1-1-2014

2014 Update Mtg: Potential Water and Energy Savings in Cranberry Frost Cycling

Peter Jeranyama  
*UMass Cranberry Station, peterj@umass.edu*

Faith Ndlovu  
*UMass Cranberry Station, fndlovu@psis.umass.edu*

Jesica Sack  
*University of Massachusetts - Dartmouth, jesica.sack@umass.edu*

Alex Ward  
*University of Massachusetts - Amherst*

Miles Hegedus

*See next page for additional authors*

Follow this and additional works at: [http://scholarworks.umass.edu/cranberry_extension](http://scholarworks.umass.edu/cranberry_extension)

Part of the [Agriculture Commons](http://scholarworks.umass.edu/cranberry_extension) and the [Horticulture Commons](http://scholarworks.umass.edu/cranberry_extension)

---

Jeranyama, Peter; Ndlovu, Faith; Sack, Jesica; Ward, Alex; Hegedus, Miles; Jeranyama, Bongani; and Kennedy, Casey, "2014 Update Mtg: Potential Water and Energy Savings in Cranberry Frost Cycling" (2014). *Cranberry Station Extension meetings*. Paper 175.  
[http://scholarworks.umass.edu/cranberry_extension/175](http://scholarworks.umass.edu/cranberry_extension/175)
Potential Water and Energy Savings in Cranberry Frost Cycling

Peter Jeranyama, Faith Ndlovu, Jesica Sack, Alex Ward, Miles Hegedus, Bongani Jeranyama & Casey Kennedy
Water Management in Cranberry

- Over-watering; shallow roots, loss of fruit quality, root rot diseases, etc
- Under-watering; decreased fruit size, plant death, poor plant cover
- Growers have suggested 1 inch H₂O / week
1999

High = 1.65
Low = 0.47
Average = 0.92

2000

High = 1.21
Low = 0.28
Average = 0.82

deficit or surplus
following 1"/week rule

deficit or surplus
following 1"/week rule

Date

Jun | Jul | Aug | Sep

Jun | Jul | Aug | Sep
Too wet

Adequate
Water Retention Curve in the top 6 inches

\[ y = -9.692 \ln(x) + 30.188 \]

\[ R^2 = 0.9141 \]
Observations - Lampinen

• Most MA cranberry beds appear to be too wet during much of the season

• Evaporative demand study - for many weeks in the season, cranberries require less than 2.5 cm applied as irrigation
Objectives: Spring Frost Monitoring

(i) To evaluate the effects of Automated Intermittent Cycling (AI) & Conventional (CONV) Methods in frost protection, &

(ii) Quantify water & fuel usage with each method
Automated Intermittent Cycling

- Pump starts automatically, based on temperature settings
- Pumps then cycle on and off as temperature fluctuates
Materials and Method

• About 500 cranberry buds were collected from each cultivar under AI & CONV

• Buds were dissected under a microscope and assessed for damage
Materials and Method

- flowering and fruiting were also measured throughout the season
Bog temperature changes: April 15-17 in Carver, MA
Amount of Water Used in Frost Protection

- **100 Gallons/Acre**

  - **Day of the Year (DOY)**: 108 to 140

  - **Conventional**
  - **Cycling**

Graph shows the amount of water used in frost protection over the course of the year, with two different methods: Conventional and Cycling.
Comparison of two systems

<table>
<thead>
<tr>
<th>Input</th>
<th>Conventional</th>
<th>Cycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Water Use (Gallons/Acre/night)</td>
<td>30,000</td>
<td>18,500</td>
</tr>
<tr>
<td>Average Fuel Use (Gallons/Acre/Season*)</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td>Cost of Fuel ($/Acre/Season)</td>
<td>$164</td>
<td>$80</td>
</tr>
</tbody>
</table>

*Season =24 frost nights
Bud damage on April 15

Percentage Damage (%)

Early Black
- AI
- CONV

Howes
- AI
- CONV

Stevens
- AI
- CONV
Bud damage on April 26

<table>
<thead>
<tr>
<th></th>
<th>AI</th>
<th>CONV</th>
<th>AI</th>
<th>CONV</th>
<th>AI</th>
<th>CONV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Black</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Howes</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Stevens</td>
<td>5.0</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Frost Protection Method and Cultivar Effect on Fruit Yield in 2013

- Early Black
- Howes
- Stevens
Summary

1. Cultivars were sensitive to frost protection methods especially Early Black and Stevens.
2. Frost damage was up to 12% under AI & less than 5% damage under CONV.
3. Most of the damage were on 1 or 2 floral initials.
4. Cultivars produce 4-6 floral initials so damage on 2 floral initials will like have no noticeable impact on fruit yield.
5. Water savings of up to 33% are possible with cycling.
Acknowledgments

United States Department of Agriculture
Natural Resources Conservation Service