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Figure 16. Representative double-plotted 
actograms showing the potentiation of 
light induced phase advances in hamsters 
by combined treatment with the NPY Y5 
antagonist, CP-781-214, and the 5-HT1A 
partial agonist, NAN-190. Treatment: (A) 
Vehicle injection at CT 18.25 + no light at 
CT 19 (B) treatment with vehicle, 32% 
cyclodextrin 45 minutes prior to a light 
pulse at CT 19 and (C) treatment with CP-
781-214 and NAN-190 45 minutes prior to 
a light pulse at CT 19. The black marks 
indicate revolutions of the running wheel 
of an individual hamster collected in one-
minute bins. Animals were entrained to 14 
h light: 10 h dark and then maintained in 
DD for 10 days prior to treatment. Light 
pulses are indicated by the triangle (! ). 
Note that these hamsters were older (14 
months at the time of this treatment as 
compared to young hamsters, less than 6 
months, used in Experiment 2). It is 
significant that the phase advance 
following treatment with combined CP-
781-214 and NAN-190 and light was 
without transient cycles.  
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Figure 17.  Transient cycles in hamsters treated with either (A) vehicle injection 45 minutes to light pulse and (B) CP-760, 542 
+ NAN-190 45 minutes to a light pulse. The bar on the left  represents the phase shift measured on the first day after the 
light pulse while the bar on the right  represents the steady state phase shift achieved on the fourth day after treatment.  
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Figure 18. Percent of the stable phase shift, as measured on day 4 post-treatment, achieved on day 1. 
The average percent of the final shift achieved on the first day after treatment was 42.9 % by the animals receiving vehicle + 
LP (n = 10); the average percent of the final shift achieved on the first day post treatment by the hamsters treated with CP-
760, 542 + NAN-190 + LP (n = 9) was 82.6 %. The difference between the groups was statistically significant (P < 0.05). 
Error bars indicate S.E.M. 

  ∗ 
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CHAPTER V 

DISCUSSION 

 

A. Blocking NPY and 5-HT input does not potentiate photic phase delays in mice 

 
This is the first study to investigate the effects of combined inhibition of NPY and 5-HT 

input on photic phase shifting in mice. Mice were given CP-781, 214 and NAN-190 in a 

single i.p. injection because my preliminary study determined combined injections of the 

drugs prior to a light pulse elicited statistically larger phase shifts in hamsters than light 

alone. The most significant finding from Experiment 1 was that blocking NPY and 5-HT 

input with combined injection of CP-781, 214 and NAN-190 did not potentiate photic phase 

delays in C57BL/6 mice (shown in Fig. 10). My finding suggests two possible 

interpretations. Lall (2006) reported that CP-760, 542 and NAN-190 potentiated phase shifts 

in hamsters when given during late subjective night, when light advances the clock. 

However, in my experiment mice were treated with the drug prior to light pulses during the 

early subjective night, a time when light delays the circadian clock. Does the combined 

inhibition of NPY and 5-HT input modulate photic phase shifts only during the late 

subjective night? (Experiment 2 was designed to address this question and it is discussed in 

detail in the next section.)  

Another possibility is that there are significant species differences in the 

responsiveness of the circadian system to modulation by systemically delivered NPY and 

serotonin agents. There is substantial evidence that neuropeptide Y has a primary role in 

mediating the effects of non-photic input on photic phase shifting in the mouse and hamster 

circadian systems (Biello, 1995; Biello et al., 1997; Marchant et al., 1997; Maywood, 
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Okamura and Hastings, 2002). In addition, serotonin antagonists influence the 

responsiveness of the hamster circadian system to light stimuli (Smart and Biello, 2001). 

Gannon (2003) determined that blocking 5-HT1A input elicited large magnitude phase 

advances (5-6 hours) in Syrian hamsters. However, the serotonergic modulation of light-

induced phase shifts has not been well established in mice.  Systemic injection of the 5-

HT1A/7 agonist, 8-OH-DPAT, failed to significantly attenuate light induced phase shifting in 

mice, although it inhibited photic phase advances in hamsters (Antle, Oglive, Pickard and 

Mistlberger, 2003). There are other controversies in the literature regarding the role of 

serotonin in entrainment in the mouse.  In one study, lesions of serotonergic fibers in mice 

increased phase delays to nighttime light pulse at CT 14 (Bradbury, Dement and Edgar, 

1997). However, Marchant (1997) determined that complete loss of 5-HT in mice (as a result 

of 5-HT lesions with neurotoxin 5,7-DHT) does not prevent modulations of the pacemaker 

by behavioral stimuli.  A caveat to interpreting lesion studies is that destruction of the raphe-

SCN afferent may also affect NPY input to the SCN, as the IGL is innervated by the dorsal 

raphe (Meyer-Bernstein and Morin, 1996).  

An important future experiment should determine what effects serotonin input has on the 

regulation of photic phase shifting in mice. I think this could be addressed with 

pharmacological treatment using NAN-190 alone to determine the role the 5-HT1A receptor 

has in regulating circadian phase setting in the C57/BL6 mouse.  

However, if we find that phase delays are not potentiated in hamsters then we will 

need to investigate the first interpretation that NPY and 5-HT modulate photic shifting only 

during late subjective night, in mice. We could readdress the question of phase advances in 

mice, although it is difficult to elicit consistent phase advances in the C57/BL6 species.  
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Specifically, treatment with the antagonists, CP-781, 214 and NAN-190, should be given 

prior to light pulses at CT 22.5 and CT 23; times when light elicits the largest advances phase 

in the C57/BL6. Although phase advances in mice are small and inconsistent, blocking NPY 

and 5-HT input may potentiate the advances. It would be even better to give the drug 

treatment to mice under an advancing light/dark cycle. For example, after mice are entrained 

for two weeks under a12:12 L:D cycle, the lights are advanced  each day by coming on 6 

hours earlier than on the previous day.  We could determine whether blocking both 5-HT and 

NPY input eliminates transient cycles, accelerating the rate of re-entrainment in the mouse 

under advancing light cycles (see Future Directions section). 

A third interpretation of the failure to potentiate phase shifts in the mouse may be due 

to the dose of the NPY Y5 antagonist, CP-781, 214, used in my work with mice. I used a 

dose for CP-781, 214 determined in pilot studies in our lab for Syrian hamsters (Lall, 

unpublished, 2004). Before it is concluded that combined treatment with NAN-190 and CP-

781, 214 cannot potentiate phase shifts in mice, a dose response study for CP-781, 214 

should be conducted in C57/BL6 mice to establish the effective dose. Finally, the sample size 

was small and the investigator was new to giving mice injections under dim red light. 

Potentiation of phase shifts with combined NPY Y5 antagonist and NAN-190 could be a 

valuable tool to investigate reentrainment in mice, especially given the availability of mouse 

knockout models and luciferase reporter mice. This important work should be pursued with 

larger sample sizes after dose response for the NPY Y5 antagonist for C57/BL6 mice is 

determined (specific suggestions may be found in the Future Studies section). 
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B. NPY and 5-HT regulate photic phase shifting during a temporal window in late 

subjective night 
 

One of the most significant findings of Experiment 2 was that the effects of blocking NPY 

and 5-HT input might be phase-dependent. A statistically significance difference was found 

between mean phase shifts in the drug-treated group and vehicle-treated group to a light 

pulse at CT 20 but not at CT 14.  Blocking non-photic input might potentiate phase resetting 

only during the late subjective night; or more specifically, the combined inhibition of NPY 

and 5-HT input with CP-760, 542 + NAN-190 might only be effective in potentiating phase 

shifts to light during late subjective night. In fact, treatment with CP-760, 542 + NAN-190 

attenuated the phase delay following light at CT 14, while CP-760, 542 + NAN-190 

treatment augmented the light-induced phase shift at all phases tested during late subjective 

night (see Fig. 15). While Lall and Harrington (2006) demonstrated significant potentiation 

of light-induced phase advances with combined inhibition of NPY and 5-HT input, there are 

no previous reports in the literature investigating the effects of combined inhibition of NPY 

and 5-HT on photic phase delays. Novel wheel exposure as well as either NPY activation or 

5-HT activation modulate photic phase advances during late subjective night (Lall and 

Biello, 2002). However, the results of my experiments are consistent with many studies 

reporting that light-induced phase delays are not significantly attenuated by behavioral 

activation, NPY or serotonin  (Challet, Turek, Laute and Van Reeth, 2001; Mistlberger and 

Antle, 1998; Weber and Rea, 1997). Lall and Biello (2003), on the other hand, reported that 

NPY agonists block phase advances (by about 90%) and inhibit phase delays (40%) in 

hamsters via the NPY Y1 and/or the Y5 receptors. They are the first to report that NPY and 

the NPY Y1/Y5 agonist, (Leu 31Pro    34) NPY attenuated phase delays as well phase advances 
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in vivo. Neuropeptide Y applied in vitro attenuates light and NMDA induced phase delays 

(Yannielli and Harrington, 2001a; Yannielli and Harrington, 2001b). To address the role of 

NPY in modulating photic phase delays in the hamster, hamsters should be treated with the 

NPY Y5 CP-760, 542 alone prior to light pulses at multiple phases throughout the subjective 

night. 

The finding that the circadian clock’s responsiveness to NPY and 5-HT differ during 

early and late subjective night, adds to the growing body of literature illustrating cases where 

photic entrainment is influenced by biochemical pathways that regulate sensitivity in a phase-

dependent manner. For example, light-induced phase delays but not advances are prevented 

with bicuculline, a GABA A receptor antagonist (Ralph and Menaker, 1985).  Light-induced 

phase delays were increased by the benzodiazepine triazolam, a GABAA agonist, while light-

induced phase advances were decreased by triazolam and by another GABAA agonist, 

diazepam (Joy and Turek, 1992; Subramanian and Subbaraj, 1996).  During late subjective 

night, light pulses increase cyclic guanosine monophosphate (cGMP) levels in the SCN 

whereas light pulses given in early subjective night do not affect cGMP levels (Golombek, 

Agostino, Plano and Ferreyra, 2004).  In addition, inhibitors of PKG (guanosine 3’5’ –cyclic 

nucleotide-dependent kinase) attenuated light induced phase advances during late subjective 

night, but had no effect on light induced phase delays during early subjective night (Ferreyra 

and Golombek, 2001). Light input may be mediated at different circadian time points by 

functionally separate pathways.  Moreover, nonphotic input may differentially regulate 

photic responsiveness of the circadian system throughout the night. 

Another consideration is that, the lack of potentiation of light-induced phase delays 

with pharmacologically blocking NPY Y5 and 5-HT 1A receptors may be due to the higher 
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extracellular levels of endogenous serotonin and neuropeptide Y early in the night  

(Harrington, 2005). Additionally, light in the early night can increase levels of NPY in the 

SCN of the rat (Shinohara, Tominga, Isobe and Inouye, 1993).  It is possible that treatment 

with CP-760, 542 and NAN-190 was not sufficient to block the higher levels of endogenous 

NPY and 5-HT during the early night, while capable of blocking the lower endogenous tone 

of the neuropeptides during the late night. 

The results suggest that neuropeptide Y and serotonin regulate photic phase shifting 

only during a temporal window in late subjective night. However, a caveat to interpreting the 

results from Experiment 2 is that small subject numbers were used for each treatment. The 

difference in photic phase shifts between vehicle-treated animals and drug-treated animals 

reached statistical significance at CT 20. There was a trend for increased phase shift in drug 

treated subjects at CT 16, CT 18 and CT 22, however, the differences did not reach statistical 

significance at other circadian phases during the late subjective night. It is important to 

replicate the study across subjective night with larger numbers of subjects, and especially to 

replicate findings that phase shifts were not augmented, and may have been attenuated, at CT 

14.  
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C. Blocking NPY and 5-HT input eliminated transient cycles in photic phase shifts 
 

 

Phase advances after treatment with CP-760, 542 + NAN-190 antagonists were 

without transient cycles (see actograms Fig. 14 and Fig. 16).  Transient cycles are thought to 

reflect disequilibrium between the SCN and the overt rhythm (locomotor activity in this case) 

(Johnson et al., 2003). Transients are more prevalent in phase advances and may underlie the 

fatigue, insomnia and gastrointestinal symptoms of jet lag. Jet lag is usually worse after 

traveling eastward, which requires the circadian pacemaker advance. Why were transients 

eliminated when NPY and 5-HT input was blocked prior light stimuli during the late night? 

Although the master circadian clock resets rapidly in response to light (Best, 1999), the 

oscillations synchronized by the clock are not immediately reset (Balsalobre, 2000; 

Yamazaki et al., 2000; Buijs and Kalsbeek, 2001).  The SCN uses a variety of autonomic, 

paracrine and endocrine cues to regulate behavioral and physiological processes (Meyer-

Bernstein et al., 1999; Cheng et al., 2002; Maywood, O’Neill, Wong, Reddy and Hastings, 

2006). In this study, blocking NPY and 5-HT reduces the time required to reach a steady 

state resetting of locomotor activity rhythms after a light pulse during the late subjective 

night.  I suggest that tonic levels of NPY and 5-HT may contribute to the prolonged resetting 

of locomotor activity and possibly other oscillations driven by the master clock.  Photic 

information converges with non-photic information to determine circadian phase; this 

coordination between non-photic and photic information and the signals required to integrate 

the information may slow down the message relayed to peripheral oscillators. Eliminating the 

non-photic input may mean that light information is conveyed rapidly to other brain areas 

and to peripheral tissues, and transients  (at least those observed in locomotor activity) are 
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thus eliminated.  This rapid signaling would depend upon neural communication or possibly 

a gaseous transmitter, possibly nitric oxide, and not slower acting endocrine signals.  

The SCN coordinates rhythmic timing cues for light entrainment to oscillators in 

peripheral tissues lacking photoreceptors. It is possible that blocking NPY and 5-HT input 

affects expression of clock genes and that this modulates the SCN’s coordination of 

peripheral oscillators. In addition, a number of diffusible factors have been identified as 

timing signals including vasopressin, transforming growth factor-α, prokineticin 2 and 

cardiotropin-like cytokine (Liu, Lewis, and Kay, 2007). Possibly, blocking the NPY and 

serotonin pathways leads to an interaction with one or more of these factors to attenuate 

transient cycles during phase-resetting following light during the late night. We need to better 

understand why transients occur before we can begin to answer the question, “how does 

pharmacologically blocking NPY and 5-HT input eliminate transient cycles following phase 

advances?”  

In my study, blocking NPY and 5-HT input eliminated transient cycles in locomotor 

activity following photic phase advances. Whether transients in other shifted rhythms 

(endocrine rhythms, metabolism, cell cycle for example) are eliminated or reduced warrants 

further investigation (see Future Studies). The elimination of transients is important for the 

clinical applications of this research as it might reduce the symptoms of jet lag, enhance rest-

activity rhythms in the elderly and possibly attenuate the negative impact the ‘24-7 lifestyle’ 

has on human health  (Filipski et al., 2004).    
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D. Experiment 2 failed to replicate large phase advances previously measured with 
CP-760, 542 + NAN-190 treatment 

 
 

My study did not replicate the large light-induced phase advances that were elicited in 

response to CP-760, 542 + NAN-190 treatment at CT 19 by Lall (2006). Lall reported a mean 

photic phase shift of 7.1 h after CP-760, 542 + NAN-190 treatment at CT 19; the largest 

mean shift in my study was 3.05 h at CT 18. There are several differences in protocol that 

may have affected the size of the phase shifts.  I did not measure phase shifts following light 

at CT 19, the time for maximal photic phase advances, according to the hamster photic phase 

response curve. In addition, I combined CP-760, 542 and NAN-190 in a single 

intraperitoneal injection, while Lall gave separate injections  (CP-760, 542 dissolved in 

DMSO delivered in a subcutaneous injection and NAN-190 dissolved in cyclodextrin in an 

intraperiotoneal injection).  My preliminary study found that phase shifts with CP-781.214  + 

NAN-190 in a single i.p. injection significantly potentiated phase shifts compared to light 

alone at CT 19, (see Fig. 9) however I did not use CP-781, 214 for Experiment 2. The 

Harrington Lab has extensive preliminary data using the NPY Y5 antagonist, CP-760, 542 

(Pfizer), and we chose to use CP-760, 542 for these studies in order to supplement the 

preliminary findings and because CP-760, 542 was more readily available from Pfizer at the 

time of this study. The Pfizer drug I used, CP-760, 542, is difficult to dissolve; maintaining a 

good solution with CP-760, 542 may have been confounded by the use of cyclodextrin as a 

vehicle and the addition of NAN-190 to the mixture.  This may have resulted in decreased 

drug delivery. 

I also want to consider the role that stress has in the outcome of these experiments. Is 

it possible that administration of two separate injections increased the stress response of the 
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hamsters in Lall’s study?  There is evidence that both neuropeptide Y and serotonin 

antagonize the behavioral consequences of stress through their actions within the brain. 

Activation of 5-HT1a receptors (with the agonists 8-OH-DPAT or WAY-100635) 

counteracted the behavioral effects of stress (Roja et al., 2004).  Neuropeptide Y1 and Y5 

agonists can mediate the anti-stress actions of NPY (Hellig, 2004).  In addition, a recent 

study suggests that NPY functions as an integrator between different stress signals such as 

immobilization, cold and pain, and a neuroendocrine response (Dimitrov, DeJoseph, 

Brownfield and Urban, 2007).  Is it possible that light at night is also a stressor? Might 

blocking NPY and 5-HT input allow an increased response to the stressor of the light pulse 

and thus potentiate the phase shift? In this case, anything that occurred during the 

experimental procedure to increase the animal’s stress level might also increase the photic 

phase shift. Although, not fully studied, light stimuli during the night may be associated with 

emotionality (Valentinuzzi et al., 2000).  Although only conjecture, I think it would be 

worthwhile to determine if additional stressors (i.e. pain, noise, cold, handling) increase the 

response to nighttime light pulses when NPY and 5-HT input are blocked. If this is the case, 

can we conclude that blocking NPY and 5-HT input may increase anxiety levels elicited by 

nighttime light?  This question might be addressed by measuring anxious behavior levels in 

an elevated-plus maze in drug and control animals exposed to nighttime light.  

Differences in the age of the hamsters at time of treatment, prior light treatment and 

individual variation in responses to light may also have influenced the magnitude of the 

phase shifts. One other issue is that Pfizer has discontinued production of the NPY Y5 

antagonists, so that the drugs used in Experiment 2 were older than those used in the previous 
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study. Although Pfizer will no longer produce CP-760, 542 and CP-781, 214, new potent and 

selective NPY Y5 antagonists are available for future studies (including  

S 255853/4 and US Patent 6989379; for reference see Della-Zuana et al., 2004 and Patent 

Storm, 2006). 
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CHAPTER VI 

FUTURE DIRECTIONS 

 

A. Will blocking NPY and 5-HT input eliminate transients of per 2 rhythms in the SCN 
and peripheral organs following phase advances? 

 

It is noteworthy that treatment with CP-760, 542 + NAN-190 potentiated phase advances without 

the usual transient cycles. Transients may contribute to the malaise experienced during jet lag and 

shift work and are usually more pronounced for phase advances (Merrow et al., 2005). Although, it 

is difficult to study phase advances in mice due to their small and inconsistent shifts to light in late 

subjective night, a future study could determine whether treatment with CP-760, 542 + NAN-190 

can be used to reaccelerate entrainment following advancing potentiate light-induced phase 

advances in mice.  Under advancing light-cycles, the light comes on regular number of hours 

earlier each day while maintaining a 12:12 LD for mice. This could allow us to use the PER2:: 

LUC knockin mouse to measure bioluminescence rhythms of PER2 in the SCN and peripheral 

organs using the LumiCycle. Are these rhythms of PER::2 luminescence without transients? On 

the other hand, if we find that the pharmacological treatment does not affect mice, we could use in 

situ hybridization to measure levels of per expression in the SCN and quantitative RT-PCR to 

measure per levels in peripheral organs of hamsters to determine whether there are transient cycles 

in per expression following phase shifts elicited by light in combination with this pharmacological 

treatment. It is important to gain understanding of the factors regulating transient cycles in 

peripheral organs for in order to develop therapeutic agents to treat the misalignment of peripheral 

oscillations experienced in transient cycles. 
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B. Will blocking NPY and 5-HT input eliminate transients in physiological rhythms 

following phase advances? 
 
 
In addition to measuring levels of per gene expression in peripheral oscillators it will be important 

to measure changes in physiological rhythms regulated by the circadian system following abrupt 

light changes in animals receiving both NPY Y5 antagonist and NAN-190. Body temperature and 

heart rate could be monitored in hamsters following light pulses during the late subjective night 

and under advancing light cycles which model jet lag conditions. Levels of plasma corticosterone 

secreted by the adrenal cortex are under circadian regulation, and could be measured in animals 

using this drug + light protocol.  

Future studies should also include female hamsters (and mice) to investigate whether 

blocking NPY and 5-HT can affect circadian rhythms of behavior and physiology in female 

subjects as well as males. In women, increased breast cancer risk and menstrual irregularities have 

been associated with working the night shift and as flight attendants (Stevens, 2005; Nagata et al., 

2008). The SCN has a central role in regulating timing of the luteinizing hormone (LH) surge, 

which may regulate circadian rhythmicity in the ovaries (Karman and Tischkau, 2006). Rhythms 

of hormone secretion and reproductive behavior could be studied in female subjects receiving the 

drug treatment under conditions simulating altered light cycles. The role that inhibition of NPY 

and serotonin input may have in regulating phase resetting to light and alleviating transient cycles, 

which may lead to circadian desynchrony in females, is an important area for investigation. 
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C. Will combined inhibition of NPY and 5-HT input modulate light-induced phase shifts 
in the tau mutant hamster? Is CK Iε  involved in the regulation of photic shifting by 
nonphotic input? 

 

I think the tau mutant hamsters discovered by Ralph and Menaker (1988) would be a useful tool 

for future research investigating the effects of inhibition of NPY and 5-HT input on photic phase 

shifts. The tau mutation is a semi-dominant autosomal allele that shortens the circadian period 

length to 20 hours in the homozygous mutant animals and 22 hours in the heterozygous mutant 

(wild type hamsters have a period of approximately 24 hours). A missense mutation within the 

substrate region of casein kinase Iε is responsible for the tau mutation (Gietzen and Virshup, 

1999). Recently the hamster tau mutation has been identified as a gain of function in vivo, 

increasing phosphorylation-dependent degradation of PER proteins and thus speeding up the 

circadian clock (Gallego, Eide, Woolf, Virshup and Forger, 2006). Hamsters with the tau mutation 

have an altered response to light exposure during the subjective night. The tau hamster responds to 

a 1 h light pulse at CT 15 with a large phase advance of approximately 11 hours, compared to the 

one hour advances measured for wild type hamsters (Scarbrough and Turek, 1996; Grosse, Loudon 

and Hastings, 2000). While the magnitude of the advance shift differed significantly between the 

two phenotypes, light induced phase delays were equivalent (approximately one hour). The tau 

mutation also alters response to nonphotic stimuli and to NPY (Mrosovsky, Salmon, Menaker and 

Ralph, 1992; Biello and Mrosovsky, 1996). The amplitude of the response of the PRC to nonphotic 

stimuli and NPY is greater in the homozygous tau mutants. I suggest treating the tau mutant 

hamsters with CP-760, 542 + NAN-190 to determine if phase shifts are regulated by these 

antagonists. If tau hamsters have an altered response to the antagonists than wildtype hamsters, 

than it is possible that CK Iε is involved in the regulation of photic shifting by nonphotic input. 

The effects of a novel CKIε inhibitor, PF-670462, (Pfizer, CT) on the inhibition of nonphotic input 
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on photic phase shifting might also be evaluated in wildtype hamsters and mice (for reference see 

Badura et al., 2007).   The tau mutant hamsters and the ability to inhibit CKIε with PF-670462 are 

useful tools for further study of the interaction between nonphotic and photic input in the circadian 

system. 

Why are tau hamsters more responsive to light during late subjective night than wild type 

hamsters?  Scarborough and Turek (1996) found that levels of vasopressin (AVP) and vasoactive 

intestinal peptide (VIP) in the SCN were significantly lower in the tau mutant hamsters than wild 

type following prolonged time in DD. They suggest that the differences in peptide levels may be 

responsible for the qualitative differences in phase shifts.  Measuring VIP and AVP levels with in 

situ hybridization in brains collected from hamsters treated with CP-781, 214 (or CP-740, 542) + 

NAN-190 could determine if the treatment increased levels of these peptides in the SCN. 

 Animals with the altered tau gene have reduced longevity, accompanied by severe 

cardiovascular and renal disease. A recent study (Martino et al., 2008) demonstrated that circadian 

disorganization caused by the tau mutation, and not the mutation itself, is responsible for 

cardiomyopathy and renal disease. Significantly, when tau hamsters were maintained in a 12:10 

LD, allowing them to entrain to an appropriate light cycle, abnormal cardiac and renal measures 

were not observed. 
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D. Does blocking NPY and 5-HT during the late subjective night potentiate phase 
shifting via enhanced activation of the PKG pathway?  

 
 

This pharmaceutical protocol could also be used to investigate the signal transduction 

pathways for photic phase shifting. Signal transduction pathways differ for photic phase 

advances and phase delays (Golombek et al., 2000). Light stimulation during the night 

induces clock resetting through an excitatory signal transduction pathway mediated by 

glutamate (Glu), NMDA receptor activation, stimulation of nitric oxide synthase (NOS), and 

intercellular movement of nitric oxide (NO) (for review see Ding et al., 1997).  However, 

light stimulation activates the guanylyl cyclase-cGMP-cGMP-dependent kinase (PKG) 

pathway only during late subjective night. Light induced phase advances, but not delays, are 

blocked by pharmacological inhibition of cGMP-dependent protein kinase (Weber, Gannon 

and Rea, 1995; Ferreyra and Golombek, 2001).  In vitro, cGMP analogs and activation of 

PKG induce phase shifts only during the late subjective night. Is it possible that a blockade of  

NPY and 5-HT input converges on the PKG pathway to potentiate the phase advancing 

effects of light on the SCN?  To determine whether NPY and 5-HT inhibition activates the 

PKG pathway, PKG activity could be measured in hamsters treated with CP-760542 + NAN-

190 with light and compared to PKG activity in hamsters treated with light alone with an in 

vitro phosphorylation assay using a PKG specific substrate (Peninsula Labs, Belmont, CA). 

In addition cGMP levels could be compared using an enzyme immunoassay kit (Correlate-

EIA, Assay Designs, Ann Arbor, Michigan). Significantly, a recent study determined that 

administration of sildenafil, which inhibits c-GMP-specific phosphodiesterase V (an enzyme 

which degrades cGMP), allowing increased accumulation of cGMP, increases phase 

advances at CT 18 by 50% and accelerates reentrainment to advancing light cycles 



 62 

(Agostino, Plano and Golombek, 2007). I think it is important to evaluate the possible role 

that activation of cGMP and PKG has in mediating the effects NPY and 5-HT on photic 

phase shifts during late subjective night. Identifying biochemical events associated with the 

potentiation of phase advances by these drugs may increase our basic understanding of the 

circadian clock. 
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CHAPTER VII 

CONCLUSION 

 

The potentiation of phase shifts may have important clinical value. Individuals with seasonal 

affective disorder, familial sleep disorders or Alzheimer’s disease might benefit from treatment to 

phase shift a delayed circadian system. In addition, blocking non-photic input might allow the 

circadian system to adjust more quickly to shift work and travel across time zones. Any therapeutic 

value will depend upon minimizing the side effects of this treatment.  This study also underscores 

the necessity to consider time of day for treatment with prescription drugs. In particular, the role of 

5-HT in blocking phase advances and possibly impairing entrainment should be considered when 

prescribing serotonergic agents. Significantly, blocking NPY and 5-HT input eliminated the 

normal time lag required for a steady state phase shift to be reached after a light pulse during the 

late subjective night.  The transient cycles before a stable phase relationship is reached between the 

circadian clock and peripheral oscillator may also contribute to human circadian dysynchrony. 

Some of the health risks associated with circadian dysynchrony may be alleviated by 

pharmacological treatments that target both NPY and serotonin levels. 

In addition, the potentiation of phase shifts, which are elicited with the combined NPY Y5 

antagonist and 5-HT1A partial agonist, provides an excellent opportunity to study differences 

between phase advances and delays, elucidate the interaction between photic and non-photic input 

to the circadian system, and to increase basic understanding of the circadian system. 
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