






CHAPTER 4

REDUCTIONS

Reduction is the term used to describe an operation that takes an array of data

and returns a single value as the output. Typical operations that fall under this

category include the sum, minimum and maximum of an array, or the inner-product

of two arrays. The operation is fairly trivial on a conventional CPU:

float sum = 0.0f, max = X[0], dot = 0.0f;

for (int i=0; i<N; i++){

sum = sum + X[i];

max = X[i] > max ? X[i] : max;

dot = dot + X[i]*Y[i];

}

From the example shown above, it is clear that when a reduction operation is

performed on the CPU, a variable is required to maintain the value of the reduction,

as the program loops over the array. The value of this variable is constantly updated

for each element being accessed in the array. This represents a scatter operation. Since

this option doesn’t exist on the data-parallel paradigm of the GPU, a workaround is

required.

The approach taken on the GPU is to perform a stage-by-stage reduction of the

array. For example, the first stage draws an array that is half the size of the original

one in each dimension. By drawing a quadrilateral that is quarter the size, the

rasterizer is forced to generate only a quarter of the number of fragments. In doing

so, each fragment that is generated by the rasterizer is made to grab four fragments

from the original array in the kernel program and then perform a local-reduction

such as a sum or a max, as shown in Fig. 3.1. The results of this first stage must
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then be stored onto a temporary array that is attached to the framebuffer. Once

all the fragments have been processed, this temporary array is set as an input for a

subsequent pass that generates a quarter of the fragments produced in the first pass;

and the result of this pass is stored in a second temporary. This procedure is repeated

several times between the two temporaries, until the array is reduced to a rectangle

smaller than Rmin, which can then be handled appropriately to provide the result of

the reduction operation.

There are two important issues to be noted in the procedure described above - the

use of temporary arrays and the handling of the final array after succesive reduction

steps. The use of temporary arrays was necessary because of the read-only/write-only

nature of the arrays on the GPU. Also, prior to a reduction operation, it is necessary

to ensure that the temporary arrays are at least a quarter the size of the array that

is to be reduced; and appropriate resizing is required if they are not.

The second issue is the handling of the final reduction-step. One approach is to

pad the small rectangular array back to a square with the dimensions of Rmin, and

then proceed with more reduction steps until a single value is obtained; as shown

in Fig. 4.1. Another approach is to read the results back to the main memory and

perform the rest of the reduction on the CPU.

Figure 4.1. Reduction of rectangular arrays: Padding approach
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4.1 Algorithm

The following algorithm describes a conventional sum-reduction operation on the

graphics processor. This technique will use the vertex processors in addition to the

fragment processors, two temporary arrays, and a read-back operation to the CPU

for the final reduction. The first step is to compile the shader programs for both

the vertex and fragment processors. The shader program for the vertex processors is

given as:

// Vertex-shader program

void main()

{

vec2 Coord = gl_MultiTexCoord0.xy;

// Passes vertices straight through to the rasterizer...

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

// Modify the coordinates that are passed into the fragment processor

gl_TexCoord[0] = vec4(Coord + 0.5, Coord - 0.5);

}

The sum-reduction kernel, defined for the fragment processors, is given as:

// Fragment-shader program

uniform sampler2DRect Source;

void main(void)

{

vec4 quad;

quad.x = texture2DRect(Source, gl_TexCoord[0].xy).r; // Top right

quad.y = texture2DRect(Source, gl_TexCoord[0].zy).r; // Top left

quad.z = texture2DRect(Source, gl_TexCoord[0].xw).r; // Bottom right

quad.w = texture2DRect(Source, gl_TexCoord[0].zw).r; // Bottom left

gl_FragColor.r = dot( quad , vec4(1.0, 1.0, 1.0, 1.0) );

}

Both the shaders are compiled using the CompileKernel routine described in

Chapter 2. Once this is done, the array to be reduced is defined as an input, using

the glUniformARB GL call. The first temporary array (which must have dimensions of

atleast width/2 and height/2), is then attached to the framebuffer as an output. The
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viewport is set to the dimensions of the input array, using the setGPUview routine.

However, the call to the RunProg routine is now different from the axpy call:

RunProg(width/2, height/2, width, height)

This call now draws the vertices at half the width and height of the original

array, thereby forcing the rasterizer to generate a quarter of the number of fragments.

However, since the coordinate locations (the third and fourth arguments) are still

specified at the corners of the original array, the rasterizer must now interpolate the

indices accordingly. As a result, the generated coordinate indices vary across the

whole array as shown by the diamond symbols in Fig. 4.2.

Figure 4.2. Interpolation of indices in a sum-reduction

The shaded portion in the figure signifies the output element, representing four

elements from the original array. It is also worthwhile to note that the indices of the

output array now vary in steps of 1 in each direction, rather than 0.5; whereas the

indices of the input array are still varied in steps of 0.5. This variation of indices is
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utilized in the vertex program to generate appropriate coordinates for the fragment

program. By adding or subtracting a value of 0.5 from the output array indices in

the vertex program, the coordinates of the four input array indices are obtained.

These values are then written to the gl TexCoord[0] variable, which is passed on to

the fragment program. The fragment program uses combinations of these indices to

access the four elements of the input array to perform a local sum before writing out

the final result.

The output from this pass can now be processed in a subsequent pass that uses

the same vertex and fragment programs. A second temporary array is attached to

the framebuffer, and the first temporary is used as an input. The RunProg routine is

called again with the first two arguments as width/4 and height/4, and the second two

arguments as width/2 and height/2. Now that two temporary buffers are available,

these passes can be performed in a loop until a sufficiently small rectangle is obtained.

This technique is a fairly efficient approach to the problem; however, certain

factors must also be taken into consideration. For instance, there is always a small

fixed-cost involved with the set up. There comes a stage in the computation when

this cost is large when compared to the cost of performing a local-reduction for a

small array. In such a case, it would be a sensible idea to read the remaining data

back to the main memory and perform the rest of the reduction on the CPU, since

it is relatively more efficient on small sets of data (Data is read back to the main

memory using the glGetTexImage function). The source code for this technique is

provided in Appendix. B

4.2 A different approach

Another approach to the reduction operation is to split the array logically into

four quadrants. For each pass of the previous reduction approach, the value of each

element of the output array is the sum of values from each of the four quadrants,
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seperated by a distance of width/2 and height/2, as shown in Fig. 4.3b. This can be

done in either one of two ways - a modification to the fragment program that is used

for the sum operation, or by modifying the RunProg routine.

Figure 4.3. Reduction methods: (a) local reduction (b) quarter reduction

Considering the first approach, the fragment program can be modified as follows:

// Fragment-shader program

uniform sampler2DRect Source;

uniform float width;

uniform float height;

void main(void)

{

vec4 quad;

vec3 offset = vec3(0.0,width/2,height/2);

// 1st quadrant

quad.x = texture2DRect(Source, gl_TexCoord[0].xy).r;

// 2nd quadrant

quad.y = texture2DRect(Source, gl_TexCoord[0].zy + offset.xy).r;

// 3rd quadrant

quad.z = texture2DRect(Source, gl_TexCoord[0].xw + offset.yz).r;

// 4th quadrant

quad.w = texture2DRect(Source, gl_TexCoord[0].zw + offset.xz).r;

gl_FragColor.r = dot( quad , vec4(1.0, 1.0, 1.0, 1.0) );

}
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Now that the required offsets are computed in the fragment program, the use

of a vertex program is now unnecessary. When this fragment program is used, the

RunProg routine must now be called as follows:

RunProg(width/2, height/2, width/2, height/2)

In the previous technique, the rasterizer was forced to perform a linear interpo-

lation of the coordinates; which tends to reduce performance. This aspect will be

quite apparent when the performance results are considered. In this approach how-

ever, since the coordinates vary between zero and width/2 (or height/2) without any

interpolation, the efficiency of the operation improves.

The second approach is to eliminate the offset computation in the fragment pro-

gram altogether, in an effort to reduce the number of operations for efficiency. To

achieve this, the fragment program can be provided with four sets of indices by mod-

ifying the RunProg routine as follows:

void RunProg(float v_width, float v_height, float f_width, float f_height)

{

glBegin(GL_QUADS);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, 0.0, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE1_ARB, f_width/2, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE2_ARB, 0.0, f_height/2);

glMultiTexCoord2fARB(GL_TEXTURE3_ARB, f_width/2, f_height/2);

glVertex2f(0.0, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, f_width/2, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE1_ARB, f_width, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE2_ARB, f_width/2, f_height/2);

glMultiTexCoord2fARB(GL_TEXTURE3_ARB, f_width, f_height/2);

glVertex2f(v_width, 0.0);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, f_width/2, f_height/2);

glMultiTexCoord2fARB(GL_TEXTURE1_ARB, f_width, f_height/2);

glMultiTexCoord2fARB(GL_TEXTURE2_ARB, f_width/2, f_height);

glMultiTexCoord2fARB(GL_TEXTURE3_ARB, f_width, f_height);

glVertex2f(v_width, v_height);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, 0.0, f_height/2);

glMultiTexCoord2fARB(GL_TEXTURE1_ARB, f_width/2, f_height/2);
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glMultiTexCoord2fARB(GL_TEXTURE2_ARB, 0.0, f_height);

glMultiTexCoord2fARB(GL_TEXTURE3_ARB, f_width/2, f_height);

glVertex2f(0.0, v_height);

glEnd();

}

The glMultiTexCoord2fARB call allows multiple coordinates to be specified per

vertex; thereby generating several sets of indices which are accessed by the appropriate

gl TexCoord variable in the fragment program. The corresponding fragment program

would be:

// Fragment-shader program

uniform sampler2DRect Source;

void main(void)

{

vec4 quad;

// 1st quadrant

quad.x = texture2DRect(Source, gl_TexCoord[0].xy).r;

// 2nd quadrant

quad.y = texture2DRect(Source, gl_TexCoord[1].xy).r;

// 3rd quadrant

quad.z = texture2DRect(Source, gl_TexCoord[2].xy).r;

// 4th quadrant

quad.w = texture2DRect(Source, gl_TexCoord[3].xy).r;

gl_FragColor.r = dot( quad , vec4(1.0, 1.0, 1.0, 1.0) );

}

4.3 Results

The performance results of the sum operation vs. the CPU is shown in Fig. 4.4.

The plot shows a trend similar to the results from the axpy operation. Note the

log scale on this figure exaggerates the importance of small vector lengths which are

actually not typical in scientific computations. Scientific computations use vectors of

20k or more (about where the cross over in the performance of the sum occurs). The

figure is based on the actual vector length necessary, not padded vector length. The

41



amount of padding affects the performance and makes the GPU results noisier. When

optimally implemented, the sum operation can be performed at roughly 1.5 Gigaflops

on the GPU for array sizes typical of scientific computations. This is contrasted with

the performance obtained from a 2 GHz Athlon64 CPU. The CPU even uses the faster

(but error prone) naive summation algorithm and obtains a performance of about 0.4

GFlops (note that the front-side bus runs at 400 MHz on this machine).

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Problem Size

G
F

lo
p

s

 

 

nVidia 6600GT
Athlon64 − Single Precision

Figure 4.4. Performance of the sum operation

How the layout value of Rmin affects the performance is shown in Fig. 4.5. The

case with Rmin = 128 shows clear plateaus. With this case, no quad reductions are

performed up to 0.75(1282) ≈ 13k data items. The array is simply read back to the

CPU to be summed. After that, the 1 quad (up to 49k) and 2 quad reduction levels

(up to 197k) are easily seen. The excessive data transfer to the CPU makes Rmin =

128 inefficient for the smaller vector lengths. The optimum Rmin probably lies around

42



64. The Rmin = 32 case is actually reducing too much and not sending enough data

to the CPU, which is why its performance actually drops as it goes to the next level

of reduction.
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Figure 4.5. Performance of the sum operation for various cases of Rmin

The dot product reduction can take place in two steps, array multiplication and

then a sum reduction, or within a single program that reads 8 values and produces

an array of a quarter the size, which is then summed. The latter approach avoids an

additional array read and write of intermediate values, and since the computations

on the GPU (and CPU) are memory bound, this increases the speed by 50%. Fig. 4.6

shows the dot product performance. An optimal performance of about 1.75 Gigaflops

is obtained on the GPU for large vector lengths. The CPU obtains 0.55 GFlops for

large single precision vectors.
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Figure 4.6. Performance of the dot-product operation with different approaches

4.4 Comments

Because of the partial reducibility of the 2D layout scheme, the first stages of

reductions of this sort produce reduced array sizes that are still integer dimensions

(of very predictable size). In addition, after these reduction stages, it can also be

guaranteed that the data has been reduced to an array of size less than R2
min. For a

typical Rmin = 32, this is less than 1024 data items. For this small vector length, it

is inefficient to further reduce the data on the GPU and the data is read to the CPU

where is summed using a traditional CPU summation algorithm.

Summation using this algorithm is numerically far less prone to round-off errors.

Using a naive summation of a million single precision data items can frequently lead

to errors in the summation of the order of 1%. One hundred million single precision

items naively summed can have no precision at all. While more accurate and prob-

44



ably necessary even on a CPU, the quad reduction approach to summation is also

slightly slower than naive summation because intermediate values must be stored

and retrieved between each stage of the reduction. Since the speed of a summa-

tion is dictated on both the CPU and GPU by sequential memory access times, the

staged reduction approach takes from 25% more time for one level of reduction to

1

4
+ 1

16
+ 1

64
+ ... = 1

3
= 33%, for a large number of reductions.

In reduction operations, the padded data must be treated appropriately. For a

sum operation or dot product, the padded data is set to zero, so it has no effect. For

max and min operations the padded data is set to the first data item of the array, so

that that 0 never mistakenly is reported as the maximum or minimum value in the

array.
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CHAPTER 5

SPARSE MATRIX OPERATORS

A vector multiply by a sparse matrix is usually the essence of scientific calculations.

These operations dominate solution times in iterative solvers, since they frequently

require random memory accesses. Sparse matrices are never actually stored entirely

in memory, and several strategies exploit their sparsity to store the non-zero entries

in a row or column-compressed format to save on space. In this implementation,

the matrix-vector multiply is implicit, and the sparse matrix is cast as successive

operations on the input vector, p, thereby yielding a result vector, w. Many of these

sparse-matrices represent a discrete version of calculus operations, like a divergence

or a gradient. Others represent interpolation or integration operations.

5.1 Mesh data-structures

When solving a PDE on a domain, the geometry must first be discretized. Carte-

sian block-structured meshes do not require explicit mesh-connectivity information

and often suffice for simplified cases, but they prove to be inadequate in the case of

complicated geometric topology. Unstructured meshes involving tetrahedra, for in-

stance, capture complex geometries well and are popular choices for the vast majority

of practical simulations. This versatility comes at the cost of having to construct

mesh-connectivity information explicitly, which can consume a sizeable amount of

memory in large cases. These systems also give rise to sparse-matrices that lack a

coherent structure, thereby forfeiting the use of several specialized matrix-solvers.
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With regard to sparse-matrix operators, the mesh connectivity information is

useful in determining the data-elements in the vector that the operator is meant to

work on. For instance, a gradient operator which seeks to evaluate the flux of a

particular quantity at the faces of the elements in the mesh, must first obtain the

values of that quantity existing at the two cells that lie on either side of the face.

This information is stored in a connectivity list that maintains the indices of the two

adjacent cells for every face in the mesh. Thus, by performing a loop over all the

faces, the gradients at faces can be obtained. In some sense, this approach implicitly

represents the non-zero entries of each row in the matrix representing an operator.

A combination of such matrix operations can eventually be used to represent the

discrete form of the partial differential equation that is to be solved.

Figure 5.1. Unstructured tetrahedral mesh of a crankshaft (from NetGen). This
particular mesh consists of 37151 nodes, 178486 cells, 370319 faces and 228983 edges.

This paradigm allows a large amount of flexibility in the way the equations are con-

structed, and with the use of approporiate polymorphism, operators can be designed
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to work on several hardware platforms. The object-oriented paradigm in place there-

fore allows switching between GPU-operators, IBM Cell-operators and conventional

CPU-based operators with very minimal effort. For a GPU-based implementation

of the operator, the integer-based array indexing strategy no longer suffices, as they

need to be recomputed as texture-coordinate locations. This is simple to do, as any

index i can be converted to a two-dimensional coordinate [x,y] by the operation

[x,y] = [mod(i,width)+0.5,floor(i/width)+0.5], where width is the width of

the two-dimensional GPU array (The 0.5 is added since addressing is done at the

center of each fragment). This compute is done first on the CPU during the prepro-

cessing stage after the connectivity structures are read-in from the mesh file, and then

uploaded to texture memory, so the appropriate connectivity structures are readily

available to the relevant operator during the matrix multiplication stage.

Certain restrictions also exist in this paradigm. For certain connectivity struc-

tures like Edge-to-Face (which contains face indices for every edge in the mesh), an

additional level of indirection is required since the number of faces touching an edge

is not constant. The connectivity structures store the number of faces for each edge,

in addition to the locations of the faces themselves. Thereafter, loops would have to

be invoked within the fragment program to provide a second level of indirection in

order to obtain a final value.

As mentioned earlier, there are two broad categories of indirect memory-access

patterns - scatter and gather. A gather operation is an indirect read from memory,

of the form: x=a[i], where i denotes the array-index. A gather operation maps

naturally to a texture-fetch operation, where each fragment value can be the result of

computations involving data from several locations in the texture memory. The Gra-

dient operator is a good example of this category, which is evident from its associated

fragment program:
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// Gradient operator: Cell->Face

uniform sampler2DRect F2C;

uniform sampler2DRect Cell;

void main(void)

{

vec4 CellCoord = texture2DRect(F2C,gl_TexCoord[0].xy);

// Gradient(f) = Q(cell[2]) - Q(cell[1])

gl_FragColor.r = texture2DRect(Cell,CellCoord.ba).r

- texture2DRect(Cell,CellCoord.rg).r;

}

In the example shown above, F2C represents a face-to-cell connectivity structure

that contains two indices, cell[1] and cell[2], for every face in the mesh. Ob-

viously, boundary faces only have the cell[1] index, while cell[2] is null. On a

CPU, these indices point to different locations on a single-dimensional array. On the

graphics processor, the F2C structure is a two-dimensional vec4 array which contains

the 2D indices for cell[1] in its ‘r’ and ‘g’ components, and those for cell[2]

in its ‘b’ and ‘a’ components. The program merely fetches the appropriate values

from Cell, subtracts them and writes the result to the output array.

A scatter operation, on the other hand, is an indirect write to memory, of the

form: x[i]=a. This form of memory access is not natively supported on the GPU,

since a fragment is specifically mapped to a specific coordinate location on the screen,

as determined by the rasterizer, and deviation from this location is not possible. This

type of operation is frequently required in several circumstances, like a divergence

operation, for instance. The discrete divergence operator for a finite-volume paradigm

determines the algebraic sum of values located on faces of the polygon at the cell-

center, as dictated by the Gauss theorem. A detailed discussion of these discrete-

calculus operators is provided in [32].

A conventional approach to this operator on the CPU involves a loop that visits

all faces in the mesh, adding the face-value for each cell located on one side of the face,

49



and subtracting the same value from the cell located on the other side - essentially a

scatter. Such algorithms must be reformulated as a gather operation, as a workaround

for the hardware limitation. The reformulated algorithm would now be a loop over all

cells in the mesh, adding the values located at the faces, multiplied by the appropriate

sign determined by the outward-facing normals. This would mean that a new cell-to-

face (C2F) connectivity structure would now have to be constructed. If polyhedral

cells are to be accounted for, an supplemental indexing array would be required as

well. Put together, the resulting fragment program for the divergence operator is

given:

// Divergence operator: Face->Cell

uniform sampler2DRect C2F;

uniform sampler2DRect C2F_SIGN;

uniform sampler2DRect index_SE;

uniform sampler2DRect Face;

uniform float texWidth;

uniform float nfWidth;

void main(void)

{

float off, TINY = 1e-5, c2f_coord, sum = 0.0f, signval;

vec2 Coord, face_coord;

// Obtain the start location

vec3 index = texture2DRect(index_SE,gl_TexCoord[0].xy).rgb;

for (off = 0.0; off < 6.0; off++) {

if (off == index.r) break;

// Compute the Cell2Face coordinate location

Coord = vec2(mod(index.g+off+TINY,texWidth) + 0.5,

floor((index.g+off+TINY)/texWidth) + 0.5);

// Compute the face-coordinate

c2f_coord = texture2DRect(C2F,Coord).r;

signval = texture2DRect(C2F_SIGN,Coord).r;

face_coord = vec2(mod(c2f_coord+TINY,nfWidth) + 0.5,

floor((c2f_coord+TINY)/nfWidth) + 0.5);

// Use the coordinate to fetch the Face value, and accumulate

sum += signval*texture2DRect(Face,face_coord).r;

}

gl_FragColor.r = sum;

}
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The program, when executed for every element of the cell-array, first determines

the number of faces (index.r), starts a loop for that number, dynamically computes

the appropriate indices in C2F (face coord), and uses that to accumulate to a variable

(sum), which is then finally written out.

There are some aspects worth mentioning here. Firstly, texWidth is the width of

the C2F array, which is required for the dynamic index-computation. Another oddity

is the fact that a conditional is used to break out of the loop which runs a fixed

number of times. This is a hardware limitation, since the graphics processor was

not designed for loop constructs, and therefore the compiler must manually unroll

the loop. Since loop unrolling is a compile-time process, variable loop limits are

forbidden. The number 6.0 is chosen based on the fact that the common 3D element,

the hexahedron, has six faces for each cell (other elements like the tetrahedron have

only four). This value would have to be changed if the code is to account for polyhedra

with more facets, but that change is trivial since shaders can be modified and compiled

at run-time. And finally, a small value TINY is always included in the coordinate

computation to account for rounding artifacts, since graphics processors deviate from

the IEEE standard by rounding-to-zero rather than rounding-to-nearest.

5.2 Results

The performance results of various sparse-matrix operators are shown below. Each

data-point represents the time taken by the operator to evaluate one element (or ‘un-

known’) of the given mesh. For instance, in a gradient operator which evaluates

quantities that reside on faces in the mesh, the cost-per-unknown is defined by divid-

ing the operator-time with the number of faces. To avoid noise in the performance

timings, these ratios are averaged over several hundred iterations for consistency. For

larger problem sizes, this cost would be expected to decrease as any fixed costs be-

come amortized - a trend that is observed in general for the graphics processor with
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increasing mesh sizes, whereas the cache-based CPU tends to show the opposite be-

haviour, i.e., an increase in cost. This can be explained by the fact that there is an

increase in the likelihood of memory-fetches falling out of the cache boundaries with

larger mesh sizes.
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Figure 5.2. Performance of the gradient operator. Problem Size denotes the number
of faces in the mesh.

The GPU implementation of the gradient operator (Fig. 5.2), shows a consistent

5x improvement over the CPU for all meshes. Like all scientific operations this is

clearly bound by the memory bandwidth of the hardware and, to a smaller extent,

the matrix bandwidth.
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Figure 5.3. Performance of the divergence operator. Problem Size denotes the
number of cells in the mesh.

The divergence operator (Fig. 5.3) shows a similar trend, but the difference in

performance is less pronounced - the graphics processor outperforms the CPU by a

factor of about 2.5x for relevant problem sizes. It is worthwhile to note the deterio-

ration in performance of the divergence operator when compared to the gradient is

due to more memory accesses per result.

The curl operator (Fig. 5.4) is also similar to the divergence, and can be classified

as a scatter-type operation. This operator typically operates on a scalar value which

is located at faces (like a face-normal fluid velocity component, for instance) to obtain

a quantity at edges in the mesh (like the stream-function). It also performs similarly,
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Figure 5.4. Performance of the curl operator. Problem Size denotes the number of
edges in the mesh.

showing an improvement of about 2x for relevant problem sizes. A complement to

the curl operator is the rotation operator which operates on edge-quantities to obtain

values at faces in the mesh. Both operators are described later in the context of the

Exact Fractional Step method.

The interpolation operator (Fig. 5.5) is a lower order reconstruction technique that

is used to obtain vector quantities at the cell centroid (like a cell-centered velocity)

from scalar quantities, like a face-normal fluid velocity component. This is given by

the discrete interpolation formula as described in [27]:
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Figure 5.5. Performance of the interpolation operator. Problem Size denotes the
number of cells in the mesh.

vCG =
1

V olC

∑

±ufAf(xf − xc) (5.1)

where CG stands for the (cell or face) center of gravity and the ± is to account for the

fact that uf should point out of the cell in question. Af is defined as the face-area,

xf is the face-position vector, and xc is the cell-position vector. This also qualifies

as a scatter-type operation and involves more computational work per cell than a

divergence operator.

An integration operator (Fig. 5.6) is a complementary operator to interpolation,

yielding scalar values at faces from cell-centered vector quantities and represents
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Figure 5.6. Performance of the integration operator. Problem Size denotes the
number of faces in the mesh.

the integration along the median-dual edge connecting the two cell-centroids. The

operator is first-order accurate and is described by the following formula:

uf =
∑

±vCG · (xf − xc) (5.2)

The performance improvement is by a factor of 4x for both operators.
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5.3 Handling of Boundary Conditions

The description of any PDE system is complete only when the boundary conditions

are defined. For a discrete system, this process involves the specification of values on

boundary entities such as nodes, edges or faces in the mesh. Boundary conditions fall

into two broad categories - Dirichlet and Neumann. A Dirichlet condition is always

specified directly for the variable itself, such as a specified constant temperature on all

inlet faces in a heat-diffusion problem for instance. Neumann conditions, on the other

hand, are applied to derivatives of the variable in the system of PDEs. This condition

becomes useful in situations where the gradient of velocity (shear for Navier-Stokes),

or the gradient of temperature (heat-flux, by the Fourier Law) is specified at the

boundaries.

When boundary conditions are viewed from the perspective of implementation,

they fall under the scatter category of operators, since the process involves the spec-

ification of values at a sub-set of entities in the mesh (x[i] = bc). One possible

approach is to reformulate it as a gather - using a method that is very similar to the

other operators seen so far. This technique involves the use of a boolean ‘flag’ field

which specifies whether a given entity (such as a boundary node/edge/face) lies on

a boundary or not. If it does, then a reference must be provided to another field

which specifies the actual boundary-condition value. The actual application process

involves looping through all entities in the mesh and then referencing the ‘flag’ field

to determine the boundaries, each of which involves a conditional statement. This

tends to be slightly problematic, since it is a considerable waste of memory resources

in addition to the sheer inefficiency of the approach. All faces must be visited to

apply boundary conditions to a very small number of them.

A cost-efficient alternative is to use the point-sprite feature in OpenGL. This fea-

ture is intended for rendering small bitmaps (known as sprites) at arbitrary locations

on-screen. In this scenario, this ability is used to write to a single fragment loca-
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tion, which provides the effect of specifying values for boundary entities located at

arbitrary points in the solution field.

Although this technique is straightforward in intent, making it efficient is less triv-

ial. In a conventional OpenGL implementation, this involves a glVertex call for every

boundary entity in the mesh - achieved by placing a loop within the glBegin...glEnd

construct and using GL POINTS instead of GL QUADS as the primitive type. However,

since this is an API library call, it involves the CPU and a heavy transfer of in-

formation across the system’s front-side-bus, which can be quite ineffcient. For a

large number of boundary conditions, this could well be in the thousands. An inter-

esting work-around is to use the Vertex Buffer Object extension in OpenGL, which

places this information on a buffer in high-performance memory on-board the GPU.

Thereafter, only a single call to OpenGL is required to render all points in the buffer.

The following code-segment shows the generic approach to the implementation of

point-sprites:

// Generate a buffer ID

glGenBuffers( 1, &bufferID );

// Bind the vertex buffer

glBindBuffer( GL_ARRAY_BUFFER, bufferID );

// Store in the vertex-buffer...

glBufferData( GL_ARRAY_BUFFER, 2*NumPoints*sizeof(float),

point_coord, GL_STATIC_DRAW );

// Enable Point-sprites

glEnable( GL_POINT_SPRITE_NV );

// Don’t replace texture-coordinates for each point...

// Use vertex coordinates instead

glTexEnvi( GL_POINT_SPRITE_NV, GL_COORD_REPLACE_NV, GL_FALSE );

// Hardware-acceleration while rendering point-sprites to FBOs requires

// this parameter to be set explicitly.

// Otherwise, a software-fallback is triggered.

glPointParameterfEXT( GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT );

// Define the vertex-buffer pointer

glVertexPointer( 2, GL_FLOAT, 0, NULL );

// Enable the client-state and render points

glEnableClientState( GL_VERTEX_ARRAY );

glDrawArrays( GL_POINTS, 0, NumPoints );

// Now that we’re done with the state, disable it.

glDisableClientState( GL_VERTEX_ARRAY );
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// Release the buffer

glBindBuffer( GL_ARRAY_BUFFER, 0 );

// Disable point-sprites

glDisable( GL_POINT_SPRITE_NV );

// Delete the buffer

glDeleteBuffers( 1, &bufferID );

Note that this segment assumes the following:

• Appropriate viewport settings have been made.

• A texture is currently bound to the Framebuffer Object.

• A boundary-condition fragment program that sets the appropriate values has

been compiled, linked and attached to the fragment processor.

The segment is fairly self-explanatory, and several online resources for VBOs also

exist. A brief look at the main-content:

• After generating a buffer ID and binding it to the vertex buffer, glBufferData

transfers data from a location in main memory to the graphics card. This

data contains the two-dimensional coordinates for the locations of individual

fragments that represent boundary entities.

• The glVertexPointer call defines the stride of the data (assuming that the

data is packed tightly in groups of 2 in the array). The NULL pointer is an

indication to the driver that the data being referenced points to the start of the

buffer that is currently bound to GL ARRAY BUFFER.

• Finally, the glDrawArrays call starts rendering points by referencing data in the

buffer. During the rendering pass, the fragment program only recieves texture-

coordinates for the boundary fragments, and values can be set according to the

program.
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This approach yields a hardware-accelerated rendering path for point-sprites to a

texture attached to the Framebuffer Object. An nVidia 6600GT using this approach

consistently renders about 60 Million vertices (or points) per second. This will be

inefficient in cases where the mesh has a large surface-to-volume ratio, but these

situations are rare in practice. In real problems, the surface mesh is less than 2

percent of the interior mesh. In a parallel-processing configuration involving multiple

graphics cards, this technique is also used to update the solution on entities that lie

on CPU domain boundaries.
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CHAPTER 6

THE CONJUGATE GRADIENT ALGORITHM

The Conjugate Gradient (CG) algorithm is a popular iterative method for solving

systems of the form Ax=b, where the matrix A is symmetric and positive-definite.

Direct solvers like Gaussian elimination and LU decomposition techniques have the

advantage of reusability, since the matrix A has to be factored only once in the

solution process and is then applicable for multiple cases of b. They are also less prone

to round-off issues, as opposed to iterative techniques which gradually accumulate

errors with increasing iterations. However, direct methods usually require the entire

matrix to be stored in memory, and this becomes impossible for even moderately

sized problems.

When A is sparse, factoring of such matrices generally tends to yield triangular

factors that contain many more non-zero elements than the matrix A itself [30] and

therefore, direct methods are no longer advantageous. Iterative techniques are gener-

ally more memory- and cost-efficient in these cases. Such systems frequently arise in

the solution of discretized linear and non-linear partial differential equations. They

also form a large portion of the CPU cost of numerous incompressible flow solvers,

since the solution for pressure is basically a Poisson equation to ensure continuity.

In theory, the Conjugate Gradient algorithm is guaranteed to converge in N itera-

tions, where N is the number of unknowns in the system. However, this is never true

in practice (due to round-off error), and convergence is usually achieved at a much

faster rate. The algorithm (shown below) primarily consists of three operations that

must be highly efficient for the solution to be competitive in terms of computational
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cost - reduction operations like a vector dot-product, the axpy operation, and the

sparse-matrix multiply operation.

r0 = b−Ax0

z0 = Pr0
p0 = z0
η0 = r0 · z0
for i = 0, 1, 2, . . . do

wi = Api

δi = pi · wi

α = ηi/δi
xi+1 = xi + αpi

Exit if convergence criteria is satisfied
ri+1 = ri − αwi

zi+1 = Pri+1

ηi+1 = ri+1 · zi+1

βi+1 = ηi+1/ηi

pi+1 = zi+1 + βi+1pi

end

Algorithm 1: The Standard CG Algorithm

Having demonstrated the improvement in performance on a graphics processor

over the CPU in these three elements, it is natural to expect a similar trend when

the complete CG solver is implemented. As a practical example and a test-case for

evaluation, the heat-diffusion equation is considered:

∂ (ρcT )

∂t
= ∇ · k∇T + S (6.1)

Here, the temperature T is the fundamental unknown, S is any source term and the

material parameters are, k the conductivity, and ρc the heat capacity. In steady-state

conditions and the absence of a source, this reduces to a simple Poisson equation. In

this work, the spatial discretization of this equation is implemented using a Discrete

Calculus method, which is described briefly here. For an in-depth discussion, the

reader is encouraged to refer to [32].
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6.1 Node-based Discretization

In the node-based method of discretization, the temperature is placed at nodes in

the mesh, each with a surrounding control volume defined as a dual-mesh cell. This

is illustrated in Fig. 6.1, shown with normals for each of the dual-faces in 2D.

Figure 6.1. Dual mesh cell (formed by the bold lines and shown with dual-face
normals) represents a nodal control volume for the enclosed node.

In 3D, the dual-faces are represented by triangles with vertices at the node, face

and edge centres. Temperature is assumed to vary linearly within each cell, thereby

yielding a constant gradient and consequently, when scaled with the diffusivity of the

material, also yields a constant heat-flux in each cell. This gradient in a cell is defined

by the relation:

∇T =
1

Vc

∑

Tfnf (6.2)

A subsequent integration of the heat-flux for each cell yields the flux through the

dual-faces (represented by a tilde), given by the equation:

Q ef
=

∑

cells

−kc∇T · nf̃e (6.3)

The divergence of these fluxes then yield the temperatures at nodes. The resulting

matrix system is symmetric, positive-definite and therefore, a good candidate for a

solution using the CG solver.
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6.2 Performance Results

Tests for performance were conducted using several discretization approaches, with

meshes that gradually increase in resolution. As with the sparse-matrix operators,

performance statistics were averaged over several iterations of the CG solver, and then

subsequently divided by the number of unknowns to determine the computational cost

per unknown. As a fair comparison, 2D triangular meshes (such as the one shown in

Fig. 6.2) were used to solve the Poisson equation for temperature using the following

boundary conditions:

x = 0 T = 0

x = 1 T = 1

y = 0 ∂T
∂y

= 0

y = 1 ∂T
∂y

= 0

(6.4)

Figure 6.2. Typical mesh used for performance evaluation
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The performace comparison between processors for the node-based discretization

approach (Fig. 6.3) shows that the graphics processor outperforms the CPU by a fac-

tor of roughly 2.5x, with a lower computational cost as the mesh resolution increases.
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Figure 6.3. Performace comparison of the Conjugate Gradient solver using the
node-based discretization of the Poisson equation. Problem size denotes the number
of nodes in the mesh.

Similar tests were also performed on three-dimensional meshes with more com-

plicated geometry; such as heat-diffusion through a crankshaft mesh shown in the

previous chapter. In this particular case, Dirichlet conditions for temperature were

specified at the ends of the crankshaft, while Neumann conditions (for insulated walls)

were specified on the other boundaries. Contour plots for the temperature distribu-

tion is shown in Fig. 6.4.
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Figure 6.4. Contour plot for temperature along the Crankshaft
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CHAPTER 7

IMPLEMENTATION OF THE NAVIER STOKES

EQUATIONS ON GRAPHICS PROCESSORS

Fluid flows play an important role in several physical processes used in the indus-

try today. In general, information about the structure of the flow in a process can

be obtained from experimental measurements or from flow visualization studies, but

a full picture of the flow field is often hard to obtain using this approach. Computa-

tional Fluid Dynamics, commonly abbreviated as CFD, is a technique to model fluid

flow using computer simulations, and has proven to be a valuable tool to complement

experimental findings in flow structure studies. The flow structure is computed by

solving the mathematical equations that govern fluid dynamics. The result is a com-

plete description of the three-dimensional flow in the entire flow domain in terms of

the velocity field, pressure distribution and other related physical quantities.

7.1 Equations

The incompressible Navier-Stokes equations for fluid-flow (also assuming constant

density), are given as:

∂u

∂t
+ u · ∇u = −∇p + ∇ · (ν∇u) (7.1)

∇ · u = 0 (7.2)

Here, u is the velocity vector, p is the kinematic pressure (divided by density),

and ν is the kinematic viscosity. For incompressible flow, the divergence of velocity is

zero - a physical assumption which dictates that the pressure responds instantaneously
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with changes in the velocity. This assumption generally simplifies the equations, but

it also makes the task of solving them numerically challenging.

7.2 Discretization

The Navier-Stokes equations can be discretized into a convenient block LU de-

composition [25] of the form:







A G

D 0













Un+1

pn+1






=







rn

0






+







bc’s

bc’s






(7.3)

where G and D are the discrete gradient and divergence operators mentioned earlier,

and A is a sub-matrix whose structure depends on the form of temporal and spatial

discretization. The pressure p must always be solved implicitly when the equations

are incompressible to enforce the incompressibility constraint (which must be true at

the next time level n + 1). This is defined by the bottom row of the matrix in Eq. 7.3.

The vector rn is the explicit right-hand side of the momentum equations, and bc’s

are the boundary conditions for the momentum and pressure equations.

The discretization method in this case is using a staggered-mesh approach, where

the discrete velocity unknowns are the face normal velocity components (which are

located at the primary mesh faces) and the pressures (which are located at the cell

centroids) as shown in Fig. 7.1. This is opposed to a collocated arrangement that

involves both the velocity and pressure variables at cell-centers.

The normal velocity component Uf is defined by the equation:

Uf =

∫

f

u · ndAf (7.4)

where u is the velocity vector, n is the outward pointing face normal vector and Af

is the face area. Note that the unknown Uf includes the face area in this definition.
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Figure 7.1. Unstructured staggered mesh scheme for the incompressible Navier
Stokes equations

If the face normal velocity Uf is assumed as constant along the cell face, then the cell

center velocity vector can be reconstructed (to first-order) using the relation:

uc =
1

Vc

∑

faces

Uf (xf − xc) (7.5)

The convective fluxes at the cells are computed using the relation:

Cc =
1

Vc

∑

faces

Ufuf (7.6)

where uf is either the upwind cell-velocity or the average of the two cell-velocities on

either side of the face if a central-differencing scheme is used.

The diffusive fluxes at the cells are computed using the relation:

Dc =
1

Vc

∑

faces

[(

ν
Af

L
α

)

Guc + νqf · nf − νqf · (r1 − r2)

(

Af

L
α

)]

(7.7)

where the various terms are given as :
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Guc = uc2 − uc1 (7.8a)

qf = 0.5(∇uc1 + ∇uc2) (7.8b)

∇uc =
1

Vc

∑

faces

ufnf (7.8c)

uf = 0.5(uc1 + uc2) (7.8d)

r1 = xf − xc1 (7.8e)

r2 = xf − xc2 (7.8f)

α =
(r1 − r2) · nf

L
(7.8g)

The first term in the square brackets is the velocity-gradient tensor along the

line connecting the two cell-centers. The second and third terms make corrections to

the first term to account for its skewness with respect to the primary face - usually

applicable to triangular and tetrahedral meshes. The velocity-gradient tensor at the

face, qf is computed for this purpose. For Cartesian meshes, the correction terms

are zero. The orthogonality correction terms also make the system unsymmetric and

therefore, for use with the CG solver, these terms must be treated explicitly (at time

’n’). A typical structure for A is to treat diffusion implicitly for stability and an

explicit advection term along with a temporal term if the flow is unsteady. Both

the convection and diffusion fluxes can then be integrated to the faces to obtain an

equation-system for the face-normal velocites.

Although symmetric, the matrix system in Eq. 7.3 has both positive and negative

eigenvalues and is therefore, not easy to invert. If an iterative method is used to solve

this system then it must be converged to nearly machine precision, as any errors in the

iterative solution mean that the incompressibility constraint is not exactly satisfied.

These iteration errors show up effectively as local mass creation and destruction, and

are highly detrimental to the overall solution accuracy.
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7.3 The Classical Fractional Step Method

This system described in Eq. 7.3 can be decomposed further to yield the classical

Fractional Step method:







A 0

D −DA−1G













I A−1G

0 I













Un+1

p






=







rn

0






+







bc’s

bc’s






(7.9)

This method was first introduced independently by Chorin [4] and Temam [34] as

a practical approach to the solution of incompressible fluid-flow. The matrix form of

this approach was later described by Perot [26]. It introduces an intermediate velocity

U∗ and an appoximate inverse Ã−1 to yield the following system:







A 0

D −DÃ−1G













U∗

p






=







rn

0






+







bc’s

bc’s






(7.10)

When written out explicitly:

AU∗ = rn + bc′s (7.11a)

DU∗ = DÃ−1Gp (7.11b)

The simplest approximate inverse is:

Ã−1 =
Af

L
I, (7.12)

where I is the identity matrix, Af is the face-area, and L is the distance between cell-

centers. This approximation is exact if diffusion and convection are fully explicit. In

doing so, the pressure becomes completely decoupled from the momentum equations
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and can therefore be solved as a Poisson equation, and corrections can be made to

U∗ to obtain a divergence-free velocity field U at time n+1 using the relation:

Un+1 = U∗ − Ã−1Gp (7.13)

If all terms in A are treated explicitly, only the Poisson equation has to be solved

at each time-step to ensure incompressibility. It is at this step that all incompressible

fluid-flow solvers spend the most time, and therefore justification for the need to

perform this step efficiently.

This approach has a few major drawbacks, including the fact that it exhibits poor

temporal accuracy (first order accurate) due to the approximation of A−1. Also, due

to the existence of iteration errors, the velocity field is never truly divergence-free

at any time. This difficulty can be overcome using a variation known as the Exact

Fractional Step approach [3], which is discussed next.

7.4 The Exact Fractional Step Method

The classical Fractional Step method never yields an exact solution to Eq. 7.3 due

to the fact that the momentum and pressure equations are solved sequentially, thereby

leading to a temporal splitting error. If they were solved simultaneously, this shortfall

can be circumvented. This is achieved by the introduction of the streamfunction

vector, s, the curl of which yields the face-normal velocity. In the discrete sense, this

can be represented by:

Uf = Cs (7.14)

Since the divergence of the curl of any function yields zero. For Discrete Calculus

methods, all calculus identities still hold algebraically (so, DC=0). Therefore, the
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application of the Discrete Calculus divergence operator to the curl of the stream-

function vector automatically ensures discrete incompressibility:

DUf = DCs = 0 (7.15)

In discrete terms, the streamfunction variable, s, is defined by integrating the

streamfunction vector along the edge of a polyhedral cell (s =
∫

edge
ψ · dl). Thus, the

discrete curl operator, C, transfers values located at edges in the mesh to the primary

faces.

Another objective of the Exact Fractional Step approach is to obviate the need

for pressure in the Navier-Stokes equations. Again, the discrete divergence (which is

defined as the negative transpose of the gradient, D = -G), and an additional rotation

operator, R, is defined such that R = CT (The rotation operator transfers variables

located at primary faces in the mesh to edges). Owing to this relationship, it is

evident that 0T = (DC)T = CTDT = −RG. Thus, by applying this to Eq. 7.3 and

invoking the definition Uf = Cs:







RAC RG

D 0













sn+1

pn+1






=







Rrn

0






+







Rbc’s

bc’s






(7.16)

It is obvious that the off-diagonal terms in the matrix are zero. When written out

explicitly:

RACsn+1 = R(rn + bc′s) (7.17)

Note that in this case, the rotation operator, R, is defined as the transpose of the

curl, C. Thus, if the Conjugate Gradient algorithm is used to solve the implicit terms

in A, it can also be used to solve for RAC as well, since this system is guaranteed to

also be symmetric and positive definite.
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7.5 Performance Results

Tests for performance were conducted using both the Classical and Exact ap-

proaches, using meshes that gradually increase in resolution. As with the sparse-

matrix operators, performance statistics were averaged over several iterations of the

CG solver, and then subsequently divided by the number of unknowns to determine

the computational cost per unknown. As a fair comparison, 2D triangular meshes

(such as the one shown in Fig. 7.2) were used to solve the driven-cavity problem using

the following boundary conditions specified in Eq. 7.18:

Figure 7.2. Typical mesh used for performance evaluation

x = 0; U = 0, V = 0, ∂p

∂n
= 0 (7.18a)

x = 1; U = 0, V = 0, ∂p

∂n
= 0 (7.18b)

y = 0; U = 0, V = 0, ∂p

∂n
= 0 (7.18c)

y = 1; U = 1, V = 0, ∂p

∂n
= 0 (7.18d)

In the Classical Fractional Step method, diffusion was treated implicitly (without

the orthogonality-correction in the CG solver), while convection was explicit. This
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Figure 7.3. Classical Fractional Step - Performance comparison of the Conjugate
Gradient solver for the Momentum equation. Problem size denotes the number of
faces in the mesh.

leads to two stages per time-step - momentum and pressure. The performace com-

parison for the Classical Fractional Step approach (Momentum Solution - Fig. 7.3,

and Pressure Solution - Fig. 7.4) shows that the graphics processor outperforms the

CPU by a factor of roughly 3x, with a lower computational cost as the mesh resolu-

tion increases. The performance results of the Exact Fractional Step approach also

exhibit a similar trend, with an improvement of roughly 3x.
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Figure 7.4. Classical Fractional Step - Performance comparison of the Conjugate
Gradient solver for the Pressure equation. Problem size denotes the number of cells
in the mesh.
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CHAPTER 8

GRAPHICS PROCESSORS IN PARALLEL

CONFIGURATIONS

The primary objective behind incorporating stream-processing hardware for sci-

entific computing is to solve larger problems in a shorter time-frame. While this need

is partially fulfilled with the use of Beowulf clusters, the cache-based processors in

these systems are not very effective. An attractive approach would be the use of

graphics hardware in a cluster-like configuration, which would provide the advantage

of efficiency along with scalability as well.

Incorporating parallel-processing capabilities into the object-oriented C++ code

involves the development of parallel sparse-matrix and reduction operators using an

Message Passing Interface (MPI) implementation. The basic idea is to divide the

computational mesh into several sub-domains, and dedicate an MPI process to each

one. All sub-domains are separated by processor boundaries, and the task of passing

information across these boundaries is handled by the MPI implementation. For an

effective algorithm, the key is to balance the amount of data transfer across bound-

aries with the internal work performed by each process. Data transfer can also be

performed asynchronously, so that all processors can perform any internal work while

the communication occurs in the background. The following sections describe the

various details in the implementation.

8.1 Initialization

With every parallelized algorithm, the user typically requests for a certain number

of processors on which the program is to be run. Since all processes perform the same
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type of work on different parts of the domain, the MPI implementation must ensure

that an instance of the program exists on each process before initializing the parallel

run. Details on the installation and usage of the MPI process daemon are provided

in [10].

From the programming point of view, each process must contain the following

lines for instantiation:

// Initialize MPI

void MPI_Data::InitializeMPI(int *argc, char ***argv) {

MPI_Init(argc, argv);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Comm_size(MPI_COMM_WORLD, &np);

}

The routine ensures that the process deamon has all the requested processes in-

stantiated and ready, and stores the ID of the current process in id and total number

of processes in np

Likewise, all processes are finalized before program exit using the following routine:

// Finalize MPI

void MPI_Data::FinalizeMPI() {

MPI_Finalize();

}

Note that these routines only instantiate the various processes, and each process

is now required to initialize a context with its associated graphics hardware. This is

accomplished by the same calls to glutInit and glewInit, as described in Chapter

2.

In some cases, it is desirable to have multiple graphics cards on a motherboard.

This capability is a relatively new addition to commodity graphics processors, known

as SLi (Scalable Link Interface). This feature was introduced to allow rendering to

take place in parallel, using two or more GPUs installed on a single motherboard.

Parallel performance is not expected from the SLi capability itself (which transfers

only video data across GPUs), but rather from the fact that SLi-capable motherboards
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can handle multiple graphics cards. In a case involving two GPUs, the device drivers

assume that two monitors are attached to the system (one for each card), and that

each monitor has an associated screen resolution. Thus, to instantiate a process on

the second graphics card, all that needs to be done is to create a window on the

second screen (assuming that the screen resolution is panned across both monitors)

and allow the device drivers to redirect all rendering calls to that card. This is done

using the following glut call:

glutInitWindowPosition( x, y );

In this way, each process independently computes its own geometry and con-

nectivity information for the sub-domain and, on closer inspection of the conjugate

gradient algorithm, it is only the reduction and sparse-matrix operators that need

to be parallelized. Since reductions are the simpler to implement, they are discussed

first.

8.2 Parallel Reductions

A parallelized reduction is simple in the sense that it requires only one commu-

nication call. For example, all sub-domains compute their local dot-products (which

involves a field-multiply and summation over all elements in the sub-domain), and

then finally make an MPI call of the form:

MPI_Allreduce(&cpu_sum, &cpu_sumg, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

This MPI reduction operation merely adds the value contained in cpu sum across

all processes, stores it in cpu sumg and scatters the result back to all of them. At first

glance, the dot-product does seem to be a trivial operation, but there are subtleties

to be cautious about. For a numerical method that treats unknowns at cell-centres,

reductions on related fields (like residuals) can be performed in the manner described

above. However, entities like nodes, edges and faces are bound to lie on sub-domain
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boundaries, and a numerical method which treats unknowns at these entities must

ensure that reductions like the dot-product operation do not double-count. To do

this, a “marker” field is created for such entities. This field contains binary values

based on the ID of the current process. MPI process IDs vary between 0 and np-1.

If the process ID of the adjacent sub-domain is higher than that of the current one,

the entries for all nodes/edges/faces on that boundary are marked as zero, and one

otherwise. The modified dot-product fragment program is as follows:

// Shader source for scalar Dot-product compute

// with Marker arrays to avoid double-counting

uniform sampler2DRect Source0;

uniform sampler2DRect Source1;

uniform sampler2DRect Mult; // Marker array

void main(void)

{

vec4 quad;

quad.x = texture2DRect(Source0,gl_TexCoord[0].xy).r

*texture2DRect(Source1,gl_TexCoord[0].xy).r

*texture2DRect(Mult,gl_TexCoord[0].xy).r;

quad.y = texture2DRect(Source0,gl_TexCoord[1].xy).r

*texture2DRect(Source1,gl_TexCoord[1].xy).r

*texture2DRect(Mult,gl_TexCoord[1].xy).r;

quad.w = texture2DRect(Source0,gl_TexCoord[2].xy).r

*texture2DRect(Source1,gl_TexCoord[2].xy).r

*texture2DRect(Mult,gl_TexCoord[2].xy).r;

quad.z = texture2DRect(Source0,gl_TexCoord[3].xy).r

*texture2DRect(Source1,gl_TexCoord[3].xy).r

*texture2DRect(Mult,gl_TexCoord[3].xy).r;

gl_FragColor.r = dot(quad,vec4(1.0,1.0,1.0,1.0));

}

Thereafter, summation is performed in the regular manner and finally reduced

across all processes for the result.
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8.3 Parallel Sparse Matrix Operators

Sparse Matrix operators are complicated by the fact that certain operations re-

quire information on either side of the entity. A face-based gradient operator, for

instance, requires information from its adjacent cells. If a face lies on a sub-domain

boundary, it must rely on the MPI implementation to provide the information from

the adjacent cell in the neighbouring sub-domain. To do this, send and receive buffers

(with sizes corresponding to the number of faces on the sub-domain boundary) are

allocated in both CPU and GPU memory. Prior to any interior work, the send buffers

are first filled with cell information on the parent side of the face, and then set up for

asynchronous communication. While the communication occurs in the background,

the interior work is performed and if properly sized, this interior work takes longer to

complete than the data transfers. Once this is done, the receive buffers (containing

information from the neighbouring sub-domain) are added to complete the calcula-

tions on the interior field. A similar approach is implemented for node and edge-based

fields.

Filling the send buffers is a conventional gather operation, given below:

// Populate the Send-buffers [Cell values]

uniform sampler2DRect Coord;

uniform sampler2DRect F2C;

uniform sampler2DRect Cell;

void main(void)

{

vec2 FaceCoord, CellCoord;

// Fetch the face-location

FaceCoord = texture2DRect(Coord,gl_TexCoord[0].xy).rg;

// Fetch cell[0]

CellCoord = texture2DRect(F2C,FaceCoord).rg;

// Fetch the corresponding cell[0] value

gl_FragColor = texture2DRect(Cell,CellCoord);

}
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Setting up the MPI communication between sub-domains is also quite straight-

forward. The data is first transferred from the GPU buffer into CPU memory, and

then an asynchronous MPI call is issued. An simplified example is shown below:

// Exchange scalar data between processors

void ExchangeScalarData(int size,

int ID,

int gScalSendBuffer,

float* ScalSendBuffer,

float* ScalRecvBuffer

MPI_Request *hs,

MPI_Request *hr

)

{

int tag = 0;

// Download data to CPU memory

glBindTexture(GL_TEXTURE_RECTANGLE_ARB, gScalSendBuffer);

glGetTexImage(GL_TEXTURE_RECTANGLE_ARB,

0,

GL_RED,

GL_FLOAT,

ScalSendBuffer);

// Asynchronous send

MPI_Isend(ScalSendBuffer,

size,

MPI_FLOAT,

ID,

tag,

MPI_COMM_WORLD,

hs);

// Asynchronous receive

MPI_Irecv(ScalRecvBuffer,

size,

MPI_FLOAT,

ID,

tag,

MPI_COMM_WORLD,

hr);

}
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Here, gScalSendBuffer is a buffer that resides in GPU memory, which is then

transferred to an appropriately sized buffer ScalSendBuffer in CPU memory. hs

and hr are request handles that MPI uses at the synchronization stage. Once all

interior work is complete, data transfers are synchronized using the afore mentioned

handles and the following call:

// Wait for all data exchange to complete

void SynchronizeDataTransfer(MPI_Request *hs, MPI_Request *hr) {

// Wait for send and receive to complete

MPI_Waitall(1, hs, MPI_STATUS_IGNORE);

MPI_Waitall(1, hr, MPI_STATUS_IGNORE);

}

Having synchronized all data transfers, the tricky bit is to apply the updated

buffers to the internal field. The approach taken here is identical to the one for

physical boundary conditions (discussed in Section 5.3). Since buffer sizes tend to

be small, processor boundaries are updated on the CPU itself, and then inserted at

appropriate field locations using point-sprites.

8.4 Results

The performance result of a parallel axpy operation in Table 8.1. It is a preliminary

test to ensure that the configuration is indeed working in parallel, but simple because

the axpy operation doesn’t require any communication between processes. The test

involves a loop over 600,000 entities for 10,000 iterations, and the time taken for the

entire operation is recorded.

Table 8.1. Parallel performance of the axpy operation

No. of Processors Time (sec.)
1 6.141
2 3.016
3 2.016
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It must be mentioned, however, that the axpy tests were not performed over a

homogenous set of GPUs. The first two processors were nVidia 6600GTs, while the

third was a nVidia 6800GT. The dot-product operation also shows a similar trend,

since the dependence on inter-process communication is minimal. The test involves

a loop over 2 million entities for 1000 iterations.

Table 8.2. Parallel performance of the dot-product operation

No. of Processors Time (sec.)
1 1.129
2 0.575

Similar tests were also performed for parallel sparse-matrix operators. The bot-

tleneck in a matrix multiplication routine is owing to operators that share entities on

processor boundaries such as the face-based gradient. The divergence and interpo-

lation operators do not require any inter-process communication, since they operate

on data which is already updated across processes by operators like the gradient and

integration operators. The comparison of a face-based gradient operation on two

different meshes across two GPUs/CPUs in parallel is shown in Table 8.3.

Table 8.3. Parallel performance of the gradient operation

No. of Cells No. of Faces CPU Time/Iter/Face (s) GPU Time/Iter/Face (s)
63312 95208 1.2 × 10−8 4.4 × 10−9

276291 568608 2.16 × 10−8 6.77 × 10−9

Linear speed-up was not obtained for the gradient operator. Possible factors

include the fact that 100 M-bit ethernet interconnects were used, and smaller graph-

ics memory size (128MB) restricts the mesh size per processor, thereby leading to

a larger surface (MPI communication) to volume (internal calculation) ratio. The

same problem using conventional processors scaled similarly, but it is worthwhile to

note that a parallel GPU implementation performed 3x times faster than the CPU

implementation.
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CHAPTER 9

CONCLUSIONS

This thesis provides a unique stream-processing alternative to approaches in sci-

entific computation, with the intent of reducing processing times substantially, par-

ticularly on large-scale simulations. The framework presented in this work is versatile

and fully parallelized, and therefore applicable to a large variety of problems involving

linear algebra (like mesh-smoothing and optimization, for instance), in addition to

large-scale challenges in Computational Fluid Dynamics. Although work in the area

of Graphics Processors for general purposes is abundant, the author believes that its

application for unstructured CFD is unique.

Adapting algorithms for use with alternative stream-processing hardware is often

daunting and hard to optimize. There are several on-going efforts to simplify the

porting process, including the CUDA platform by nVidia and Close-to-the-Metal

(CTM) approach by ATI, as well as higher precision capabilities for scientific purposes.

These technologies are still nascent, but show a lot of promise. As Moore’s law of

transistor density inevitably plateaus off, it is slowly becoming apparent that alternate

hardware for scientific computation are the way to the future.
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APPENDIX A

MEMORY HANDLING ON THE GPU

A.1 Creating Arrays

Although the actual computations are done on the GPU, the task of allocating

GPU arrays and initializing them with data has to be done on the CPU, by means

of OpenGL library calls. This is exemplified by the following code:

// Dynamically allocate temporary arrays on the CPU

float* Y = (float*)malloc(N*sizeof(float));

float* X = (float*)malloc(N*sizeof(float));

float a;

Prior to the actual allocation routine, a unique reference must be created for each

array. This is done using the OpenGL glGenTextures function, which also ensures

that generated references are not currently in use. The generated reference is then

bound to an appropriate memory layout using the glBindTexture function:

// Generate a new ID for the GPU array

// [integer 1 signifies a request for only one object]

int FieldID;

glGenTextures (1, &FieldID);

// Bind the generated reference to a Rectangular layout

glBindTexture(GL_TEXTURE_RECTANGLE_ARB,FieldID);

Arrays can be represented either in a rectangular layout with arbitrary dimensions,

or in a square layout with dimensions that are strictly power-of-two. This choice can

be made by specifying either GL TEXTURE 2D or GL TEXTURE RECTANGLE ARB for the

memory layout, respectively. Certain properties are also required to be set when an

array is instantiated. For details on these statements, refer [7, 23]. But the following

settings work in general for computational purposes.
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// Turn off filtering and set proper wrap mode for the active texture...

glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,GL_TEXTURE_MIN_FILTER,GL_NEAREST);

glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,GL_TEXTURE_MAG_FILTER,GL_NEAREST);

glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,GL_TEXTURE_WRAP_S,GL_CLAMP);

glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,GL_TEXTURE_WRAP_T,GL_CLAMP);

Now that a reference has been created, actual allocation of the array in graphics

memory is done using the OpenGL glTexImage2D function. This statement explicitly

requires the dimensions of the array to be specified. This can be obtained by the

algorithm described in A.4. For the moment, assuming that the array size is given

by FieldWidth and FieldHeight:

// Allocate the memory on the GPU

glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_FLOAT_R32_NV,

FieldWidth, FieldHeight, 0, GL_RED, GL_FLOAT, data_on_cpu);

The function specified above can be considered to be the GPU equivalent of a

malloc statement in C (or a new statement in C++), which is used for dynamic

allocation.

• The first argument to the function is the memory layout of the array to be

created. Recall that the generated reference was bound to this layout in the

glBindTexture statement; so, all subsequent OpenGL calls will applied to the

array that is currently bound to GL TEXTURE RECTANGLE ARB unless it is replaced

by another glBindTexture call.

• The second argument defines a mipmap level which is irrelevant in this context.

• The third argument specifies the internal data format of the array, which is

specified by the enumerant GL FLOAT R32 NV. This enumerant is defined in the

extension wrangler, and is used to specify a one-component 32-bit data format

for each element of the array. Other options include GL FLOAT RGB32 NV and

GL FLOAT RGBA32 NV for three and four-component formats respectively.

• The fourth and fifth arguments specify the width and height of the array.
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• The sixth argument specifies whether the array contains border elements, which

is again irrelevant in a computational context, and is specified as null.

• The seventh argument specifies the number of components that will be used

in the array. In this case, since only one component is used, GL RED is speci-

fied. Other options include GL RGB and GL RGBA for three and four-component

formats respectively.

• The eighth argument specifies the format of data which resides in CPU memory.

This is always expected to be GL FLOAT for computational purposes.

• The last argument is a pointer to the array of data residing in CPU memory

which is meant to be loaded on to the GPU. Specifying a value of NULL for this

argument merely allocates the data on GPU memory, but does not initialize it

with any data.

A.2 Transferring data from main memory to GPU arrays

The glTexImage2D function serves as a means of allocating memory on the GPU

as well as loading the array with initial data, as specified in the previous section. Once

data is transferred on to the GPU memory, it can be freely modified in main memory

without affecting anything on the GPU array. Care must be taken to ensure that the

array is bound to the required shape before calling the glTexImage2D routine. For

instance:

// Bind the array reference to a Rectangular layout

glBindTexture(GL_TEXTURE_RECTANGLE_ARB,FieldID);

// Allocate the memory on the GPU and load it with initial data

glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_FLOAT_RGBA32_NV,

FieldWidth, FieldHeight, 0, GL_RGBA, GL_FLOAT, data_on_cpu);
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A.3 Transferring data from GPU arrays to main memory

The glGetTexImage function is used to retrieve data from GPU arrays into

main memory. This statement takes arguments that are similar to those used in

glTexImage2D, but with data-transfer in the opposite direction. The texture must

first be bound prior to making the call to glGetTexImage.

// Bind the array reference to a Rectangular layout

glBindTexture(GL_TEXTURE_RECTANGLE_ARB,FieldID);

// Transfer data to main memory

glGetTexImage(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RED, GL_FLOAT, ptr_on_cpu);

Since this routine doesn’t perform any memory-bounds checks, it is important

to ensure that the array on the CPU be allocated with sufficient memory to hold

the contents of the entire GPU array, to prevent memory over-stepping and painful

segmentation faults.

Another option, is the glReadPixels function. This function actually reads in-

formation from the framebuffer into main memory. However, since textures can be

attached to the Framebuffer Object, this can be used as an alterative for texture read-

back. This function requires the origin of the read-location and the dimensions of the

section as additional arguments and so, it can be used to read sections of the array

into main memory. Prior to the glReadPixels call, the texture should be attached

to the Framebuffer Object first:

// Attach texture to the framebuffer

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

FieldShape, FieldID, 0);

// Perform the readback to main memory

glReadPixels(ReadOrigin_x, ReadOrigin_y, SectionWidth, SectionHeight,

GL_RGB, GL_FLOAT, ptr_on_cpu);

Data-transfers from GPU arrays are quite expensive, as they choke the system

bus and require explicit synchronization between the CPU and the GPU; and should

therefore be used sparingly.
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A.4 Algorithm: Mapping arrays on memory to GPU arrays

inputs : Size of the CPU array, N; Minimum dimension, Rmin

outputs: Array dimensions, FieldHeight and FieldWidth; and block size,
FieldBlock

factor = 0.75
Bdim = 1
Smin = N

while Smin ≥ factor · Rmin · Rmin do

Bdim = Bdim × 2

Smin = 1 + floor((N − 1)/(Bdim · Bdim))
end

ymax = 1 + floor(
√
Smin)

ymin = 2
y = 0
x = 0

while y < ymin ‖ x > Rmin do

y = ymax

while mod(Smin, y) > 0 & y ≥ ymin do
y = y − 1

end

x = Smin/y

Smin = Smin + 1
end

FieldHeight = Bdim × y
F ieldWidth = Bdim × x
FieldBlock = Bdim × Bdim
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APPENDIX B

SOURCE CODE FOR REDUCTIONS

B.1 Sum reduction of rectangular arrays

This routine requires the reference ID of the array and the parameters generated

by the algorithm in A.4 as input. It also also assumes that the necessary vertex / frag-

ment shaders described in Chapter 4 have been compiled using the CompileKernel

routine in Chapter 2 and stored in the variable sum program; and that two temporary

arrays FieldID0 and FieldID1 have been allocated to at least half the dimensions of

the array being reduced.

float sum(int FieldID)

{

int wd = FieldWidth;

int ht = FieldHeight;

int bl = FieldBlock;

int src_handle;

// Activate the Sum program

glUseProgramObjectARB(sum_program);

// Set the dataflow interface

src_handle = getInput("Source");

// Set the viewport

setGPUview(wd,ht);

// Assign initial fields

InputID = FieldID;

OutputID = FieldID0;

// Block reduction in 2x2’s

while (bl > 1) {

// Reduce block dimension...

bl = bl/4;

// Bind the output

setOutput(OutputID);
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// Bind the input

setInput(src_handle,InputID);

// Run the GPU program

RunProg(wd/2,ht/2,wd,ht);

// Swap Input/Output arrays...

if (OutputID == FieldID0)

{

OutputID = FieldID1;

InputID = FieldID0;

} else {

OutputID = FieldID0;

InputID = FieldID1;

}

// Reduce each dimension by half...

wd = wd/2; ht = ht/2;

}

// Read-back approach

// Bind the texture to target

glBindTexture(GL_TEXTURE_RECTANGLE_ARB,OutputID);

// Download from the target

float *tmp = new float[wd*ht];

glReadPixels(0,0,wd,ht,GL_RED,GL_FLOAT,tmp);

float cpu_sum = 0.0;

for (int i = 0; i < wd*ht; i++)

cpu_sum += tmp[i];

delete [] tmp;

// Return the value

return cpu_sum;

}
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