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Figure 1.C.2. An example of a parentage assignment accuracy summary file. 
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CHAPTER II 

 

GENETICALLY RECONSTRUCTED PEDIGREES: THE COSTS AND BENEFITS 

OF USING FULL-SIBLING STRUCTURE TO CONSTRAIN PARENTAGE 

ASSIGNMENTS 

 

Abstract 

 

We present a simple yet effective method to improve accuracy of parentage 

assignments by an average of 47% compared to assignments made using the parentage 

assignment (PA) programs PEDAPP (39%), PASOS (53%), and CERVUS (50%) as 

measured over a wide range of simulated scenarios. The method, termed sibship 

constraint (SC), uses the results of sibship reconstruction (SR) performed on a cohort to 

constrain assignments from PA output. It works by assigning the PA candidates allocated 

to the greatest proportion of offspring within a reconstructed full-sibling family to all 

members of that family. A user-specified minimum threshold value determines which 

candidate(s) to keep based on assignment proportions. Comparisons were made between 

output produced by the SC method and PA programs for four measures of accuracy 

evaluated for the following eight variables: minimum threshold value, SR program used, 

mating strategy, mean family size, proportion of true parents sampled, number of loci 

used, genotyping error rate, and cohort assignment error rate. The cost of using the SC 

method was a decrease in assignments made to offspring whose true parents were 

sampled by 9% compared to PEDAPP and PASOS, and 21% compared to CERVUS 
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outputs. However, this cost was more than offset by the benefit of a decreased number of 

assignments made to offspring whose true parents were not sampled by 80% (PEDAPP), 

82% (PASOS), and 84% (CERVUS), which resulted in marked improvement to assigned 

accuracies. The SC method is highly flexible in that it can use outputs from six SR and 

twelve PA programs, with all SR-PA pairings possible. Additionally, the method is fully 

automated within the freely-available software program PEDAGREE. 

 

Introduction 

 

 Knowledge of a population‟s pedigree enables investigation and insight into 

numerous evolutionary, ecological, and behavioral processes that would otherwise be 

unattainable (Kruuk & Hill 2008; Wilson & Ferguson 2002). Examples of such processes 

include dispersal (Saenz-Agudelo et al. 2009; Szulkin & Sheldon 2008), mating strategy 

(Theriault et al. 2007), reproductive success (Jones et al. 2007; Taggart et al. 2001), 

sexual selection (Grant & Grant 2008), natural selection (Garant et al. 2004), trait 

heritability (Kruuk et al. 2002), and speciation (Svedin et al. 2008). 

Even though the potential utility of pedigrees has been known to geneticists for 

over a century, application of pedigrees to studies involving naturally reproducing 

populations has been limited (Pemberton 2008). A partial explanation for this is that 

many species display reproductive and parental behaviors that make it extremely difficult 

or even impossible to determine parentage from social interactions alone. Thus, creation 

of pedigrees for these populations has depended on the discovery of appropriate genetic 

markers coupled with the development of relationship reconstruction algorithms (Blouin 
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2003; Jones & Ardren 2003). Over the last decade, development of more widely 

applicable reconstruction algorithms coupled with greater availability of informative 

markers and decreased cost of molecular techniques has resulted in a surge of studies 

using genetically reconstructed, multi-generational pedigrees to address critical eco-

evolutionary questions using wild populations (Pemberton 2008). 

Overall accuracy of reconstructed pedigrees is key for correct interpretation of 

downstream analyses that depend on pedigrees (Morrissey et al. 2007). Although not 

extensively investigated, initial studies on effects of pedigree errors have reported 

downward bias in measures for both trait heritabilities (Charmantier & Reale 2005) and 

inbreeding depression (Pemberton 2008). Additionally, erroneous links could lead to 

incorrect inferences regarding dispersal, mating strategy, reproductive success, and 

sexual selection. 

In genetically reconstructed pedigrees, incorrect links arise from an inability of 

the parentage assignment (PA) algorithm to adequately resolve relationships. This occurs 

primarily when the set of genetic markers has reduced exclusion probability (Gerber et al. 

2000), but can also be affected by genotyping errors and mutations (O'Reilly et al. 1998), 

and by incomplete sampling of parental candidates (Wilson & Ferguson 2002). 

Additionally, most PA algorithms evaluate potential parents for one offspring at a time 

(Wang 2007). This increases the probability of assignment error, especially when dataset 

quality is reduced, because a single offspring provides information for only half of the 

alleles in the parental genotype, thus not making full use of the genetic information. 

In contrast, most sibship reconstruction (SR) algorithms assess the likelihood of 

offspring partitions for the sample as a whole (Smith et al. 2001; Wang 2004). Sieberts et 
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al (2002) and Wang (2007) both demonstrated that the power to infer relationships 

increases dramatically with simultaneous analysis of multiple individuals. For example, 

sibship exclusion only becomes possible with analysis of at least three individuals since it 

is possible for two full-siblings to not share any alleles for a set of codominant markers. 

Thus, larger full-sibling partitions possess greater exclusionary power, and are therefore 

more reliable than smaller full-sibling partitions (Wang 2007). 

 Given this, we propose a method that utilizes otherwise ignored family structure 

within a sample to improve assignments made by pair-wise PA algorithms. The method 

uses the results of SR to evaluate the agreement of parentage assignments. For a full-

sibling family, the proportion of assignments made for each parental candidate out of all 

potential assignments is quantified. For example, a full-sibling family of size ten would 

have a total of twenty parental assignments. If parental candidate A was assigned to eight 

offspring and parental candidate B was assigned to five offspring, then A would have an 

assignment proportion of 0.4 (8/20) (where 0.5 is the maximum proportion possible) and 

B would have a proportion of 0.25 (5/20). The method then uses a user-specified 

minimum threshold value to determine whether to discard the top parental candidates, or 

assign them to all offspring within the family. In the previous example, a specified 

minimum threshold value of 0.2501 would assign candidate A to all offspring and discard 

candidate B. This process is then repeated for all full-sibling families of size greater than 

or equal to a user-specified value. 

 We evaluated the performance and robustness of the method, henceforth referred 

to as sibship constraint (SC), using simulated datasets. A total of eight variables were 

investigated, and results produced by the SC method were compared to those produced 
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by the PA programs alone to assess accuracy and assignment rates. The results illustrate 

the limitations of the method, and identify the costs and benefits of SC compared to 

traditional PA programs. 

 

Materials and Methods 

 

Simulations 

 

Data were simulated using the program PEDAGOG v1.2 (Coombs et al. 2010a) 

because of its ability to track individual pedigree and genotype information, allow for 

manipulation of genetic, demographic, and error parameters, and automatically format 

the simulation output into input files for pedigree reconstruction programs. The baseline 

population was parameterized to have five age classes and a constant cohort size of 500 

animals with a 0.5 probability of being female. Founding cohorts for the population were 

drawn from a population pool of 10,000 animals whose genotypes were assigned 

randomly from allele frequencies for the set of eight primary loci (Table 2.1). Allele 

frequencies for loci 1-7 (King 2003) and locus 8 (King et al. 2005) were derived from a 

brook trout (Salvelinus fontinalis) population located in the Fridley Gap watershed in 

West Virginia (M. Hudy, unpublished data). The allele frequencies for the loci are shown 

in Appendix A. 

  Subsequent cohorts reproduced using a polygamous mating system where all 

animals age one or older matured annually, mate number was drawn from a Poisson 

distribution with mean and standard deviation of two, and males and females within three 
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generations of each other were allowed to mate. Fecundity was drawn from a gamma 

distribution with shape and scale parameters both equal to three. For females mating with 

multiple males, the proportion of offspring sired was size-dominant with the largest 

male‟s proportion drawn from a normal distribution with mean of 0.8 and standard 

deviation of 0.05. Non-dominant males were assigned a randomly generated proportion 

of the remaining offspring. Annual survival probabilities for age classes zero through 

four were 0.41, 0.66, 0.81, 0.90, and 0.95, and were the same regardless of sex or 

maturity status. The population was sampled after ten generations with capture 

probabilities of 0.9 for age class zero animals, and 0.95 for the remaining age classes. Sex 

of captured individuals was unknown. All simulations were replicated ten times. 

 A total of six variables were altered from the baseline population model to 

evaluate their effects on accuracy of the SC method. The six variables were grouped into 

categories of intrinsic population characteristics, power to perform pedigree 

reconstruction, and error effects. Variables associated with intrinsic population 

characteristics were mating strategy and female fecundity. Mating strategy simulations 

were run for both monogamous and polyandrous scenarios in addition to the polygamous 

baseline scenario. Monogamy restricted both males and females to only one mate per 

reproductive season, but did not constrain individual pairs to mate for life. Polyandry set 

male mate number to one per mating season while the number of female mates was 

drawn from a Poisson distribution with mean and standard deviation of two. Female 

fecundity was adjusted to result in one scenario of lower than baseline fecundity, and two 

scenarios of higher than baseline fecundity. Fecundities for these scenarios were drawn 
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from gamma distributions with shape parameters of 1.75 (lower), 4.5 (higher), and 6.0 

(highest), and scale parameters all equal to three.  

 The variables associated with pedigree reconstruction power were the proportion 

of true parents sampled and the number of loci used for reconstruction analyses. The 

baseline scenario resulted in a sampling of approximately 60% of true parents. To 

produce true parent capture levels of 20%, 40%, 80%, and 98%, either capture 

probability was adjusted, a sampling event was added during the ninth generation, or a 

combination of both were used. To evaluate the effect of altering the number of loci, a set 

of eight supplemental loci were added to the set of eight primary loci (Table 2.1). The 

supplemental loci were randomly generated in PEDAGOG with allele number and allele 

frequency restrictions forcing them to be similar to those of the primary locus-set (mean 

expected heterozygosities equal to 0.79 (primary), and 0.81 (supplemental)). Simulations 

were run using all sixteen loci, and the program CREATE v1.2 (Coombs et al. 2008) was 

used to make additional SR and PA input files for the first four, eight, and twelve loci 

from Table 2.1. 

 Variables evaluating the effect of error on the accuracy of the SC method 

involved increasing genotyping error and cohort misclassification rates from their 

baseline values of zero. Simulations were conducted using 0.01, 0.03, and 0.05 locus-

specific genotyping error probabilities, and 0.05, 0.10, and 0.15 cohort misclassification 

probabilities. Genotyping error events consisted of miscalling the true allele as either an 

adjacent allele, or a random allele, both at a probability of 0.5. A cohort misclassification 

event assigned the animal to an older cohort if the animal‟s length was greater than or 

equal to the mean of the population, or a younger cohort otherwise. 
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Pedigree Reconstruction 

 

Both SR and PA were performed for each replicate of all simulated scenarios. SR 

was conducted using the software programs COLONY v1.2 (Wang 2004), KINGROUP 

v2_090306 (Konovalov et al. 2004), and PEDIGREE v2.0 (Smith et al. 2001). The 

following program settings were used as they consistently led to the highest accuracies. 

For COLONY, the genotyping error rate was set to 0.005 when the simulated error 

probability was zero, or to the simulated probability if greater than zero. For 

KINGROUP, the descending ratio full-sibling reconstruction algorithm was used with the 

primary hypothesis set to full-siblings and the null hypothesis set to half-siblings. For 

PEDIGREE, a control file containing four runs was used. For each run the number of 

iterations was set to five million, the full-sib constraint was set to one, the weight was set 

to one, and the seed was set to negative one. For the four runs, the temperature was set to 

5 (Run 1), 15 (Run 2), 25 (Run 3), and 35 (Run 4). The sibship reconstruction from the 

partition returning the highest score was used for analyses.  

 PA was performed using the programs PEDAPP v1.1 (Almudevar 2007), PASOS 

v1.0 (Duchesne et al. 2005), and CERVUS v3.0.3 (Kalinowski et al. 2007; Marshall et 

al. 1998). These three programs were chosen because they allow for both parents to be 

unknown, parent sexes to be unknown, and incomplete parental sampling, all of which 

are likely to occur when working with wild populations. The following program settings 

were used as they consistently led to the highest accuracies, and were representative of 
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the population dynamics that generated the simulated samples. For PEDAPP, the 

permissible parent-offspring age difference was set to greater than or equal to one and 

less than or equal to five, and the likelihood derived pedigree was used for analyses. 

Because PEDAPP analyzes all cohorts simultaneously, the „cohort clipper‟ option of the 

software program 3-In-1 (J. Coombs, Available for download at https://bcrc.bio.umass. 

edu/pedigreesoftware/) was used to extricate assignments for just the cohort of interest. 

For PASOS, the non-sexed allocation option was always used, and the maximum offset 

tolerance was set to zero for all analyses, including scenarios involving changes in 

genotyping error rate. For CERVUS, internal simulations were run for each scenario to 

establish delta values for assigned confidences. For each internal simulation the number 

of offspring simulated was set to 10,000, the number of candidate parents was set to 575, 

and the confidence levels were set to 50% (relaxed) and 90% (strict). A relaxed value of 

50% was selected to increase the number of assignments made by CERVUS. Outputs 

using this confidence level were used for all SC analyses. A strict confidence level of 

90% was selected to provide a comparison of accuracy and proportion of parents 

assigned between this commonly used level of CERVUS and the SC method using all 

three PA programs. The internal simulation parameter for proportion of candidate parents 

sampled was set to the mean of the ten replicates for each simulation scenario which was 

acquired from the PEDAGOG output by using the „mates and candidates‟ option of the 

software program 3-IN-1. The proportion of loci mistyped parameter was set to 0.005 for 

all scenarios except those altering genotyping error rates for which the value was set to 

the PEDAGOG simulation probability. 

 

https://bcrc.bio.umass/
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Analyses 

 

All parent assignments produced by the SC method were created using the 

reconstructed-reconstructed option in the program PEDAGREE v1.04 (Coombs et al 

2010b). This option compares two output files created by SR and PA programs. Initial 

analyses evaluated the effects of two analysis parameters: the SR program used, and the 

minimum threshold value. The minimum threshold value determines whether a candidate 

is assigned to all members of the full-sibling family based on whether the candidate‟s 

proportion of assignments within the family is greater than or equal to the specified 

value. Effects of both of these variables were analyzed only for the baseline simulations 

and using full-sibling families of size two or greater (Tables 3 and 4). Based upon these 

results, analyses for all remaining scenarios used COLONY as the source of SR output 

and a minimum threshold value equal to 0.2501, while continuing to restrict full-sibling 

family size to greater than or equal to two. 

Means and 95% confidence intervals were calculated from the ten replicates for 

each scenario for total accuracy, assigned accuracy, the proportion of correct assignments 

when the true parent was sampled, and the proportion of incorrect assignments when the 

true parent was not sampled (Table 2.2). Total accuracy (TA) assessed the correctness of 

assignments for all offspring, including instances when no assignment was made. 

Assigned accuracy (AA) only evaluated the correctness of instances when a parent was 

assigned. True parent sampled and correctly assigned (SA) represented the proportion of 

assigned parents that were correctly made for instances where the true parent was 

sampled. True parent not sampled and incorrectly assigned (NI) represented the 
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proportion of assigned parents that were incorrectly made for instances when the true 

parent was not sampled, referred to by Duchesne et al. (2005) as over-allocation. Only 

assignments for offspring belonging to reconstructed families of size two or greater were 

used in accuracy calculations. This proportion was 85% (±1%) of the entire cohort when 

averaged over all scenarios. 

Accuracy values were calculated for output from each PA program by itself, and 

for output produced by the SC method using that PA program‟s output as the data source. 

Additionally, AA and SA values were calculated for CERVUS output acquired using the 

strict 90% confidence level setting. All calculations were made using the reconstructed-

true option in PEDAGREE, and using the „true genotypes‟ output file from the associated 

PEDAGOG simulation as the reference to the true population pedigree. 

 

Results 

 

The mean number of offspring used for SR analyses was 186 (±2), and the mean 

number of candidates used for PA analyses was 375 (±48). Within a cohort, the mean 

number of full-sibling families was 71 (±6), the mean family size was 2.7 (±0.3), and the 

mean largest full-sibling family size was 9.9 (±0.8). Additional population attributes 

along with accuracies for the raw SR and PA outputs are available by request from the 

author.  

Percent differences for accuracy measures between SC and PA outputs are shown 

in Table 2.3. The SC method consistently produced higher TA and AA values compared 

to those produced by PA programs alone. SA values produced using the SC method were 
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reduced compared to those from associated PA output. However, these reductions were 

an order of magnitude lower than the reductions in NI values for PEDAPP and PASOS, 

and one-fourth that of CERVUS (Table 2.3). Thus the SC method was more conservative 

in its assignment of parents than the PA programs which resulted in a slight reduction of 

assignment to offspring whose true parents were sampled, but a drastic reduction in 

assignments to offspring whose true parents were not sampled. 

The SC method also produced greater accuracies than output from CERVUS 

acquired using a 90% confidence level (Table 2.3). For AA values, output using the SC 

method was on average 7.5% higher than 90% CERVUS output. Of even greater 

significance was that SA values from output using the SC method were 125% to 353% 

higher than those from 90% CERVUS output. Thus the SC method assigned significantly 

more parents than 90% CERVUS, and did so with greater accuracy. 

Of the three PA programs used as data sources for SC, output using PEDAPP 

resulted in slightly improved accuracies over output using PASOS, while use of 

CERVUS as the output data source produced the poorest results (Tables 4-7). Overall, SC 

accuracy values averaged from Tables 4 through 7 for PEDAPP, PASOS, and CERVUS 

were: TA – (0.84, 0.83, 0.68), AA – (0.92, 0.91, 0.93), SA – (0.75, 0.73, 0.45), and NI – 

(0.04, 0.05, 0.05). Thus CERVUS was significantly more conservative in its assignments 

compared to the other two programs. 
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Analysis Variables 

 

 COLONY consistently reconstructed full-sibling families with the highest 

accuracies (data shown in supplementary material). This in turn produced the highest TA, 

AA, and SA values and the lowest NI values for SC output when COLONY was used as 

the SR data source (Table 2.4). PEDIGREE output resulted in the second highest 

accuracy values followed by KINGROUP. Use of output from either these programs as 

the SR data source for the SC method resulted in substantial decreases to SA values 

(Table 2.4).  

 The minimum threshold value dictated the conservativeness of assignments made 

using the SC method. Alteration of the minimum threshold value produced a trade-off 

among SA, AA, and NI values. Smaller minimum threshold values resulted in higher SA 

values, but lower AA and higher NI values. Larger minimum threshold values resulted in 

higher AA and lower NI values, but lower SA values. A minimum threshold value of 

0.2501 resulted in the highest AA and lowest NI values, while maximizing the SA value 

(Table 2.4). 

 

Population Variables 

 

Mating strategy had surprisingly little effect on SC output accuracies (Table 2.5). 

There was a slight trend towards decreased SA values when progressing from 

monogamous to polyandrous to polygamous mating systems. However, AA and NI 

values remained essentially constant over the same progression 
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 Alternatively, family size had a pronounced effect on the number of assignments 

made for SC output. An increase in average family size resulted in increased SA and TA 

values (Table 2.5). Mean family sizes of 3.5 and 4.3 resulted in the only instances when 

SA values produced by the SC method were higher than those produced by PA programs 

alone. This trend occurred for both PEDAPP and PASOS output. 

 

Power Variables 

 

The proportion of true parents sampled had substantial effects on both the number 

and accuracy of parent assignments made by the SC method, particularly when PEDAPP 

or PASOS output was used as the PA data source (Table 2.6). NI values at low sampled 

parent proportions (0.2 and 0.4) were significantly elevated compared to values when 

sampled parent proportions were greater than or equal to 0.6. This result in turn produced 

the opposite pattern for AA values, where accuracy decreased as sampled parent 

proportion decreased. Comparatively, CERVUS‟ more conservative output resulted in 

decreased SA values instead of increased NI values as the proportion of sampled parents 

decreased. This pattern ultimately resulted in increased AA values at low sampled parent 

proportions. There were no clear linear trends in SA values for SC output using either 

PEDAPP or PASOS as data sources. 

 Increasing the number of loci used for analyses resulted in an appreciable change 

in the number of assignments made for instances when true parents were sampled, but 

only a slight change to the accuracy of made assignments (Table 2.6). For SC output 

using PEDAPP and PASOS data sources, SA values increased approximately 21% as the 
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number of loci used increased from eight to twelve, and 26% for an increase from eight 

to sixteen. Comparatively, AA values only increased 4% and 5% for the same increased 

in number of loci used.  

 

Error Variables 

 

Both genotyping and cohort misclassification errors resulted in the SC method 

making fewer assignments (decreased SA values) with increased rates of error (Table 

2.7). However, AA values remained stable as error rates increased. Thus, the SC method 

maintained assignment accuracies when faced with dataset degradation by sacrificing the 

number of assignments made. 

 

Discussion 

 

The SC method uses SR output to delineate full-sibling families and then assign 

the most commonly allocated parental candidates from PA output to the entire family 

provided a candidate‟s proportion of assignments exceeds a user-specified minimum 

threshold value. Accuracies produced using the SC method were compared to those 

produced using traditional PA programs for simulated datasets investigating the effects of 

eight variables. The SC method produced substantially higher TA and AA values while 

simultaneously reducing NI values compared to PA output alone (Table 2.3). The one 

cost of the SC method was a decrease in SA values compared to PA output. However, for 

the current simulations this cost was only 11% to 24% of the benefit gained from 
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reducing NI values depending upon which PA program was used (Table 2.3). Thus, use 

of the SC method resulted in more accurate assignments than use of PA programs alone. 

 Of the three PA programs used for this study, PEDAPP consistently returned the 

highest TA and AA values for raw output (shown in supplementary material). This 

subsequently led to the highest TA, AA, and SA values and the lowest NI values when its 

output was used by the SC method (Tables 4-7). Use of PASOS output for the SC method 

resulted in only slightly reduced accuracy values despite its raw output consistently 

having lower AA and higher NI values (Tables 4-7).  

The reason that nearly identical accuracies were produced by the SC method 

when using PA sources with, in some instances, significantly different accuracies stems 

from the mechanism behind incorrect assignments. Incorrect parents were assigned more 

frequently when fewer loci were used in reconstruction analyses and true sampled parent 

proportions were reduced (Table 2.6). These conditions provided assignment algorithms 

greater opportunity to assign a single false parent to offspring with at least one unsampled 

parent because only one of the candidate parent‟s alleles had to match either of the 

offspring‟s alleles at each locus. For the baseline simulation scenario (60% of true parents 

sampled, eight loci used for analyses) TA values for offspring with zero, one, and two 

true parents sampled were 57%, 74%, and 92% for PEDAPP, and 54%, 60%, and 91% 

for PASOS (data not shown). 

Additionally, likelihood methods within PA programs rank all possible parents 

based upon the alleles in the candidate‟s genotype versus allele frequencies in the 

population (Jones & Ardren 2003; Marshall et al. 1998). Thus for full-sibling families 

with one or more unsampled parents, different false parents could be assigned to different 
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offspring within the same full-sibling family because of differing offspring genotypes. 

Indeed, for the baseline simulation scenario, the number of unique candidates assigned to 

each parent of a full-sibling family where a minimum of two assignments were made 

were 3.0 (±0.36), 2.0 (±0.12), and 1.2 (±0.06) for families with zero, one, and two true 

parents sampled (data not shown).  

As the number of candidates assigned to a full-sibling family increases, each 

candidate‟s proportion of assignments decreases. Thus, the use of an adequate minimum 

threshold value for the SC method is an effective means of ensuring that full-sibling 

families assigned multiple parents do not retain any of them (Table 2.4). Results from the 

SC method supported this fact by producing TA values for offspring with zero, one, and 

two parents of 89%, 81%, and 87% for COLONY-PEDAPP output, and 87%, 77%, and 

85% for COLONY-PASOS output for the baseline scenario (data not shown). Reduction 

in accuracy for instances when both parents were sampled was caused by reductions in 

SA values, not increases in NI values (data not shown). 

 Results differed in important ways among PA programs. Compared to PEDAPP 

and PASOS, CERVUS resulted in similar AA values, but significantly lower SA values 

for both PA and SC output (Tables 4-7). One reason for this was CERVUS‟ use of 

internal confidence levels to classify assignments (Marshall et al. 1998). This internal 

filter resulted in a reduced number of assigned parents even with the relaxed confidence 

level set to 50%. The reduced number of assignments was also a function of the 

proportion of sampled parents. For sampled parent proportions of 60% or less, available 

assignment proportions from CERVUS output declined at a much faster rate than for 

output from either PEDAPP or PASOS (Table 2.6). The reason for this pattern is that 
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CERVUS uses a parent-pair assignment algorithm when trying to assign both parents 

(CERVUS user manual). Thus, failure to sample one of the parent pair renders correct 

assignment impossible (Jones & Ardren 2003). However this pattern seems to apply to 

CERVUS in general, because both Marshall et al (1998) and Wilson and Ferguson (2002) 

reported similar results when conducting paternity analyses. 

 This trend of inferior performance by CERVUS when the proportion of sampled 

candidate parents is reduced is of concern for two reasons. The first is that there has been 

a dramatic increase in the use of multi-generational pedigrees in studies involving natural 

populations over the last decade (Pemberton 2008). Given population processes and 

sampling logistics, the vast majority of those studies almost assuredly contained 

incomplete sampling of candidate parents. The second reason is that CERVUS is the PA 

program used most often. From March of 2007 (the date of the most recent publication 

for the three PA programs used in this study) until July of 2009, the numbers of papers 

citing each program were 3 (PEDAPP), 9 (PASOS), and 552 (CERVUS) (Web of 

Science). This suggests that many studies may have analyzed reduced pedigrees 

stemming from the conservative nature of CERVUS assignments. 

 This study quantified the reduction in pedigree information by comparing SA 

values acquired using the SC method to those produced using CERVUS with a 90% 

confidence level. The net result was an increase in SA values by 353% (±135%) if 

PEDAPP was used as the SC data source, 346% (±136%) if PASOS was used as the SC 

data source, and 125% (±25%) if CERVUS with a 50% confidence level was used as the 

SC data source (Table 2.3). Thus for this study, downstream analyses using pedigrees 

produced by the SC method would have access to three and half times the number of 
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pedigree links compared to one produced using CERVUS with a 90% confidence level. 

Furthermore, AA values from the SC method were approximately 7.5% greater than 

those produced by CERVUS with a 90% confidence level output (Table 2.3). Thus, not 

only were more assignments made using the SC method, but those assignments were 

made with greater accuracy.  

 AA values produced by the SC method proved to be remarkably robust to changes 

in parameter values. Of the twenty-five unique scenarios produced by altering a value for 

one of the eight variables investigated, only two resulted in mean AA values of less than 

80% (loci used = 4, threshold value = 0), and only four resulted in mean AA values of 

between 80% and 90% (threshold value = 0.1667, sibship program = KINGROUP, 

sampled parents = 0.2 and 0.4). The remaining nineteen variables all resulted in assigned 

accuracies greater than 90% (Tables 4-7) indicating that SC can provide accurate 

assignments across a wide range of parameter values. 

 While the accuracy of the SC method was robust to parameter variation, different 

parameter values resulted in changes to SA values. Parameter values resulting in 

increased SA values while maintaining AA levels included simplification of mating 

strategy (Table 2.4), increased family size (Table 2.4), and increased number of loci used 

(Table 2.5). Mechanisms behind these trends operated in two different ways. An increase 

in the number of loci increased the amount of information available to resolve putative 

relationships (Wang & Santure 2009). The end result was an increase in both the number 

and accuracy of parentage assignments (Table 2.6), and an increase in SR accuracy (data 

not shown). This in turn produced a greater number of retained correct parents when 

employing the SC method because assigned parent proportions exceeded the minimum 
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threshold value with greater frequency and were assigned to offspring within more 

accurate sibship partitions (Table 2.6).  

The second mechanism providing increased SA values resulted from increases in 

mean full-sibling family size which in turn improved SR accuracy. Wang (2007) 

demonstrated that for a given set of markers, inferred families become increasingly 

reliable with increased size regardless of methodology used in reconstruction. This was 

evidenced in this study as COLONY SR accuracy increased 14.3% as mean family size 

was deliberately increased from 1.9 to 4.3 (data not shown). Likewise, when mating 

strategy was simplified to monogamy from polygamy, mean family size indirectly 

increased from 2.5 to 3.5 resulting in a 2.7% improvement to SR accuracy (data not 

shown). 

In contrast, increased genotyping and demographic error rates resulted in 

decreased SA values (Table 2.7). Increased demographic error rates reduced SA values 

through decreased mean family sizes (data not shown). Full-sibling family sizes were 

reduced by removal of misclassified individuals, while the overall number of full-sibling 

families was increased by addition of misclassified individuals from other cohorts. A 

demographic error rate of 15% reduced mean family size from 2.5 (±0.14) to 2.0 (±0.07) 

(data not shown) resulting in a 12% reduction in SA values for COLONY-PEDAPP 

output (Table 2.7). 

Genotyping errors had a pronounced effect upon SA values for output produced 

using the SC method (Table 2.7). SA values from SC output averaged for all three PA 

data sources decreased by 10%, 20%, and 38% as genotyping error probability increased 

from 1% to 3% to 5% (Table 2.7). The primary reason for this was that SA values 
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produced by PA output were also reduced by an increased genotyping error rate (Table 

2.7). Given that AA and NI values from PA output remained approximately constant as 

genotyping error rate increased (Table 2.7), the reduction in SA values must be explained 

by a decreased number of assignments. Indeed, comparison of PEDAPP output run on 

true and error containing versions of simulated datasets for genotyping error probabilities 

of 1%, 3% and 5% resulted in reductions in the number of assignments made by 3%, 

13%, and 16% (data not shown).  

SR programs proved to be less susceptible to genotyping errors than PA programs 

(data not shown). Comparison between true and error containing versions of datasets for 

5% genotyping error simulations reduced SR accuracies by 5.7% (COLONY), 5.0% 

(KINGROUP), and 11.3% (PEDIGREE) (data not shown). Genotyping errors split 

affected individuals from their true full-sibling families. Comparison of number of 

families between true and error containing versions of datasets resulted in average 

changes of -2.4 (COLONY), 5.5 (KINGROUP), and 9.3 (PEDIGREE). We believe the 

negative value for COLONY to be a function of its internal error-handling capability 

(Wang 2004) which made the joining of two single individuals together more likely. 

Comparatively, the number of families for KINGROUP and PEDIGREE, which do not 

have error-handling capabilities, both increased in the presence of errors. The net result is 

a decrease in size for larger full-sibling families which in turn results in decreased SA 

values (Table 2.4).  

Of the three sibship programs investigated, COLONY consistently returned the 

highest SR accuracies, followed by PEDIGREE, and then KINGROUP (Table 2.4 and 

unpublished data). In addition to its error-handling capabilities, COLONY also dealt with 
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the effects of polygamy better. For simulations specifying a monogamous mating system, 

COLONY and PEDIGREE had identical SR accuracies (94%), but a change to polygamy 

resulted in a 6% difference in SR accuracies between the two programs (92% vs. 86%) 

(data not shown).  

SR accuracies for KINGROUP were usually well below those of COLONY and 

PEDIGREE. Only when the number of loci used was increased to twelve or sixteen did 

accuracies begin to approach those of the other two programs (data not shown). This 

suggests that the descending ratio method within KINGROUP requires a lot of genetic 

information to perform well. 

 Additional advantages to using the SC method can be classified into areas of 

flexibility and resource conservation. Flexibility is present in three areas. The first two 

are user-specified options. One enables the user to specify the minimum full-sibling 

family size for which the SC method should be applied. The second allows the user to 

specify a minimum threshold value to determine when to keep a parent for a full-sibling 

family. These options allow the user to be more or less conservative depending upon the 

situation. For example, the simulations with sampled parent proportions of 0.2 and 0.4 

returned relatively low AA and high NI values when a minimum threshold value of 

0.2501 was used (Table 2.6). Raising the minimum threshold value to 0.3334 resulted in 

improved mean AA and NI values (data not shown).  For simulations with sampled 

parent proportion equal to 0.2, AA values increased from 82% to 95%, and NI values 

decreased from 0.16 to 0.05. For simulations with sampled parent proportion equal to 0.4, 

AA values increased from 86% to 95%, and NI values decreased from 0.10 to 0.04 (data 

not shown).  
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These options also enable the user to perform the SC method multiple times using 

different combinations of minimum threshold value and full-sibling family size. For 

example, a value of 0.2501 may be specified for families greater than or equal to two, and 

a value of 0.1667 for families greater than or equal to three. Assignments from the two 

pedigrees could then be combined to create the final pedigree. Determination of what 

combinations of sibship size and minimum threshold value return acceptable accuracies 

must be determined through simulation and recovery analyses with a simulation program 

such as PEDAGOG. 

The other area the SC method provides flexibility in is its capacity to use sibship 

and parentage data from several different sources. This is possible because the method is 

fully implemented within the software program PEDAGREE which has the ability to read 

in data from six SR programs and twelve PA programs. This allows for output from any 

combination of SR and PA programs to be selected and used for SC. What programs are 

used depends upon the quality of the dataset, the mating strategy and family structure 

within the cohort, and the subsequent use of the pedigree. For simulations conducted for 

this study the SR program COLONY and the PA program PEDAPP consistently returned 

the highest accuracies (Tables 4-7). However, for populations with high rates of 

monogamy and/or large full-sibling families the SR PEDIGREE returned similar 

accuracies as COLONY in about a third of the computation time. 

Advantages in the area of resource conservation deal with reduced expense, and 

reduced data acquisition and computation times. Reduced expense and data acquisition 

time emerge from the need to use fewer loci to achieve similarly high AA values (Table 

2.6). For the current study, AA values produced by the SC method using eight loci were 
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only slightly lower than AA values for PA output that used sixteen loci (Table 2.6). 

Granted, there was a cost in the form of reduced SA values with fewer loci, but in many 

situations this may be acceptable. Alternatively, the SC method‟s ability to return high 

AA values using a reduced number of markers, and thus a reduced amount of human and 

machine time required for data acquisition, may allow studies with financial and/or 

logistic restrictions to be conducted. Additionally, a reduced number of loci would result 

in a dataset with fewer genotyping errors (Jones & Ardren 2003; O'Reilly et al. 1998). 

This would effectively offset a portion of the cost in reduced SA values since genotyping 

errors also decrease this measure (Table 2.7). Also, Wang (2004) reported that using an 

increased number of loci with genetic errors can result in worse relationship estimates if 

they are ignored. 

 The SC method can also conserve resources by reducing computing time. If SR 

and PA output already exist for the cohort of interest, the SC method can be performed in 

a few seconds. If not, both will have to be run with time to completion varying among SR 

and PA programs. Comparative run times for the programs used in this study for baseline 

scenario conditions (≈181 offspring, 379 parents, 0.6 candidate sampling) using a 2.0 

GHz CPU were as follows: KINGROUP, PEDAPP, and PASOS completed in seconds, 

PEDIGREE and CERVUS (not counting simulations) finished in less than five minutes, 

and COLONY v1.2 concluded in approximately fifteen minutes. 

Comparatively, COLONY v2.0 (Wang & Santure 2009), a recently released 

update to COLONY v1.2 that has the capability to perform SR and PA jointly, can 

require weeks or longer to reach completion. Run time in COLONY v2.0 is dependent 

upon the number of offspring, the parental mating strategies, the number and 
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Figure 4.1. Map showing the West Brook drainage located in Whately, MA, USA. OL = 

Open-Large tributary; OS = Open-Small tributary. Dashed line indicates sampled 

reaches. 
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Figure 4.2. Sizes of young-of-year (YOY) brook trout caught in the fall sample of 2002, 

2003, and 2004 in the open-small (OS) and open-large (OL) tributaries. (A) Mean and 

95% confidence intervals. (B) Box-plot showing median (square), middle 50% (box), 

non-outlier range (lines), and outliers (circles). OS sample sizes: 25 (2002), 24 (2003), 

168 (2004); OL sample sizes: 50 (2002), 138 (2003), 156 (2004). 
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Figure 4.3. Sizes of age-1 brook trout caught in the fall sample of 2002, 2003, and 2004 

in the open-small (OS) and open-large (OL) tributaries. (A) Mean and 95% confidence 

intervals. (B) Box-plot showing median (square), middle 50% (box), non-outlier range 

(lines), and outliers (circles). OS sample sizes: 12 (2002), 33 (2003), 20 (2004); OL 

sample sizes: 73 (2002), 60 (2003), 55 (2004). 
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Figure 4.4. Mean size of immature (I) and mature (M) age-0 and age-1 brook trout inhabiting the open-small and open-large tributaries 

during the 2002, 2003, and 2004 spawning seasons. Sample sizes for 0-I, 0-M, 1-I, 1-M are 41, 0, 66, 27 (2002); 120, 8, 38, 63 (2003); 

and 171, 9, 37, 38 (2004). 
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Figure 4.9. Ages of contributing parents for the 2002-2004 brook trout cohorts inhabiting 

the open-small (OS) and open-large (OL) tributaries. 
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Figure 4.10. Proportion of offspring contributed by parental age-class for the 2002, 2003, and 2004 spawning years in the open-small 

(OS) and open-large (OL) brook trout populations. 
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CHAPTER V 

 

SYNOPSIS 

 

Small populations are predicted to suffer increased extinction probability as a 

consequence of effects suffered from reduced genetic diversity, and demographic and 

environmental stochasticity. However, many small populations continue to persist, 

suggesting adaptations may have evolved that in turn gave rise to mechanisms acting to 

counter these effects. Such mechanisms would likely involve reproduction, as it directly 

influences genetic diversity and census size of a population. Genetic diversity is 

conserved when a large proportion of the population contributes reproductively, which is 

ultimately determined by patterns in mate choice. Census size is increased through 

recruitment, which is determined by the number of reproducing individuals, which is 

itself a function of age-at-maturity. Thus in small, persistent populations, mate choice 

patterns would be predicted to result in a large-proportion of adults contributing 

reproductively, and age-at-maturation would be predicted to be flexible to account for 

environmental stochasticity. 

 To assess these predictions, reproductive patterns were determined for two wild 

brook trout (Salvelinus fontinalis) populations inhabiting headwater streams. For these 

populations, mate choice was size-assortative, with males and females within a pair 

having approximately equal length. This pattern most-likely resulted from males 

selecting larger females to benefit from their increased fecundity, and females selecting 

larger males to benefit from their ability to deter egg cannibalism. The result of this mate 
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choice pattern was a large proportion of individuals (0.8) mating only one time during a 

reproductive cycle. This parity in reproductive contribution produced a mean effective 

population size (Ne) to census population size (Nc) ratio of 0.49, a value four to five times 

larger than mean ratios reported for 165 (0.14) and 102 (0.10) different species. These 

data suggest that size-assortative mate choice patterns also produce a mechanism that acts 

to conserve genetic diversity. 

 For age-at-maturity, selection appeared to favor early maturation, most-likely as a 

result of high and unpredictable mortality rates. Benefits of early maturation were based 

on body size and its positive correlation with fecundity. Larger females had greater 

fecundity which directly increased their fitness, while larger males mated with larger 

females (size-assortative mating) which indirectly increased their fitness. For early 

maturing fish, there was no evidence for direct costs in terms of survival compared to 

their immature counterparts, or indirect costs in terms of their offspring‟s survival 

compared to those produced by larger parents. One apparent cost that did manifest was a 

lack of successful spawning in multiple years (5%), essentially rendering these brook 

trout semelparous. 

The age at which a brook trout first matured in these populations ranged from 

zero to two years, and was primarily determined by growth opportunity mediated through 

environmental conditions. Maturation appeared to be dependent upon surpassing an 

energetic threshold value, as mature age-0 fish occurred at a smaller length than 

immature age-1 fish. Additionally, mature fish within an age-class were significantly 

longer and heavier than their immature counterparts. The ability of a fish to surpass this 

threshold was flexible, with different means employed in different years, suggesting an 
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adaptation to capitalize on growth opportunities in an unpredictable environment. Harsh 

environmental conditions resulted in reduced growth opportunity, and delayed age-at-

maturation. Benign environmental conditions resulted in increased growth opportunity, 

and earlier age-at-maturation. This was particularly apparent for a benign year following 

a harsh year, as decreased densities further enhanced growth opportunity. These data 

suggest that flexible age-at-maturation also results in a mechanism that acts to increase 

population recruitment after the occurrence of a stochastic event. 

Adaptations for mate-choice and flexible age-at-maturity appear to have evolved 

in these headwater brook trout populations. These adaptations in turn gave rise to 

mechanisms acting to increase a population‟s persistence probability through 

conservation of genetic diversity and increased recruitment potential. Ultimately, both 

mechanisms are dependent upon individual growth patterns. Size-assortative mating 

requires that a range of individual lengths be present in the population during 

reproduction. Flexible age-at-maturity requires that an energetic threshold be surpassed in 

order for an individual to mature. Given this, the efficacy of both mechanisms is 

ultimately linked to growth opportunity mediated through environmental conditions. 

Thus, changes in headwater habitat conditions predicted to occur as a result of climate 

change could compromise these mechanisms and render brook trout populations more 

susceptible to local extirpation.  
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APPENDIX 

 

ALLELE FREQUENCIES FOR CHAPTER II SIMULATIONS 

 

 

Locus Allele Frequency 

 

Locus Allele Frequency 

C113-Allele 1 125 0.00046 

 

D100-Allele 1 206 0.02493 

C113-Allele 1 128 0.04620 

 

D100-Allele 1 211 0.15897 

C113-Allele 1 132 0.01532 

 

D100-Allele 1 215 0.19030 

C113-Allele 1 135 0.31770 

 

D100-Allele 1 219 0.20608 

C113-Allele 1 138 0.27219 

 

D100-Allele 1 224 0.07708 

C113-Allele 1 142 0.09584 

 

D100-Allele 1 228 0.01761 

C113-Allele 1 145 0.09584 

 

D100-Allele 1 233 0.17887 

C113-Allele 1 148 0.04643 

 

D100-Allele 1 237 0.00618 

C113-Allele 1 152 0.03019 

 

D100-Allele 1 241 0.06404 

C113-Allele 1 158 0.04460 

 

D100-Allele 1 249 0.03957 

C113-Allele 1 162 0.03522 

 

D100-Allele 1 253 0.03568 

D75-Allele 1 176 0.05169 

 

D100-Allele 1 257 0.00069 

D75-Allele 1 181 0.00709 

 

C115-Allele 1 232 0.05764 

D75-Allele 1 185 0.00091 

 

C115-Allele 1 238 0.03225 

D75-Allele 1 189 0.00023 

 

C115-Allele 1 242 0.00503 

D75-Allele 1 193 0.10567 

 

C115-Allele 1 244 0.00023 

D75-Allele 1 197 0.01350 

 

C115-Allele 1 246 0.00549 

D75-Allele 1 201 0.03866 

 

C115-Allele 1 258 0.00160 

D75-Allele 1 206 0.05993 

 

C115-Allele 1 302 0.00114 

D75-Allele 1 210 0.13747 

 

C115-Allele 1 306 0.00549 

D75-Allele 1 214 0.19236 

 

C115-Allele 1 310 0.01647 

D75-Allele 1 218 0.05375 

 

C115-Allele 1 314 0.00663 

D75-Allele 1 222 0.28088 

 

C115-Allele 1 322 0.00069 

D75-Allele 1 226 0.05787 

 

C115-Allele 1 326 0.02424 

C88-Allele 1 177 0.04552 

 

C115-Allele 1 328 0.00046 

C88-Allele 1 180 0.00091 

 

C115-Allele 1 330 0.04140 

C88-Allele 1 183 0.35522 

 

C115-Allele 1 334 0.27928 

C88-Allele 1 186 0.24177 

 

C115-Allele 1 338 0.12626 

C88-Allele 1 189 0.03500 

 

C115-Allele 1 342 0.13769 

C88-Allele 1 192 0.09790 

 

C115-Allele 1 344 0.04231 

C88-Allele 1 195 0.21706 

 

C115-Allele 1 346 0.12214 

C88-Allele 1 201 0.00663 

 

C115-Allele 1 350 0.09081 

    

C115-Allele 1 354 0.00274 
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APPENDIX (continued) 

 

Locus Allele Frequency 

 

Locus Allele Frequency 

C129-Allele 1 223 0.11963 

 

D237-Allele 1 454 0.07236 

C129-Allele 1 229 0.14021 

 

D237-Allele 1 466 0.03267 

C129-Allele 1 232 0.22461 

 

D237-Allele 1 470 0.00097 

C129-Allele 1 236 0.51441 

 

Locus-9 200 0.05935 

C129-Allele 1 239 0.00114 

 

Locus-9 204 0.00078 

C24-Allele 1 110 0.04209 

 

Locus-9 208 0.04731 

C24-Allele 1 113 0.23994 

 

Locus-9 212 0.18812 

C24-Allele 1 116 0.43115 

 

Locus-9 216 0.00728 

C24-Allele 1 119 0.06976 

 

Locus-9 220 0.16035 

C24-Allele 1 122 0.05581 

 

Locus-9 224 0.11765 

C24-Allele 1 170 0.16125 

 

Locus-9 228 0.28305 

D237-Allele 1 276 0.01162 

 

Locus-9 232 0.12060 

D237-Allele 1 280 0.01839 

 

Locus-9 236 0.01551 

D237-Allele 1 284 0.00823 

 

Locus-10 210 0.07428 

D237-Allele 1 288 0.00169 

 

Locus-10 214 0.13962 

D237-Allele 1 292 0.03437 

 

Locus-10 218 0.26252 

D237-Allele 1 296 0.00024 

 

Locus-10 222 0.07446 

D237-Allele 1 300 0.00871 

 

Locus-10 226 0.04958 

D237-Allele 1 304 0.00048 

 

Locus-10 230 0.29601 

D237-Allele 1 308 0.04066 

 

Locus-10 234 0.10353 

D237-Allele 1 373 0.00024 

 

Locus-11 220 0.22123 

D237-Allele 1 411 0.00484 

 

Locus-11 224 0.00014 

D237-Allele 1 416 0.03872 

 

Locus-11 228 0.19259 

D237-Allele 1 420 0.05300 

 

Locus-11 232 0.10754 

D237-Allele 1 424 0.16505 

 

Locus-11 236 0.00003 

D237-Allele 1 429 0.01017 

 

Locus-11 240 0.26316 

D237-Allele 1 433 0.27541 

 

Locus-11 244 0.00041 

D237-Allele 1 436 0.00048 

 

Locus-11 248 0.01024 

D237-Allele 1 437 0.05711 

 

Locus-11 252 0.00006 

D237-Allele 1 441 0.05469 

 

Locus-11 256 0.20367 

D237-Allele 1 445 0.04017 

 

Locus-11 260 0.00006 

D237-Allele 1 449 0.06970 

 

Locus-11 264 0.00087 
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APPENDIX (continued) 

 

Locus Allele Frequency 

 

Locus Allele Frequency 

Locus-12 230 0.33116 

 

Locus-14 294 0.13620 

Locus-12 234 0.10994 

 

Locus-14 298 0.00657 

Locus-12 238 0.14960 

 

Locus-14 302 0.03873 

Locus-12 242 0.18259 

 

Locus-14 306 0.00808 

Locus-12 246 0.02344 

 

Locus-15 260 0.18617 

Locus-12 250 0.11928 

 

Locus-15 262 0.33077 

Locus-12 254 0.01664 

 

Locus-15 264 0.00868 

Locus-12 258 0.06734 

 

Locus-15 266 0.01124 

Locus-13 240 0.11642 

 

Locus-15 268 0.02511 

Locus-13 244 0.24408 

 

Locus-15 270 0.18601 

Locus-13 248 0.02605 

 

Locus-15 272 0.25202 

Locus-13 252 0.17822 

 

Locus-16 270 0.00243 

Locus-13 256 0.16224 

 

Locus-16 272 0.23307 

Locus-13 260 0.04907 

 

Locus-16 274 0.17366 

Locus-13 264 0.07767 

 

Locus-16 276 0.00030 

Locus-13 268 0.05972 

 

Locus-16 278 0.13517 

Locus-13 272 0.00278 

 

Locus-16 280 0.00148 

Locus-13 276 0.06325 

 

Locus-16 282 0.00874 

Locus-13 280 0.00009 

 

Locus-16 284 0.30209 

Locus-13 284 0.00061 

 

Locus-16 286 0.14307 

Locus-13 288 0.01981 

    Locus-14 250 0.11427 

    Locus-14 254 0.10100 

    Locus-14 258 0.00054 

    Locus-14 262 0.10672 

    Locus-14 266 0.04113 

    Locus-14 270 0.00071 

    Locus-14 274 0.00173 

    Locus-14 278 0.12635 

    Locus-14 282 0.21178 

    Locus-14 286 0.10605 

    Locus-14 290 0.00015 
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