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prone. Real time applications are mostly affected because of the time constrained nature. 

Force feedback devices generate data with rendering rate as high as 1 KHz. So data is 

generated every 1msec unlike other multimedia such as audio and video whose rendering 

rate is 30hz.  

 

Input command from the force feedback device at the source is generated in the form of 

force media, which is segmented into sequenced data packets. The force data packets 

contains information about the updated X axis and Z axis position and force recalculation 

of the device. This information corresponds to the position of the operator hand 

movement when moving the device and will be sent to update the applet which consists 

of corresponding joystick position hanging in a crane.  

 

Each data packet is generated every 1msec and sent to the emulated delay varying, lossy 

network. Due to delay variations simulated, each data packet is subjected to fluctuations 

upon arrival on the receiver side. The fluctuated arrival of the data packet causes change 

in the update rate of the applet. So the applet gets updated in a random manner which 

causes instability to the system.  

 

To solve the delay variation and data loss from the network we need data synchronization 

algorithms. The major problems in the network are the data loss and delay jitter issues. 

Packet loss is a major issue due to multiple hops in the network. When networks become 

more complex, loss of packets becomes a major issue. To solve this problem we 

implement the existing Linear Packet Predictor Algorithm. Another major concern is the 
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delay jitter. When the data comes from a delayed network and if we update the applet 

with the time the packet arrives it causes instability. So the time difference between the 

packets has to be maintained as how it was generated at the source.  

 

In order to change the update rate at the receiver we implement a Virtual Time Rendering 

(VTR) Algorithm which either contracts or expands the time at which each packet has to 

be updated at the applet. Usually when data passes through wide area networks, there are 

fewer chances that time contraction would be required. Virtual Time Rendering 

Algorithm requires the time stamp information when the data was generated. So when we 

generate the data at the source, we generate the time stamp value for each packet. So 

when the data arrives at the receiver side, the VTR reads the time stamp values and 

modifies the rendering time of the packet at the applet. More details of the working of the 

algorithm will be discussed in next sections. 

 

Video is captured and streamed constantly from the client side to the server. Standard 

compression techniques is used here inorder to reduce bandwidth. The media storage size 

is dependent on the streaming bandwidth and the length of the media. In our experiment 

we have recorded the video for testing purposes to improve the collaboration of the 

application and hence the capture rate is highly random. Imaging techniques will be 

discussed in detail in the client architecture section. 

For a one minute recorded video which is sent to the server, the video encoded at 300 

kbits/s (encoded in a 320 * 240 pixels window size). 

Hence the size would be : (60s * 300 kbits/s) / (8*1024) = 2.19MB of storage 
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CHAPTER 4 

DETAILED ARCHITECTURE 

4.1 SERVER ARCHITECTURE 

Data generated from the server side is transferred to the Client side through an emulated 

network. Server takes input from the Joystick and converts the input into a Matlab 

readable input file which acts as the source of data. Force data are updated in real time 

and has to be sent to the client side with time constraint. Hence we use UDP as the 

transport protocol which receives packetized data from the source and randomly without 

any guarantee sends it to the client side. Here in this section we discuss how the data is 

obtained from the joystick and how it is processed by the Matlab and packetized and sent 

via the emulated network. In the next section we discuss about the network architecture 

and followed by the Client Architecture. 

 

 

Figure 4.1 Server Architecture 
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4.2 FUNCTIONAL DESCRIPTION 

4.2.1 SIDEWINDER JOYSTICK 

 

Sidewinder joystick produces force feedback whenever the handle is gripped and proper 

forces are applied to the buttons. The device consists of eight programmable buttons 

which are set to produce different forces. The Joystick rotates in addition to conventional 

x-axis (side-to-side) and z-axis (back-and-forth) joystick movement. When the device 

rotates it produces values on both X and Z axis.   

 

Force feedback data is generated at the server side and processed, to be sent to the 

received side. Sidewinder Joystick generates data every 1msec. Usually Sidewinder 

joystick is used for gaming purposes and hence it has some pre processed data which 

generates force data. But for our experiment purpose we use just one button which 

generates the force. The base of the device is fixed in the center and hence the device can 

move on either left and right on the X-Axis and up and down on the Z-Axis. We capture 

this information from the device manager which allows us to program the device in order 

to send the information to the data acquisition adapter in Matlab. 

 

4.2.2 DATA ACQUISITION ADAPTER 

Force positional data are received by the data acquisition adapter. It takes two inputs 

from the joystick. The main button is programmed to provide a feedback force which will 

move the joystick to the desired position. The axes takes inputs from both X and Z axis. 
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The maximum range for both the axes is set to -100 and 100 so that we can record the 

movements. Any movement which exceeds this value will be rounded to 100 in the 

positive range and -100 in the negative range. To our convenience we have set a constant 

value for the Y Axis. 

  

Figure 4.2 Data Acquisition Adapter 

 

The applet is controlled by initially setting the position where the device has to be moved 

and then press the programmed button to move the actual position. In figure 2 we see that 

the data from the joystick axes (X and Z) as well as the button are obtained and sent to 

the processing unit. 

 

The movement recorder controls the axes movement, records the real time position in 

both the axes and sends it to the joystick tolerance sends it to the joystick tolerance unit. 

The joystick tolerance sets the maximum, threshold value to which the joystick can move 

in either the X axis or the Z axis. Any value which exceeds 100 on the positive axis or -

100 in the negative axis will be rounded to 100 and -100 respectively. This might create 

errors, but we are not concerned in recording the error of hardware here. 
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Button produces the force to be applied. The initial position is recorded and only when 

the button is pressed, the actual movement of the joystick in the applet takes place. Here 

the button works in as a digital format. It takes just two inputs, with a recorded force 

value. When the button is not pressed, it produces a 0 and when the button is pressed, it 

takes in a 1 which takes the force value and records that the joystick has to be moved.  

The control unit takes in both the axis input and the button value. Initial position 

movement will be recorded and updated until the button is pressed. Once the control unit 

receives the button value, it actually starts moving the joystick to set it to the desired 

position.  

 

4.2.3 DATA PROCESSING UNIT 

 

The data processing unit packetizes the data into force data packets. Each data packet 

contains the current position and force value. Each data packet is generated every 

millisecond. A time stamp value is generated when every data packet is created and 

added to the header of the packet. Due to the real time nature of the application we cannot 

use TCP/IP as the transport protocol, because of its delayed, inefficiency to carry real 

time data.  TCP/IP performs flow and error control and ensures no data is lost. It waits 

until all packets are arrived at the receiver. If any packet is lost, it protocol requests for 

retransmission of the packet. So by all means to maintain the efficiency of the application 

TCP/IP is not suitable.  
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UDP generates datagram carrying the same information. UDP is considered to be 

unreliable or does not maintain the ordering of packets as maintained by the TCP stack. 

Datagrams may arrive out of order, appear duplicated, or go missing without notice. 

Avoiding the overhead of checking whether every packet actually arrived makes UDP 

faster and more efficient, at least for applications that do not need guaranteed delivery. 

However Time-sensitive applications such as ours use UDP because dropped packets are 

preferable to delayed packets.  

 

Lacking reliability, UDP applications must generally be willing to accept some loss, 

errors or duplication. Lacking any congestion avoidance and control mechanisms, 

network-based mechanisms are required to minimize potential congestion collapse effects 

of uncontrolled, high rate UDP traffic loads. In other words, since UDP senders cannot 

detect congestion, network-based elements such as routers using packet queuing and 

dropping techniques will often be the only tool available to slow down excessive UDP 

traffic. 

 

To apply synchronization criteria, we need to have some reliability information about the 

data packets. Sequence Numbers and Time Stamp information are important to provide 

reliability to the application. We run the packet predictor algorithm which requires the 

sequence number information and Virtual Time Rendering which requires the Time 

Stamp Information.  UDP packets do not carry this information. In order to provide such 

reliable information we run Real-time Transport Protocol (RTP).  

 



 

23 

RTP defines the standardized packet format for delivering audio and video over the 

internet. Since our force feedback information also falls in the real time criteria, we use 

the RTP implementation for the force packets which are generated in real time and 

updated at the receiver end 

 

RTP does not have a standard port to communicate with the communicating party. The 

only standard that it obeys is that UDP communications are done via an even port and the 

next higher odd port is used for RTP Control Protocol (RTCP) communications. 

 

 

 

Figure 4.3 RTP Packet Format 

 

The real-time media that is being transferred forms the RTP Payload. RTP header 

contains information related to the payload e.g. the source, size, encoding. RTP packet 

can't be transferred as it is over the network. For transferring we use a transfer protocol 

called User Datagram Protocol (UDP). RTP runs over UDP to make sure the 

synchronization schemes reads the data, extracts the packet information and performs the 

synchronization. 
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Figure 4.4 Packet Structure 

4.3 NETWORK ARCHITECTURE 

4.3.1 NISTNET EMULATOR 

The NISTNet network emulator is a general-purpose tool for emulating performance 

dynamics in IP networks. The tool is designed to allow controlled, reproducible 

experiments with network performance sensitive/adaptive applications and control 

protocols in a simple laboratory setting. By operating at the IP level, NISTNet can 

emulate the critical end-to-end performance characteristics imposed by various network 

situations. 

 

NISTNet is implemented as a kernel module extension to the Linux operating system, 

running Fedora Core 2.6.11 kernel module and an X Window System-based user 

interface application. In use, the tool allows an inexpensive PC-based router to emulate 

numerous complex performance scenarios, including: tunable packet delay distributions, 

congestion and background loss, bandwidth limitation, and packet reordering / 

duplication. The X interface allows the user to select and monitor specific traffic streams 
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passing through the router and to apply selected performance "effects" to the IP packets 

of the stream. In addition to the interactive interface, NISTNet can be driven by traces 

produced from measurements of actual network conditions. NISTNet also provides 

support for user defined packet handlers to be added to the system.  

 

In our architecture we have emulated the network which emulates various networking 

conditions. NISTNet Emulator acts in-between the server and the client which receives 

the data packets generated by the server and introduce loss and delay to each individual 

packets. For our experiment we have created a Derivative Random Drop (DRD) to drop 

packets in a random fashion. Variable delay with heavy tail distribution is introduced 

which introduces random delay between each packet.  

 

The emulator which implements this functionality consists of an instrumented version of 

a live network implementation, the Linux (2.0.xx – 2.4.xx) kernel. NISTNet consists of 

two main parts:  

 

(1) a loadable kernel module, which hooks into the normal Linux networking and real-

time clock code, implements the run-time emulator proper, and exports a set of control 

APIs; and  

(2) a set of user interfaces which use the APIs to configure and control the operation of 

the kernel emulator  

This organization of the emulator provides several advantages. Since all of the kernel 

functionality is incorporated into a loadable module, the emulator may be taken up or 
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down, patched and reloaded during runtime, without interrupting any active connections, 

including those flows currently being affected by the emulator. The separation into a 

module also serves to insulate the NISTNet code to a large degree from changes to the 

base kernel. 

The separation between emulation proper and the user interface allows multiple processes 

to control the emulator simultaneously. This is useful when controlling the emulator both 

interactively, and with parameters generated from previously-taken traces. New emulator 

settings may be loaded continuously, even to control currently-active flows. Kernel data 

structures are handled in such a way as to minimize the locking required. Two user 

interfaces are provided with the code: a simple command-line interface, suitable for 

scripting, and an interactive graphical interface 

 

DRD drops packets with a probability that (after a minimum threshold is reached) 

increases linearly with the instantaneous queue length. DRD does have shortcomings 

compared to more complex router congestion control mechanisms such as Random Early 

Detection (RED), principally because DRD can result in coordination of packet drops and 

retransmissions across multiple flows after certain types of instantaneous traffic bursts. 

However, these shortcomings are not relevant for NISTNet, where each flow is treated 

separately, and hence cross-flow-coordinated drops do not occur. Based on the 

requirement of our application and the flexibility of the emulator we set the packet loss in 

three different levels. Our data is tested for 10%, 15% and 20% of data loss, while higher 

losses may lead to instabilities in the system which the predictor might not be able to 

predict the values. 
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Figure 4.5 Working of NISTNet Emulator 

The NISTNet kernel module makes use of two hooks into the Linux kernel. In order to 

inspect all incoming packets for potential handling, the packet intercept code seizes 

control of the IP packet type handler. All IP packets received by network devices are then 

passed directly to the NISTNet module. After packet matching determines (based on the 

table of emulator entries) whether and how packet processing should affect the packet, 

NISTNet then (possibly after delay) passes the packet on to the Linux IP level code. The 

fast timer takes control of the system real time clock and uses it as a timer source for 

scheduling delayed packets. In the process, it reprograms the clock to interrupt at a 

sufficiently high rate for fine-grained packet delays 

4.4 CLIENT ARCHITECTURE 

Client side receives the fluctuated force data packet which arrives with loss and delay. 

Hence if we process the data as it arrives with the modified arrival time, then it will lead 

to instability to the system. So applet update rate has to be adjusted as how it was 
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generated at the source. Efficient synchronization mechanisms are required which 

modifies the update time at the client side so as to synchronize the data received with the 

server. To achieve this we propose an integrated synchronization approach which takes 

care of both packet loss and delay jitter induced by the network. A detailed description of 

the two algorithms is given in the following sections 

 

Figure 4.6 Client Architecture 

Updated joystick positional and force information are received from the server side are to 

be used to update the applet. Data packets arrive with jitter and loss from the network and 

are temporarily stored in an Adaptive buffer. Data stored in the buffer are retrieved and 

sent to the control unit to do further processing. According to the synchronization control 

mechanism, a buffering process is used at the remote haptic process. The purpose of 

buffer is to store the arrival Data packet for delay and loss compensation. Then, the 

stored data packets are processed by the linear packet predictor algorithm and virtual time 

rendering algorithm to solve the interval fluctuation before sending to update, or display, 

at the client (remote side).  
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4.4.1 CONTROL UNIT 

Control Unit receives packets from the buffer to decide which algorithm to run in order to 

achieve the synchronization criteria. Control Unit decides on two cases depending on the 

packet loss. It extracts the sequence number information from the RTP and reads to check 

if the packets have arrived in sequence. If so it directly sends the packet for delay 

adjustment to the Virtual Time Rendering algorithm. If the control unit checks for loss of 

data packet then it decides to transfer the packet to the Linear Packet Predictor 

Algorithm. Detailed explanations of the two algorithms are discussed in the next section. 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                    

 

 

Figure 4.7 Control Unit Decision  

Receive Packets 

from Buffer 

Check Sequence 

Number 

 Sn-1 

and Sn 

arrived? 

Run Linear Predictor 

Algorithm 

Run Virtual Time 

Rendering Algorithm 

Store Sn in Buffer 

YES 

YES 

NO 



 

30 

 

Data packets are received by the control unit and analyzed for the sequence number. If 

the packets are received in order the process is transferred to the Virtual Time Rendering 

Algorithm. If the data packet is lost, the process transfers to the Linear Packet Predictor 

Algorithm. Due to the real time nature of the application data packets cannot be 

retransmitted, since it adds to end to end delay ultimately reduces the efficiency of the 

application. 

 

4.5 LINEAR PREDICTOR ALGORITHM 

 

Linear prediction is a mathematical operation where future values of a discrete-time 

signal are estimated as a linear function of previous samples. Each time a data arrives the 

control unit in the receiver reads the sequence number of the arrived packet and checks 

whether it has arrived in sequence. If any packet is missing and out of order, then the 

mis-ordered packet is sent to the Linear Predictor Algorithm. The algorithm takes in the 

current received data packet and compares with the previously arrived packet and 

predicts the value.  
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Figure 4.8: Packet Prediction a) in-between message b) last update message 

 

4.5.1 PREDICTION MODEL 

 

The most common representation is 

 

 

where is the predicted signal value, x(n − i) the previous observed values, and ai the 

predictor coefficients. The error generated by this estimate is 

 

where x(n) is the true signal value. 

These equations are valid for all types of (one-dimensional) linear prediction. The 

differences are found in the way the parameters ai are chosen. 
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For multi-dimensional signals the error metric is often defined as 

 

 

 

4.5.2 ESTIMATING THE PARAMETERS 

The most common choice in optimization of parameters ai is the root mean square 

criterion which is also called the autocorrelation criterion. In this method we minimize 

the expected value of the squared error E [e2(n)], which yields the equation 

 

for 1 ≤ j ≤ p, where R is the autocorrelation of signal xn, defined as 

 

Where E is the expected value 

To minimize the error we can rewrite the error as the difference in the actual value at 

particular time to the predicted value 
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4.5.3 ROOT MEAN SQUARE CRITERION 

The estimation parameters are optimized based on the root mean square criterion which is 

also called as the autocorrelation criterion.  

The rms for a collection of n values is 

 

The root mean square deviation (RMSD) (also root mean square error (RMSE)) is a 

frequently-used measure of the differences between values predicted by a model or an 

estimator and the values actually observed from the thing being modeled or estimated. 

These individual differences are also called residuals, and the RMSD serves to aggregate 

them into a single measure of predictive power. 

The RMSD of an estimator with respect to the estimated parameter θ is defined as the 

square root of the mean squared error: 

 

Suppose if we represent the series of actual values as one vector and the predicted values 

as another vector we can determine the root mean square deviation can be obtained as 
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, 

RMSD becomes: 

 

 

The predicted data is sent to the Virtual Time Rendering algorithm to compensate for the 

delay jitter between the packets.  

 

4.6 VIRTUAL TIME RENDERING  

 

Three types of continuous media synchronization are required for preservation of the 

temporal relations. One is called intra-stream synchronization control, and another is 

inter-stream synchronization control. The intra-stream synchronization control is 

necessary for the preservation of the timing relation between data packets, each of which 

is the information unit’ for media synchronization, such as video frames and voice 

packets in a single stream. The inter-stream synchronization control is required for 

keeping the temporal relation among plural streams. The other is referred to as group 

(i.e., inter-destination) synchronization  
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A number of media synchronization algorithms have been proposed for intra-stream and 

inter-stream synchronization to satisfy diverse requirements. The algorithms are grouped 

into two major classes: distributed or local. Distributed algorithms are used in network 

environments, while local ones are employed within a workstation need to clarify which 

algorithm produces the best performance among a variety of algorithms in a given 

environment. 

tsn denote the timestamp of nth data at which the source has generated at the server 

trn denote the timestamp of nth data at which the data packet reached the client side 

tdn denote the timestamp of nth data at which the data is updated at the applet 

 

The interval of data packets at the source, arrival and update processes are denoted as  

 

� Source Interval Time 

 

Tsi = tsn+1 – tsn    

 

� Received Interval Time 

 

Tri = tr n+1 - trn 

 

� Processed Interval Time  

 

Tdi = td n+1 - tdn    
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Figure 4.9 Intra Stream Synchronization 

 

The delay variation has to be controlled. If the required received data hasn’t arrived by a 

particular threshold time, then we can consider that the data has lost data. But if the data 

arrives after that we can use that data instead of the predicted data at the control unit, 

which requires sequentially arrived data to predict the missing packets. 

 

The maximum delay till which the packet can wait, to decide whether to predict is given 

by 

 

� Delay Variation  

  δ = τmax – τmin 
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The overall end to end delay of the system determines the size of the buffer which can be 

set adaptively based on the delay variations.  

 

� Delay 

          Τi = trn - tsn 

 

The time adjustment factor can be obtained based on the above data as 

 

� Time Adjustment Factor 

� αi  = tsn – trn   

 

With the algorithm calculating the time adjustment factor 

 

We can determine the rendering rate, the update time of the applet as 

 

� Rendering Time 

� Tdn = tsn +τi +αi  
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In the VTR algorithm, in addition to the actual time, we introduce a virtual-time which 

expands or contracts according to the amount of delay jitters of MUS received at the 

destination, and media are rendered along the virtual-time axis. The virtual time-

expansion and time-contraction are realized in a form of modification of the target output 

time, which is the time when the destination should output an MU.  

 

The application form of the modification depends on the kind of media treated, i.e., 

stored or live. In the case of stored media such as those in video-on-demand, the easiest 

way of the application is only the virtual time-expansion; that is, the target output time is 

postponed only. This implies that the resulting playback time becomes longer than the 

original recording time.  

 

However, if the amount of the virtual time-expansion is not perceptible, the subjective 

quality of an output media stream can be improved. On the other hand, live media need 

both virtual time-expansion and time-contraction since the real-time property must be 

preserved. In addition to the modification of the target output time, the VTR algorithm 

also adopts reactive skipping and reactive pausing of MUS in order to recover from 

asynchrony as in many of other synchronization algorithm. Furthermore, the algorithm 

has functions such as preventive pausing, change of buffering time with network delay 

estimation and shortening and extension of output duration.  
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4.7 VIRTUAL REALITY APPLET 

 

Force feedback rendering is tested based on the synchronized movement of the two 

devices in remote areas. When one device performs an action, corresponding movement 

is recorded on the remote machine. This can be tested by running an applet and avoiding 

a remote device. In our architecture we have developed a Virtual Reality applet which 

runs on the browser on the remote client side. When the source sidewinder joystick 

device is moved, we could control the applet movement running on the client machine. 

 

 

Figure 4.10 Applet at the Client Side 

The applet is developed in Matlab, which contains a load hanging on the crane. The crane 

can move in X and Z axis. Here the Y axis movement is restricted and hence that is not 
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taken into consideration. Initial movement of the joystick will set the place where the 

load will move and when the force is applied then the actual movement of the load will 

take place. This will result in both the position and force value transferred from the server 

to the client side.  

 

The joystick generates the data and sends to the data acquisition adapter. The data is then 

processed and segregated into data packets. Each data packet contains both force as well 

as the position value. Theses UDP packets are sent through emulated network. Once the 

data reaches the client side, the adaptive buffer will store the data and process it to the 

control unit. Control Unit decides whether to run the linear predictor algorithm, if there is 

a packet loss, else it passes the packet to the Virtual Time Rendering Algorithm which 

determines when to update the applet based on the timestamp and adjusts the difference 

in the actual received time of consecutive data.  

In the future work, we propose to build perform a set of experiment and complete the 

implementation of the SURGNET architecture. In the rest of the chapter, we explain 

different experiments we are planning to perform as future work.  

 

4.8 INFORMATION MULTIPLEXING: 

The SURGNET architecture supports to include various forms of multimedia 

information. In a general surgical unit we need to transmit the audio instructions given by 

the surgeon to the remote paramedic persons helping out in setting up the operational 

setup and audio information of the paramedic mentioning about the setup to the surgeon, 

video information with regular updates which are captured from the patient side so that 
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the source surgeon side can monitor the actual position of the device. On a real 

application setup we need to capture the video of the patient but here we capture the 

updated position of the applet as a video file and transfer that to be displayed on the 

source side.  

 

The applet runs on the local source machine when the device is moved, now the 

surgeon handling the device can compare the applet in the local stand alone side and the 

updated positional and force value from the applet which was received from the remote 

side. So we need to multiplex the information and send it. Bandwidth in a network refers 

to the data rate supported by the network connection. It is expressed in bits per second 

transferred. It represents the capacity of the connection and hence better performance is 

achieved with greater capacity. Certain applications require more bandwidth in order to 

maintain the efficient working of the application like the force feedback devices and 

medical data such as ECG occupies very less part of the bandwidth and hence can share 

the available bandwidth with such high demand applications. The SURGNET 

Architecture is modified when introduced with other media and can be represented as 

shown below. 

4.9 INTRA MEDIA SYNCHRONIZATION 

Intra-media synchronization control is required for keeping the temporal relationship 

among media streams. Lip-sync is a representative of the intra-media synchronization, 

and it means the synchronization between spoken voice and the movement of the 

speaker's lips. Media streams fall into a master stream and slave streams. Since we have 

two multimedia multiplexed in our application we maintain the higher bandwidth 
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requirement media as the master stream. So force feedback data streams act as the master 

streams and we have video as slave stream which is required to be synchronized with the 

master stream. 

 

 For example in lip-sync, the voice is generally selected as the master stream. This 

is because voice is more sensitive to intra-stream synchronization error than video. The 

rendering time among various media should be modified to based on the synchronization 

requirement.  The Intra media Synchronization can be described as below.  

 

Figure 4.11 Intra Media Synchronization 

4.10 IMAGE ANALYSIS AT THE SERVER SIDE 

Feedback is sent to the server by capturing the current movement of the applet, recorded 

as video at 30 frames/sec and streamed back. The server side runs various Image analysis 

tools which can select to receive the continuous packets by using the monitor mode or 

rather switch to playback mode to stop receiving current packets and perform Image 

analysis over the received images.  
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Image analysis at the server side involves contrast, brightness modifications, gray scale 

image generation, image rotation, image segmentation and zooming of the images. Each 

analysis is helpful in understanding more about the particular applet running on the client 

side. 

Image Rotation 

Image rotation is transforming the image in either clockwise or anti-clockwise direction. 

The rotation is calculated by computing the inverse transformation for every pixel in an 

image. Output pixels are calculated using bilinear interpolation of the original image. The 

colored image is computed by evaluating one color plane at a time. Once each color plane 

is transformed the final image with the rotated angle is obtained. The original image can 

be rotated in 90,180, 270 degrees in both clockwise and anti-clockwise direction. The 

original image is of MxN pixels with the image representation computed with a linear 

scaling on the pixel. Image is a unit8 indexed or RGB array rotates the image array and 

returns it in the output image. Figure 4.12 shows the original image and the anti-

clockwise rotated flip sided image 

 

 

 

4.12.1 Original Image 4.12.2 Rotated/Flipped Image 
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Image Segmentation 

Image Segmentation performs partitioning of image into multiple regions. This is 

significantly useful when a particular region is of interest for further processing. The 

result of segmentation is set of regions that together form the entire image. Adjacent 

regions are significantly different with respect to the same characteristic. We use built in 

methodology using clustering methods to perform the segmentation of image with region 

of interest. Figure 4.13 shows the segmented image with region of interest focusing the 

movement of the crane on the applet 

 

 

Gray Scale Image Generation 

A gray scale image is one in which the colors are shades of gray. This will require less 

information to be provided to each pixel. The gray color is one in which red, green and 

blue components have equal intensity in RGB space with single intensity value of each 

pixel. Gray scale image is used for further processing to get additional information of the 

original data. To convert a color image to its most approximate level of gray, we need to 

obtain the values of red, green and blue primaries in linear intensity. With this as input 

we add 30% of red value, 59% of the green value and 11% of the blue value together. 

4.13.1 Original Image 4.13.2 Segmented Image 
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The resultant number is the desired gray value. The percentages are due to the different 

relative sensitivity of the human eye to each of the primary colors. The final result is the 

linear intensity value of the equivalent gray which can be gamma corrected. Figure 4.14 

shows the gray scale generated image from the original image 

 

 

The primary goal of introducing video data to the application is to improve the 

collaborative work of the application and to determine the impact of the video data on the 

synchronization of the force feedback device and the applet on the client side. In our 

work we have not concentrated in the bandwidth issues of the application as we deal with 

a simulated single hop network. Our main concern is to determine the impact of the video 

data on the synchronization of the force feedback device with the applet in the client side. 

We have developed the Therapist GUI at the server which will control all the above 

image processing tools during the playback time. Figure 4.14 shows the therapist GUI to 

control the Image processing application and based on that the future movement of the 

device is controlled. 

4.14.1 Original Image 4.14.2 Gray scaled Image 
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Figure 4.15 Therapist GUI 

The above figure shows that the real time video is streamed from the client side and 

captured through a media player. The server has the option of operating in two different 

modes. During the monitoring mode the data is played in the player. When the therapist 

decides to perform Image processing analysis on the received data, the video capture is 

stopped and current update from the client is loaded on the player. With this as input, 

various image processing techniques can be performed on the received image as 

discussed in the previous sections.  In our results section we will determine the impact of 

the video on the force feedback data. 
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CHAPTER 5 

PRELIMINARY RESULTS 

5.1 TEST BED 

The test bed shows the setup of Client Server architecture. Here we have the Microsoft 

Sidewinder Force Feedback Device attached with the Server. The Server runs the Matlab 

Processing Unit which takes input from the joystick and reads the Axis and button values 

from the data acquisition Adapter and runs the UDP Server. The Server runs on a Dell 

Inspiron 5150 on Windows XP machine, with 2.8 GHz and memory of 512RAM. 

 

 

 

 

 

Figure 5.1 Test Bed for SURGNET 

 

Microsoft Sidewinder Force Feedback  
Device with the client Side 

 
Sidewinder, Matlab, UDP Server  

Dell Inspiron 5150, XP, 2.8Ghz, 512RAM 
 

PC Router 
(Network Emulator) 

SERVER CLIENT 

Intel Pentium 4, XP, 2Ghz, 256RAM 
OpenGL, Java Applet, UDP Client 

Linux based NISTNet WAN Emulator 
(Delay jitter, packet loss Simulation) 

 
IBM Centrino, Fedora Core 2.6.11 
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The Network Emulator (NISTNet) is setup on a IBM Centrino, Linux machine. The 

machine is treated as a router which takes input from the server, process and updates the 

client side. NISTNet Emulator runs on a Fedora Core 2.6.11 machine with Real Time 

Clock setup as separate module from the Kernel.  

 

The Client side runs the Virtual Reality (Applet) enabled Web browser. The Client side 

runs the UDP Client which runs on an Intel Pentium 4, XP with 2 GHz and 256 of RAM 

Memory. Unlike the TCP connection where the Server has to be starter first, here the 

UDP Client and Server can be started independently.   

 

5.2 RESULTS 

 

The generated data is recorded at the source which shows the movement of the joystick at 

the server side. For convenience we have recorded just the X-axis movement. In the 

below generated data we see that the X-Axis position moves in the negative axis also. 

That is because of the base of the handle in the Sidewinder Joystick is located in the 

center. So we have programmed in such a way that if the handle moves to the left it gives 

a negative value and when it moves to the right it generates a positive value in the X-Axis 

position. 

Since Force feedback rendering rate is 1 KHz we see that the data is generate every 

1msec. Hence immediate movements of the handle of the joystick are recorded for first 

50msec. A random movement was recorded and plotted in MatLab which stored the 

readings in a mat file.  
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In order to obtain efficient synchronization mechanisms, integrated synchronization 

algorithms ensure that both the packet loss and the delay jitter are compensated. In our 

study we will determine the output of the algorithms separately and show why it is 

necessary to have an integrated compensation technique so that Synchronization is 

achieved. 

Our analysis involve showing the output of data loss separately and the delay jitter 

separately, and insisting on the combined effect. Later we will show the impact of video 

data on the synchronization of force feedback device. Our Synchronization algorithm 

shows that it is independent of the introduction of video data. In our experiment we have 

recorded the data generated by moving the force feedback device. As mentioned earlier 

since the joystick handle is located at the center of the base the positional data is recorded 

in both positive and negative x- axis. For simplicity we have recorded only the position of 

the x-axis and did not consider the y-axis position which will also yield similar results. 

 

 

 

 

 

 

 

 

 

Figure 5.2 Generated Data at the Source 
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As seen in figure 5.2, the generated data was recorded due to the random movement of 

the joystick handle and that positional data variations are within the maximum limit of 

100 in the positive axis and -100 in the negative axis. Any data which tries to exceed the 

maximum value will be rounded to the maximum value. This is not a concern in our 

research as we are not dealing with the precision of the device. 

 

By introducing emulated conditions with NISTNet, we introduce a random delay and 

10%, 15% and 20 % of packet loss. This random nature of packet loss is introduced in 

between packets.  The results are evaluated without the video data and with video data to 

determine the impact of video on the synchronization of the force feedback data.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Data Loss of 10% without Video 
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Figure 5.3 shows the loss of packets in a random manner with 10% loss. So continuity of 

the data is lost. This graph does not include any delay jitter between the packets and 

hence just contain the packet loss scenario.  

(Predicted value showing the first 15msec readings) 

10 % Loss Comparison
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Figure 5.4 Data Comparison with Predicted (10 % Loss) 

Generated Value at Source Predicted Value at Receiver 
(Without Video) 

Predicted Value at Receiver 
(Without Video) 

-74.9476 -76.0639 -77.06 

-73.69 -72.6148 -72.32 

-69.32 -69.477 

 
-68.4 

Table 5.1 Data Comparison with Predicted (10% Loss) 

In table 5.1 we see that the Linear Packet Predictor Algorithm was able to recover the lost 

packet to as close as possible. The predicted data is shown without and with video data 

introduced. The data predicted with video shows varying packet predicted value than 
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predicted value without video. We had a 10 % of packet loss and hence we see that the 

predictor works well.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Data Loss with 15% without Video 

In figure 5.5 we have recorded a packet loss rate of 15%. Here we are discussing the 

packet loss as a separate phenomenon and hence use only the Linear Packet Predictor 

Algorithm but not the VTR algorithm because there is no delay involved in this emulated 

condition.  
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(Predicted value showing the first 15msec readings) 

15% Loss Comparison
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Figure 5.6 Data Comparison with Predicted (15 % Loss) 

Generated Value at Source Predicted Value at Receiver 
(Without Video) 

Predicted Value at Receiver 
(Without Video) 

-74.9476 -76.606 -76.68 

-73.69 -72.36 -73.92 

-69.32 
-67.9 

 
-68.98 

        Table 5.2 Data Comparison with Predicted (15% Loss) 

 

 

 

 

 

 

 

 

 

Data with 20% Loss
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Figure 5.7 Data Loss of (20%) without Video 
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(Predicted value showing the first 15msec readings) 

 

20% Loss Comparison
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Figure 5.8 Data Comparison with Predicted (20% Loss)  

Generated Value at Source Predicted Value at Receiver 
(Without Video) 

Predicted Value at Receiver 
(Without Video) 

-74.9476 -77.2638 -77.12 

-73.69 -73.121 -74.12 

-69.32 -72.1 

 
-69.4 

         

Table 5.3 Data Comparison with Predicted (20% Loss) 

From the figure we see that as the packet loss rate increases the number of packets lost 

increases. This factor affects the predictor when adjacent packets are lost, it would have a 

packet predicted from a predicted packet and hence while the loss is less the Packet 

Predictor predicts as close to the actual value of the packet. A comparative table below 

shows for a single packet which was lost on all three conditions and shows the predicted 

value which varies for the same packet. 
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Data Comparison for various losses on a single packet 

 

Generated Data 

 

 

Predicted Value (10% Loss) 

(No Video)              (Video) 

 

Predicted Value (15% Loss) 

(No Video)              (Video) 

 

Predicted Value (20% Loss) 

(No Video)              (Video) 

 

-74.9476 

-76.0639 -77.06 -76.606 -76.68 -77.2638 -77.12 

Table 5.4 Various Losses for single packet 
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Figure 5.9 Data with variable Delay  

In this condition the network will impose variable delay with heavy tail distribution 

between packets which reach the destination in sequence but not in the speculated time. 

Network delay is increased when introduced with video, but our algorithm still able to 

recovered the update time of the packets. We do not see any packet loss here and if we 

apply the Virtual Time Rendering Algorithm to the delayed data, then we can get back 

the required packets in synchronization. 
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Virtual Time Rendering Data
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Virtual Time Rendering Data

 

Figure 5.10 Virtual Time Rendering Algorithm 

As shown in the above conditions the loss and delay does not appear separately in the 

network. The network imposes a combined loss and delay jitter and hence we need to 

compensate for both the issues at the same time. Following graphs show that a 

combination of variable delay with 10%, 15% and 20% loss and we will examine a step 

by step solution how the control unit decides to which algorithm runs first to achieve the 

synchronization. First we examine the 10 % packet loss with variable delay 
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Figure 5.11 Integrated - 10 % Loss and Variable Delay 
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The control unit obtains the data from the adaptive buffer and checks the sequence 

number of the packets, if they have arrived in sequence then the data packet is passed to 

the Virtual Time Rendering Algorithm. If the data packet is lost then the data packet is 

passed to the Linear Predictor Algorithm which predicts the closest value of the packet 

and sends it to the VTR to compensate for the delay. 

 

 

 

 

 

 

 

 

Figure 5.12 Data Comparison after Linear Predictor without Video 
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Figure 5.13 Data Comparison after Linear Predictor and VTR  
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Predicted 10% with Delay
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Figure 5.14 Data Comparison after Linear Predictor with Video 

Data Comparison (10%)
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Similarly we determine the output after the Linear Predictor and then the output which 

shows after the VTR is applied without video and with video for 15 %, 20% Packet Loss 

Figure 5.15 Data Comparison after Linear Predictor and VTR (Video) 
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Figure 5.16 Data Comparison with variable delay and 15% Loss 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Data Comparison after Linear Prediction Algorithm 
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Figure 5.18 Data Comparison after Linear Predictor and VTR 
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Figure 5.19 Data Comparison after Linear Predictor with Video 

Data Comparison (15%)
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Data Comparison (15%)
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Data Comparison for 20 % Loss 

 

 

 

 

 

 

 

 

 

Figure 5.21 Data Comparison with variable delay and 20 % Loss 
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Figure 5.20 Data Comparison after Linear Predictor and VTR (Video) 
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Figure 5.22 Data Comparison after Linear Prediction Algorithm 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Data Comparison after Linear Predictor and VTR 
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Predicted 20% with Delay
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Figure 5.24 Data Comparison after Linear Predictor with Video 

Data Comparison (20%)
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Figure 5.25 Data Comparison after Linear Predictor and VTR (Video) 
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CHAPTER 6 

FUTURE WORK 

Force feedback devices and haptic devices are useful in assisting surgeons to perform 

remote surgery. Our thesis has suggested improving networking techniques that can 

support such applications. Providing quality of service to the application, the network 

can improve the intractability. In this section we suggest some future works that can 

be done to improve the collaborative nature of the application. 

Group Synchronization:   

  Our application dealt with a single source and single receiver performing a 

1:1 communication. In real world scenario, we would have multiple requests working 

on the same object. In such cases, n : 1 communication is required and the network 

should be able to perform group synchronization. A real world scenario would be 

group of surgeons operating on the same remote patient. The network should be able 

to provide synchronized data transmission between the server requests as well as 

providing intra media synchronization within each media. Another major concern 

would be to determine the bandwidth impact on the synchronization scheme when 

introduced with multi media systems. 

  SURGNET provides efficient synchronization of the force feedback 

device and shows an emulated surgical application. The future work would be to 

integrate more media to the architecture and determine the impacts of such on the 

application.  
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CHAPTER 7 

CONCLUSION 

 

The proposed research gives an integrated compensation technique which 

synchronizes the rendering update rate at the remote side with efficient algorithms. 

SURGNET addresses challenges in compensating for the data packet loss as well as 

the varying delay jitter. The primary goal of the architecture is to address the major 

issue of providing a complete solution which addresses the various challenges of the 

network. With an adaptive approach the algorithms efficiently work in reproducing 

the generated source and SURGNET platform provides architecture to support it.  

 

The architecture was improved by providing intra media synchronization by 

introducing the feedback video data with the restricted bandwidth and still able to 

achieve the required synchronization for both force feedback devices as well as the 

intra media synchronization. Our work was tested for efficiency in a simulated 

network by considering real time network scenarios and we studied the efficiency of 

the synchronization algorithms that we have proposed. 
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