  2PLM 0.892 0.290 0.400 0.406 0.070 0.180 
  GPCM 0.910 0.780 0.830 0.790 0.560 0.680 

 
 60 3PLM 0.612 0.636 0.053 0.322 0.419 0.093 
  2PLM 0.785 0.330 0.185 0.555 0.135 0.085 
  GPCM 0.873 0.685 0.445 0.626 0.440 0.275 

 
10,000 30 3PLM 0.999 0.995 0.985 0.999 0.965 0.941 

  2PLM 1.000 1.000 1.000 1.000 0.980 1.000 
  GPCM 1.000 1.000 1.000 1.000 1.000 1.000 

 
 60 3PLM 0.998 0.990 0.969 0.960 0.976 0.938 
  2PLM 1.000 1.000 1.000 1.000 0.995 0.980 
  GPCM 1.000 1.000 1.000 1.000 1.000 1.000 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.4 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Normal Ability Distribution, 3PLM/2PLM/GRM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.303 0.065 0.029 0.188 0.028 0.020 

  2PLM 0.277 0.120 0.066 0.220 0.020 0.030 
  GRM 0.346 0.110 0.143 0.272 0.010 0.100 

 
 60 3PLM 0.374 0.019 0.022 0.240 0.074 0.003 
  2PLM 0.337 0.080 0.011 0.208 0.025 0.007 
  GRM 0.299 0.075 0.080 0.203 0.010 0.025 

 
2,000 30 3PLM 0.636 0.178 0.257 0.471 0.063 0.106 

  2PLM 0.899 0.240 0.523 0.506 0.080 0.189 
  GRM 0.901 0.730 0.801 0.799 0.520 0.643 

 
 60 3PLM 0.598 0.460 0.153 0.330 0.236 0.093 
  2PLM 0.858 0.245 0.295 0.505 0.060 0.185 
  GRM 0.871 0.575 0.445 0.626 0.285 0.294 

 
10,000 30 3PLM 0.996 0.965 0.980 0.990 0.890 0.932 

  2PLM 1.000 1.000 1.000 1.000 0.990 1.000 
  GRM 1.000 1.000 1.000 1.000 1.000 1.000 

 
 60 3PLM 0.998 0.991 0.969 0.960 0.974 0.938 
  2PLM 1.000 1.000 1.000 1.000 1.000 1.000 
  GRM 1.000 1.000 0.986 0.934 1.000 0.934 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.5 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Negatively-Skewed Ability Distribution, 3PLM/2PLM/GPCM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.029 0.070 0.194 0.000 0.017 0.057 

  2PLM 0.031 0.073 0.273 0.011 0.005 0.100 
  GPCM 0.038 0.100 0.980 0.010 0.040 0.870 

 
 60 3PLM 0.033 0.082 0.031 0.008 0.020 0.005 
  2PLM 0.045 0.114 0.015 0.009 0.020 0.003 
  GPCM 0.030 0.168 0.035 0.007 0.068 0.014 

 
2,000 30 3PLM 0.040 0.126 0.807 0.001 0.038 0.654 

  2PLM 0.041 0.143 0.988 0.000 0.043 0.908 
  GPCM 0.047 0.638 1.000 0.004 0.423 1.000 

 
 60 3PLM 0.035 0.093 0.284 0.003 0.030 0.137 
  2PLM 0.049 0.108 0.460 0.010 0.016 0.361 
  GPCM 0.038 0.403 0.981 0.002 0.213 0.891 

 
10,000 30 3PLM 0.046 0.584 0.995 0.005 0.393 0.986 

  2PLM 0.042 0.855 1.000 0.011 0.638 1.000 
  GPCM 0.050 1.000 1.000 0.012 1.000 1.000 

 
 60 3PLM 0.041 0.309 0.943 0.006 0.157 0.866 
  2PLM 0.053 0.619 1.000 0.010 0.365 1.000 
  GPCM 0.044 0.990 1.000 0.005 0.974 1.000 
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Table 4.6 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Negatively-Skewed Ability Distribution, 3PLM/2PLM/GRM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.043 0.071 0.201 0.008 0.011 0.101 

  2PLM 0.039 0.075 0.236 0.012 0.018 0.115 
  GRM 0.042 0.090 0.889 0.005 0.010 0.745 

 
 60 3PLM 0.030 0.074 0.042 0.007 0.018 0.012 
  2PLM 0.047 0.074 0.027 0.001 0.021 0.014 
  GRM 0.026 0.103 0.045 0.004 0.025 0.010 

 
2,000 30 3PLM 0.035 0.152 0.798 0.000 0.061 0.545 

  2PLM 0.049 0.180 0.899 0.000 0.063 0.677 
  GRM 0.047 0.420 0.936 0.010 0.180 0.821 

 
 60 3PLM 0.046 0.096 0.275 0.006 0.033 0.121 
  2PLM 0.051 0.106 0.303 0.005 0.031 0.190 
  GRM 0.048 0.331 0.875 0.002 0.123 0.744 

 
10,000 30 3PLM 0.029 0.789 0.991 0.004 0.633 0.936 

  2PLM 0.042 0.990 0.990 0.013 0.960 0.990 
  GRM 0.053 1.000 0.998 0.012 1.000 0.975 

 
 60 3PLM 0.035 0.377 0.967 0.007 0.197 0.860 
  2PLM 0.050 0.748 0.987 0.009 0.454 0.900 
  GRM 0.047 1.000 0.997 0.006 1.000 0.997 
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Table 4.7 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Negatively-Skewed Ability Distribution, 3PLM/2PLM/GPCM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.410 0.190 0.235 0.258 0.118 0.088 

  2PLM 0.367 0.050 0.200 0.230 0.000 0.080 
  GPCM 0.446 0.120 0.730 0.372 0.020 0.053 

 
 60 3PLM 0.394 0.178 0.173 0.390 0.255 0.099 
  2PLM 0.327 0.195 0.060 0.308 0.065 0.085 
  GPCM 0.289 0.100 0.055 0.203 0.050 0.030 

 
2,000 30 3PLM 0.696 0.445 0.638 0.571 0.210 0.458 

  2PLM 0.899 0.100 0.970 0.508 0.020 0.870 
  GPCM 0.903 0.700 1.000 0.801 0.530 1.000 

 
 60 3PLM 0.798 0.695 0.704 0.730 0.516 0.563 
  2PLM 0.888 0.225 0.330 0.624 0.080 0.225 
  GPCM 0.801 0.695 1.000 0.613 0.430 0.980 

 
10,000 30 3PLM 0.987 0.908 0.973 0.900 0.899 0.943 

  2PLM 0.934 0.860 1.000 0.911 0.660 1.000 
  GPCM 1.000 1.000 1.000 1.000 1.000 1.000 

 
 60 3PLM 0.998 0.999 0.964 0.960 0.999 0.945 
  2PLM 0.867 0.565 0.585 0.802 0.450 0.520 
  GPCM 1.000 1.000 1.000 0.925 1.000 1.000 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.8 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Negatively-Skewed Ability Distribution, 3PLM/2PLM/GRM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.387 0.080 0.214 0.385 0.043 0.100 

  2PLM 0.567 0.110 0.200 0.303 0.020 0.108 
  GRM 0.546 0.110 0.719 0.327 0.030 0.374 

 
 60 3PLM 0.574 0.254 0.144 0.409 0.200 0.109 
  2PLM 0.627 0.155 0.105 0.391 0.065 0.085 
  GRM 0.689 0.545 0.090 0.602 0.505 0.060 

 
2,000 30 3PLM 0.769 0.255 0.583 0.517 0.113 0.428 

  2PLM 0.899 0.150 0.896 0.680 0.030 0.863 
  GRM 0.924 0.990 0.998 0.801 0.860 0.975 

 
 60 3PLM 0.888 0.529 0.478 0.703 0.339 0.336 
  2PLM 0.765 0.220 0.560 0.602 0.140 0.257 
  GRM 0.910 0.930 0.877 0.747 0.825 0.819 

 
10,000 30 3PLM 0.991 0.998 0.995 0.847 0.995 0.920 

  2PLM 0.920 0.980 0.999 0.811 0.920 0.898 
  GRM 0.998 1.000 0.990 0.998 1.000 0.887 

 
 60 3PLM 0.998 0.999 0.987 0.940 0.995 0.865 
  2PLM 0.864 0.505 0.880 0.720 0.380 0.534 
  GRM 1.000 1.000 0.911 0.931 1.000 0.904 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.9 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Positively-Skewed Ability Distribution, 3PLM/2PLM/GPCM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.034 0.072 0.255 0.013 0.291 0.105 

  2PLM 0.042 0.086 0.360 0.015 0.248 0.158 
  GPCM 0.041 0.095 0.830 0.007 0.038 0.673 

 
 60 3PLM 0.039 0.278 0.041 0.008 0.218 0.014 
  2PLM 0.045 0.179 0.027 0.007 0.188 0.005 
  GPCM 0.048 0.369 0.211 0.001 0.210 0.090 

 
2,000 30 3PLM 0.029 0.089 0.955 0.000 0.016 0.868 

  2PLM 0.032 0.080 0.963 0.009 0.015 0.903 
  GPCM 0.028 0.480 0.990 0.011 0.298 0.990 

 
 60 3PLM 0.033 0.093 0.393 0.003 0.025 0.184 
  2PLM 0.040 0.125 0.530 0.004 0.043 0.281 
  GPCM 0.037 0.454 0.884 0.002 0.330 0.790 

 
10,000 30 3PLM 0.050 0.653 0.990 0.006 0.434 0.990 

  2PLM 0.045 0.803 0.990 0.002 0.743 0.990 
  GPCM 0.045 1.000 0.990 0.012 0.998 0.990 

 
 60 3PLM 0.051 0.632 0.988 0.010 0.445 0.973 
  2PLM 0.053 0.750 0.990 0.014 0.609 0.986 
  GPCM 0.036 0.980 0.990 0.005 0.950 0.990 
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Table 4.10 Empirical Type I Error Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Positivey-Skewed Ability Distribution, 3PLM/2PLM/GRM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.037 0.079 0.254 0.011 0.021 0.111 

  2PLM 0.042 0.081 0.348 0.009 0.040 0.160 
  GRM 0.039 0.096 0.720 0.008 0.032 0.668 

 
 60 3PLM 0.035 0.078 0.053 0.012 0.025 0.029 
  2PLM 0.042 0.074 0.042 0.004 0.021 0.007 
  GRM 0.031 0.108 0.198 0.009 0.029 0.099 

 
2,000 30 3PLM 0.039 0.155 0.897 0.002 0.078 0.756 

  2PLM 0.045 0.177 0.906 0.012 0.084 0.880 
  GRM 0.047 0.431 0.989 0.008 0.191 0.937 

 
 60 3PLM 0.048 0.106 0.476 0.011 0.037 0.281 
  2PLM 0.049 0.098 0.501 0.010 0.032 0.384 
  GRM 0.050 0.344 0.834 0.007 0.145 0.795 

 
10,000 30 3PLM 0.030 0.798 0.997 0.008 0.679 0.875 

  2PLM 0.041 0.992 0.997 0.009 0.961 0.834 
  GRM 0.054 0.998 0.991 0.015 0.906 0.821 

 
 60 3PLM 0.039 0.434 0.974 0.008 0.302 0.924 
  2PLM 0.049 0.876 0.899 0.010 0.547 0.826 
  GRM 0.048 1.000 0.990 0.007 1.000 0.900 
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Table 4.11 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Positivey-Skewed Ability Distribution, 3PLM/2PLM/GPCM Model 
Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.576 0.250 0.145 0.385 0.735 0.083 

  2PLM 0.620 0.250 0.440 0.260 0.940 0.150 
  GPCM 0.602 0.120 0.140 0.345 0.010 0.040 

 
 60 3PLM 0.488 0.255 0.191 0.390 0.603 0.096 
  2PLM 0.593 0.305 0.060 0.347 0.220 0.050 
  GPCM 0.607 0.185 0.140 0.500 0.065 0.045 

 
2,000 30 3PLM 0.766 0.273 0.620 0.508 0.253 0.463 

  2PLM 0.903 0.280 0.980 0.730 0.040 0.980 
  GPCM 0.917 0.580 0.970 0.824 0.390 0.900 

 
 60 3PLM 0.769 0.274 0.308 0.533 0.198 0.230 
  2PLM 0.821 0.335 0.610 0.706 0.040 0.330 
  GPCM 0.905 0.310 0.540 0.741 0.100 0.275 

 
10,000 30 3PLM 0.978 0.405 0.985 0.902 0.263 0.965 

  2PLM 0.946 0.800 0.990 0.918 0.650 0.990 
  GPCM 0.999 1.000 0.990 0.899 1.000 0.990 

 
 60 3PLM 0.998 0.518 0.849 0.970 0.383 0.766 
  2PLM 0.905 0.895 0.990 0.862 0.795 0.990 
  GPCM 1.000 1.000 0.990 0.956 0.985 0.990 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.12 Empirical Detection Rate for RISE, PARSCALE’s G2 and IRTFIT’s S-X2 
Statistic, Positivey-Skewed Ability Distribution, 3PLM/2PLM/GRM Model Combination 
 
Sample 

Size 
Test 

Length Model RISE 
(0.05) 

G2 

(0.05) 
S-X2 

(0.05) 
RISE 
(0.01) 

G2 

(0.01) 
S-X2 

(0.01) 
500 30 3PLM 0.478 0.087 0.219 0.365 0.057 0.108 

  2PLM 0.676 0.102 0.340 0.404 0.078 0.127 
  GRM 0.656 0.097 0.178 0.487 0.089 0.135 

 
 60 3PLM 0.669 0.205 0.119 0.490 0.199 0.106 
  2PLM 0.624 0.159 0.080 0.320 0.107 0.040 
  GRM 0.599 0.578 0.145 0.371 0.505 0.055 

 
2,000 30 3PLM 0.788 0.267 0.637 0.574 0.131 0.437 

  2PLM 0.901 0.234 0.782 0.668 0.097 0.780 
  GRM 0.925 0.879 0.896 0.812 0.765 0.700 

 
 60 3PLM 0.812 0.433 0.408 0.730 0.324 0.303 
  2PLM 0.795 0.395 0.511 0.649 0.230 0.430 
  GRM 0.901 0.901 0.593 0.751 0.825 0.457 

 
10,000 30 3PLM 0.997 0.999 0.944 0.889 0.995 0.906 

  2PLM 0.984 0.990 0.877 0.810 0.943 0.789 
  GRM 0.995 0.995 0.991 0.990 0.887 0.990 

 
 60 3PLM 0.998 0.978 0.903 0.940 0.902 0.742 
  2PLM 0.900 0.934 0.866 0.831 0.877 0.735 
  GRM 0.999 1.000 0.875 0.939 0.990 0.802 

 
X-ed out cells represent conditions in which the test statistic exhibited inflated Type I 
error rates.  
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Table 4.13 The Difference of The Difference of Score Distributions Before and After 
Replacement in Simulation Study 
 

Cuts RISE 
(0.005) 

G2 

(0.005) 
S-X2 

(0.005) 

40 0.002 0.001 0.001 
60 0.001 0.000 0.001 
80 0.001 0.001 0.000 
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Table 4.14 The Difference of The Difference of TCCs Before and After Replacement in 
Simulation Study 
 

Cuts RISE 
(0.5) 

-1.41 0.421 
-0.33 0.497 
1.11 0.499 
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Table 4.15 Misfitting Items Detected by Each Fit Statistic at Each Sample Size in 
Empirical Study 
 

Sample 
Size 

Fit 
Statistics Number Percentage Item ID 

500 RISE 1 2% 18 
 G2 5 12% 12,16,17,23,30 
 S-X2 0 0% No Items Flagged 

 
2,000 RISE 3 7% 12,18,37 

 G2 8 19% 2,5,10,14,16,37,38,40 
 S-X2 1 2% 37 

 
10,000 RISE 7 17% 12,16,18,23,30,37,40 

 G2 40 95% All Items Except 1 and 15 
 S-X2 8 19% 12,16,18,23,28,30,37,40 
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Table 4.16 The Difference of The Difference of Score Distributions Before and After 
Replacement in Empirical Study 
 

Sample Size Cuts RISE 
(0.005) 

G2 

(0.005) 
S-X2 

(0.005) 

500 25 0.003 0.002  
 40 0.002 0.002  
 55 0.003 0.004  

 
2,000 25 0.003 0.001 0.001 

 40 0.003 0.001 0.001 
 55 0.002 0.000 0.000 

 
10,000 25 0.003 0.004 0.003 

 40 0.003 0.003 0.003 
 55 0.004 0.005 0.003 

 
X-ed out cells represent conditions in which no misfitting items were detected. 
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Figure 4.1. Score Distribution Before and After Replacement of Misfitting Items 
Detected by RISE. 
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Figure 4.2. Score Distribution Before and After Replacement of Misfitting Items 
Detected by G2. 
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Figure 4.3. Score Distribution Before and After Replacement of Misfitting Items 
Detected by S-X2. 
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Figure 4.4. TCCs Before and After Replacement of Misfitting Items Detected by RISE. 
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Figure 4.5. Misfitting Items Detected by RISE at Sample Size 500.  
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Figure 4.6. Misfitting Items Detected by G2 at Sample Size 500.  
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Figure 4.7. Misfitting Items Detected by RISE at Sample Size 2,000.  
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Figure 4.8. Misfitting Items Detected by G2 at Sample Size 2,000.  
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Figure 4.9. Misfitting Items Detected by S-X2 at Sample Size 2,000.  
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Figure 4.10.Misfitting Items Detected by RISE at Sample Size 10,000.  
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Figure 4.11. Misfitting Items Detected by G2 at Sample Size 10,000.  
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Figure 4.12. Misfitting Items Detected by S-X2 at Sample Size 10,000.  
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Figure 4.13. Score Distribution Before and After Replacement of Misfitting Items 
Detected by Three Fit Statistics at Sample Size 500. 

RISE 

 

G2 

  

    S-X2 (no replacement) 

 

 

 



 75 

Figure 4.14. Score Distribution Before and After Replacement of Misfitting Items 
Detected by Three Fit Statistics at Sample Size 2,000. 
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Figure 4.15. Score Distribution Before and After Replacement of Misfitting Items 
Detected by Three Fit Statistics at Sample Size 10,000. 
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CHAPTER 5 

CONCLUSION 

Model fit is an important aspect in IRT in that misfit between an IRT model and 

data can undermine the invariance property which is key to all IRT applications such as 

IRT equating, differential item functioning and computerized adaptive testing. Given 

the importance of model fit in IRT, the lack of research investigating the influence of 

misfit as well as the methods to detect misfit, is surprising. Several of the currently 

available fit statistics (e.g., G2 and Yen’s Q1) are unappealing due to inflated Type I 

error rates and their insensitivity to the location and magnitude of the misfit. In addition, 

there has been little research on evaluation of model misfit consequences although this 

topic should be considered seriously in deciding the use of a model in particular 

situations.  

The purpose of this dissertation was to address the above-mentioned two issues in 

model data fit evaluation procedures. In the aspect of investigating goodness-of-fit 

statistics, the nonparametric approach was extended and compared to two other 

commonly used and well-accepted fit statistics through statistical properties and 

graphical displays. Non-inflated Type I error rates are important since it is vital to retain 

valid items since item development is often expensive. In addition, adequate power to 

identify misfitting items is also important since IRT applications rely on the model 

fitting the data. Graphical displays, although they suffer from some degree of subjective 

interpretation, can often provide meaningful insights into the nature of model-data 

misfit and assist in interpreting the meaningfulness of an effect from a statistical 

significance test. 

 The newly-proposed nonparametric approach, RISE, overcomes the main 

problems of traditional fit statistics such as arbitrariness of grouping and inaccuracy of 
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the null distribution assumption. Essentially, the idea of RISE is based on the weak 

assumption proposed by Douglas and Cohen (2001) that for moderate sample sizes, 

nonparametrically-derived ICC will be close to the parametric ICC. The significance 

level of RISE is determined by the established parametric bootstrapping procedure 

which forms an empirical distribution of the difference between the nonparametric ICC 

and parametric ICC. Beyond its statistical properties mentioned above, an additional 

advantage of the nonparametric approach is the convenient graphical representation of 

model misfit. This feature can provide the researcher or practitioner with visual 

guidance about the location and type of misfit. On the other hand, in the aspect of 

examining model misfit consequences, both the test score distribution and the TCC 

were used to address this issue. Basically, misfitting items detected by three fit statistics 

were replaced by fitting items to see the change of score distribution or TCC. If the 

change was not significant for classification, the conclusion was that there was no 

practical consequence for the given data and condition. 

In the dissertation, Study 1 was a simulation study to examine the statistical 

properties of RISE thoroughly and comprehensively. Ability distribution, sample size, 

test length and model were four factors considered as they may influence performance 

of fit. Among the thirty-six conditions from the four factors, RISE outperformed G2 and 

S-X2 in that it controlled Type I error rates and provided adequate power. However, G2 

exhibited different degrees of inflated Type I error rates on all conditions while less 

power than RISE. S-X2 did not control Type I error rates for the conditions involved in 

skewed ability distributions except the 500-examinee and 60-item condition, which 

may be due to the requirement of distribution assumption of S-X2 and thus the limited 

use of the software to compute S-X2. However, it did exhibit controlled Type I error 

rates for the conditions under normal ability distributions although the power was much 
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lower than RISE especially for small and medium sample sizes. In the simulation study, 

model misfit consequences on the score distribution and TCC were also examined. The 

score distribution and TCC did not change significantly before and after replacement of 

the misfitting items. This result is probably due to the small amount of misfit simulated 

at the test score level.  

In Study 2, the three fit statistics were applied to empirical data for three sample 

sizes. The number of misfitting items detected increased by sample size among all three 

fit statistics. RISE and S-X2 detected comparable number of misfitting items while G2 

detected a lot (e.g., at sample size 10,000, G2 detected 95% items as misfitting items).   

Graphical displays were implemented in this study to help judge the accuracy of 

detection. One advantage of the nonparametric approach is that the difference between 

the nonparametric and parametric ICCs provides evidence regarding the location and 

magnitude of misfit of each detected item. One phenomenon for the parametric 

approach, especially G2, was that the reasonably good items shown by the residual plots 

were still detected by the fit statistic as misfitting items. Model misfit consequence on 

score distributions with small, medium and large sample sizes and real data were also 

investigated. The conclusion was the same as the simulation study. However, the results 

demonstrated the capability of RISE in the accuracy of misfit item detection.  

Although the results in the dissertation provided strong evidence that the proposed 

RISE is a convincing fit statistic for the studied conditions, further exploration is still 

necessary to understand the nonparametric approach in depth. For instance, other 

smoothing techniques to produce the nonparametric ICC can be implemented to 

compare with kernel smoothed ICCs. This may influence the fitting ICC and thus the 

whole RISE procedure. It may also be worthwhile to examine the statistical properties 

for other models. In the current study, only four models, 2PLM, 3PLM, GRM and 
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GPCM were applied. In future research, the 1PLM/PCM combination may be of 

interest since it is also commonly used in some testing programs (e.g., state 

achievement testing and the health field). Furthermore, it may be useful to explore the 

performance between a variety of parameter estimation methods in obtaining the 

optimal item parameter values as the robustness of item parameter estimation 

techniques is desired in the nonparametric approach. Other than parameter estimation 

techniques, the number of evaluation points may also influence the parameter 

estimation procedure, so future research will include this factor. In addition, model 

misfit consequences on score distributions can be further assessed by simulating large 

amount of misfit which is expected to make a difference. Also, other aspects of misfit 

consequence on the invariance property and parameter estimates can be conducted. 

Finally, it would be worthwhile to compare RISE with newly emerging fit statistics (e.g., 

Bayesian approach) as according to the research literature, Beyesian approach has also 

exhibited good performance (Sinharay, 2005, Stone, 2000a ). 

While it is unreasonable to expect IRT models to provide perfect fit to the test 

data, the evidence is substantial that they provide an excellent framework for solving 

measurement problems. Model-data fit is a systematic and comprehensive procedure 

(see Hambleton & Han, 2005). Although it is clear from this study that the 

nonparametric approach is promising to identify misfitting items and provide the 

graphical representation of misfit, more and more problems may still be ahead and have 

not been solved. For example, as IRT has been widely accepted and applied in variety 

of fields, more and more practical problems such as how to measure and understand 

model misfit consequence are challenging. All in all, the new method is expected to 

bring a new direction for improving the utility of IRT modeling for measurement 

problem-solving in educational and psychological testing.          
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