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The growth of galaxies in cosmological simulations of structure formation
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ABSTRACT

We use hydrodynamic simulations to examine how the baryonic components of

galaxies are assembled, focusing on the relative importance of mergers and smooth

accretion in the formation of ∼ L∗ systems. In our primary simulation, which mod-

els a (50h−1Mpc)3 comoving volume of a Λ-dominated cold dark matter universe,

the space density of objects at our (64-particle) baryon mass resolution threshold

Mc = 5.4 × 1010M⊙ corresponds to that of observed galaxies with L ∼ L∗/4. Galaxies

above this threshold gain most of their mass by accretion rather than by mergers. At

the redshift of peak mass growth, z ≈ 2, accretion dominates over merging by about

4:1. The mean accretion rate per galaxy declines from ∼ 40M⊙ yr−1 at z = 2 to

∼ 10M⊙ yr−1 at z = 0, while the merging rate peaks later (z ≈ 1) and declines more

slowly, so by z = 0 the ratio is about 2:1. We cannot distinguish truly smooth accre-

tion from merging with objects below our mass resolution threshold, but extrapolating

our measured mass spectrum of merging objects, dP/dM ∝ M−α with α ∼ 1, implies

that sub-resolution mergers would add relatively little mass. The global star formation

history in these simulations tracks the mass accretion rate rather than the merger rate.

At low redshift, destruction of galaxies by mergers is approximately balanced by the

growth of new systems, so the comoving space density of resolved galaxies stays nearly

constant despite significant mass evolution at the galaxy-by-galaxy level. The predicted

merger rate at z . 1 agrees with recent estimates from close pairs in the CFRS and

CNOC2 redshift surveys.

Subject headings: cosmology: theory — galaxies: formation

http://arXiv.org/abs/astro-ph/0106282v1
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1. Introduction

What galaxies look like today clearly depends on how they were assembled. For example, the

formation of ellipticals involves considerably more random kinetic energy than does the assembly

of spirals. Thus, it is thought that ellipticals frequently result from the rather violent merger of

roughly equal-sized galaxies (Toomre & Toomre 1972; Barnes & Hernquist 1992). To investigate

this possibility, observational studies have sought to find the merger fraction as a function of

redshift and compare this to the present abundance of elliptical galaxies (e.g., Le Fèvre et al.

1999). Conversely, the apparent quiescence of most field spirals implies tight constraints on the

amount of merging that can occur in these systems and suggests that these galaxies more likely

grew through a process of smooth accretion (e.g., Toth & Ostriker 1992).

Determining galactic histories and their relation to galaxy properties is the essence of studying

galaxy formation. Theoretical investigations of these histories must come to grips with a daunting

array of physical processes over a wide range of scales, all of which may play important roles in

molding a spectrum of initial density fluctuations into a population of galaxies. Hydrodynamic

N-body simulations are a valuable tool because they can represent many of these processes and

scales, though they still suffer from finite dynamic range and limited knowledge of the physics of star

formation. In principle, one can use such simulations to examine the link between the formation

histories and morphological properties of galaxies. Unfortunately, simulations that resolve the

internal structure of galaxies and simultaneously model a representative volume of the universe

are (slightly) beyond the reach of current computers. Furthermore, the most ambitious efforts to

simulate the formation of individual systems do not reproduce the observed distribution of galaxy

properties (e.g., Navarro & Steinmetz 2000), and it is not clear whether this failure has its roots in

incorrect cosmological assumptions, an inadequate treatment of physical processes (star formation

and feedback in particular), or numerical limitations of the simulations themselves.

In this paper we take a complementary approach to the study of galaxy assembly, using simula-

tions that represent large cosmological volumes but do not resolve the internal structure of galaxies.

Within these simulations we measure the global evolution of the number density and total mass of

the galaxy population, and we examine the relative importance of smooth accretion and mergers

in driving this evolution. We also investigate some related issues such as destruction of galaxies by

tidal disruption, mass loss from galaxies during mergers, and the connection between the global star

formation history and the history of galaxy assembly. In the context of our adopted cosmological

model, these numerical results provide a backdrop for interpreting observations of galaxy evolution

and merger rates or constructing theoretical descriptions of the origin of galaxy morphologies. A

combination of N-body simulations and analytic methods has led to a fairly complete statistical

understanding of the assembly of dark matter halos (see, e.g., Lacey & Cole 1993; Sheth & Tormen

2001); our results represent an initial numerical effort to extend that understanding to the baryonic

components of galaxies.

This focused examination of the physics of galaxy assembly extends our earlier work on galaxy
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formation in the framework of the inflationary cold dark matter scenario (Katz et al. 1992, 1996,

1999; Hernquist et al. 1995; Weinberg et al. 1997, 1999, 2000). Here we take advantage of the larger

simulations possible with the parallel version of TreeSPH (Davé, Dubinski, & Hernquist 1997). We

also take advantage of an emerging consensus, driven by many independent observations, that

favors a cosmological model with Ωm ≈ 0.4, h ≡ H0/(100 km s−1 Mpc−1) ≈ 0.65, a flat universe

dominated by cold dark matter and vacuum energy, and approximately scale-invariant primeval

fluctuations with the properties predicted by inflation. This consensus allows us to concentrate our

efforts on a single set of cosmological parameters. However, it is worth bearing in mind that the

viability of this model on galactic scales remains a matter of debate (see, e.g., Moore et al. 1999;

Spergel & Steinhardt 2000), and that even within its general framework there are uncertainties in

parameter values that could have a significant impact on its predictions.

The principal limitation of our study is that we cannot distinguish the process of truly smooth

accretion from mergers with galaxies below our simulations’ mass resolution threshold. Throughout

this paper, we will use the phrase “smooth accretion” to refer to the combination of these two

processes, as distinct from mergers with objects above our resolution threshold. For the large

volume, high dynamic range simulation that we rely on for most of our results, the space density

of resolved objects implies an identification with galaxies of luminosity ∼ L∗/4, where L∗ is the

characteristic luminosity in the Schechter (1976) luminosity function (see discussion at the end of

§3.

The following Section describes our numerical simulations and our method of identifying the

dense groups of baryonic particles that represent the observable regions of galaxies. In §3 we

investigate the global evolution of the galaxy population — number densities and mass densities

— and we discuss numerical resolution issues in some detail. The heart of the paper is §4, where

we examine the processes that create and destroy galaxies in the simulations, the roles of smooth

accretion and mergers in galaxy assembly, the statistics of merger masses and mass ratios, mass

loss during mergers, and the connection between star formation and accretion. Section 5 discusses

the implications of these results, the comparison of our predicted merger rates to observations, and

directions for future work. The Appendix presents details of the analysis method, which is based

on a view of the simulations as Monte Carlo solutions of a kinetic equation describing the evolution

of the galaxy mass function.

2. Numerical methods

We perform our simulations using the parallel version of the cosmological N-body/hydrodynamic

code TreeSPH (Hernquist & Katz 1989; Katz, Weinberg, & Hernquist 1996, hereafter KWH; Davé,

Dubinski, & Hernquist 1997), a code that unites smoothed particle hydrodynamics (SPH) (Lucy

1977; Gingold & Monaghan 1977) with the hierarchical tree method for computing gravitational

forces (Barnes & Hut 1986; Hernquist 1987). Dark matter, stars, and gas are all represented by

particles; collisionless material is influenced only by gravity, while gas is subject to gravitational
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forces, pressure gradients, and shocks. The gas can also cool radiatively, assuming primordial

abundances, and through Compton cooling. In SPH, gas properties are computed by averaging

or “smoothing” over a fixed number of neighboring particles; the calculations here use 32-particle

smoothing. There is a maximum allowed timestep, and all particles are integrated with this step

or one a power of two smaller. The timestep criteria are detailed further in KWH and Quinn et al.

(1997); we set the tolerance parameter η (defined in these papers) to 0.4. In these simulations we

include star formation and supernova feedback using the algorithm described in KWH. For each

star formation event, supernova energy is added to the surrounding particles as thermal energy on

a time scale of 2 × 107 years.

2.1. Simulation parameters

All four of the simulations we discuss in this paper are based on a Λ-dominated cold dark

matter (CDM) cosmological model with Ωm = 0.4, ΩΛ = 0.6, h ≡ H0/(100 km s−1 Mpc−1) = 0.65,

and primeval spectral index n = 0.93. With the tensor mode contribution, normalizing to COBE

using CMBFAST (Seljak & Zaldarriaga 1996; Zaldarriaga, Seljak, & Bertschinger 1998) implies a

normalization σ8 = 0.8, which provides a good match to cluster abundances (White, Efstathiou, &

Frenk 1993). We use the Hu & Sugiyama (1996) formulation of the transfer function, and we adopt

a baryonic density Ωb = 0.02h−2, consistent with the deuterium abundance in high redshift Lyman

limit systems (Burles & Tytler 1997, 1998), and the opacity of the high redshift Lyman-alpha forest

(e.g. Rauch et al. 1997). All of our simulations model a triply periodic cubical volume.

The simulations cover a range of resolutions, which allows us to examine the numerical behavior

and test for convergence. The primary and largest simulation, L50/144 (Davé et al. 2001), has 1443

gas and dark matter particles in a comoving periodic box 50h−1 Mpc on a side, with a gravitational

softening length ǫgrav = 7h−1 comoving kpc (equivalent Plummer softening). This simulation is

evolved to z = 0. As discussed in §2.3 below, we adopt as our nominal gas mass resolution the

mass corresponding to 64 SPH particles, which for this simulation is 5.4×1010M⊙. We also analyze

L11/64, a simulation with 643 gas and dark matter particles in a volume 11.11h−1 Mpc on a side,

also evolved to z = 0. This simulation has a particle mass eight times smaller than L50/144 and a

gravitational softening length two times smaller. The minimum SPH smoothing length is ǫgrav/4,

so the higher spatial resolution extends to the hydrodynamic forces. We also analyze L11/128, a

simulation with 1283 particles of each type in a volume the same size as the L11/64 simulation, but

only evolved to z = 3. It has a particle mass eight times smaller than L11/64 and a gravitational

softening length two times smaller. Finally, we analyze L11/64′. This simulation has the same

resolution and volume as L11/64, but it uses the same random realization of the CDM power

spectrum as L11/128. It has been evolved to z = 3, and the comparison to L11/128 gives our most

direct test of finite resolution effects down to this redshift.

Our results depend on the spatial and mass resolution of the simulation, which we discuss in

more detail below, and on the temporal spacing of the available outputs. Large time intervals tend
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to increase the amount of smooth accretion because small groups can form and merge with larger

neighbors within a single time interval. For our analysis, we chose a sequence of outputs with a

spacing of ∆z = 0.5 for 7 ≥ z ≥ 4, ∆z = 0.25 for 4 ≥ z ≥ 1, and ∆z = 0.125 for 1 ≥ z ≥ 0.

The corresponding time intervals, as seen in the figures below, are roughly 1/3Gyr, 2/3Gyr and

4/3Gyr, respectively. These are on the order of the infall time scale at the corresponding epoch,

although perhaps somewhat longer at the latest time. We repeated some of our main analyses using

twice as many outputs, i.e. halving the redshift spacing, and found similar results.

2.2. Group finding algorithm

SPH simulations with CDM initial conditions and radiative cooling lead to the formation of

dense groups of baryonic particles that have sizes and masses comparable to the luminous regions of

observed galaxies (Katz et al. 1992; Evrard, Summers, & Davis 1994). If star formation is included,

these dense groups are the regions where stars form (KWH). The accretion and merger histories of

these objects are the subject of this paper, so the identification of distinct particle groups underlies

all of our subsequent analysis. We use the group finding algorithm of Stadel et al. (2001), Spline

Kernel Interpolative DENMAX, abbreviated SKID (Gelb & Bertschinger 1994; see also KWH and

http://www-hpcc.astro.washington.edu/TSEGA/tools/skid.html). The basic algorithm consists of:

1) determining the smoothed density field; 2) moving particles upward along the gradient of the

density field using an heuristic equation of motion that forces them to collect at local density

maxima; 3) defining the approximate group to be the set of particles that aggregate at a particular

density peak; 4) finally, removing particles from the group that do not satisfy a negative energy

binding criterion relative to the group’s center of mass.1 In contrast to the identification of dark

matter halos in N-body simulations, there is essentially no ambiguity about the identification of

1This procedure starts with the highest energy particles and updates the potential as particles are lost.

Table 1: Simulations
Name L(Mpc) N zfin Mmax(M⊙)a Mmin(M⊙)b Mc(M⊙)c

L50/144 50h−1 2 × 1443 0 3.1 × 1012 6.8 × 109 5.4 × 1010

L11/64 11h−1 2 × 643 0 3.2 × 1010 8.5 × 108 6.8 × 109

L11/128 11h−1 2 × 1283 3 3.0 × 1010 1.1 × 108 8.5 × 108

L11/64′ 11h−1 2 × 643 3 3.0 × 1010 8.5 × 108 6.8 × 109

aMass of 10th largest galaxy in simulation, at z = 0 for L50/144 and z = 3 for other simulations
bMass of 8-particle group
cMass of 64-particle group
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distinct baryon clumps in these SPH simulations because dissipation greatly increases the density

of cooled baryons with respect to the local background.

As output, SKID produces a list of baryonic particles, both gas and stars, that belong to each

identified group. To be included in a group, gas particles must have a temperature T < 3 × 104K

and and a density ρ > 103Ωb. In effect, we consider only the cold gas and stars, the material that

comprises the bulk of the matter in the central, visible regions of galaxies. Therefore, throughout

this paper we use the terms group and galaxy interchangeably.

One complication that arises with this group definition is lost particles. Specifically, given

all the particles in groups at one output, SKID finds that roughly 1% of these are lost by the

next output. However, more careful inspection shows that roughly 30% of those particles declared

lost still reside physically within the group boundary, which we define to be the maximum radius

of any bound member particle. These particles may in fact be unbound and in the process of

leaving the group, although we have not checked their energies relative to the group center-of-

mass. Nevertheless, in the interest of estimating the mass loss conservatively, we simply add these

particles back to the group. Consequently, our group definitions become dependent on output

spacing, although the effect is only of order 1%.

2.3. Mass resolution

We allow SKID to identify groups with as few as eight particles. Because these particles must

be stars or cooled baryons, even these small groups are real, high contrast objects residing in dense

backgrounds. However, our comparisons, statistical and direct, between simulations with different

mass resolutions show that a simulation’s group list becomes incomplete (relative to a simulation

with higher resolution) below ∼ 60 particles. Above this threshold, the total baryon mass of groups

is well converged (see the discussion of Figure 1 below), though the division into stellar and gas

components remains resolution dependent up to a somewhat higher threshold. For most of the

analyses of this paper, we adopt Ngrp = 64 particles as the minimum number for a resolved group,

and we discard all SKID groups with fewer particles. Our nominal mass resolution limit is therefore

that of 64 SPH particles, though since mass is redistributed among particles during star formation

(see KWH) the exact mass of a 64-particle group may be slightly higher or lower. We further

discuss resolution effects and other limits on the mass ranges probed by our simulations in the next

Section.

3. Evolution of galaxy number and mass densities

First we look at the simplest quantities that characterize the galaxy populations in the sim-

ulations: the mass function, the total number density, and the total mass density. Examining

these characteristics shows qualitatively how the galaxy population evolves and also illustrates the
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numerical factors that come into play in the analysis.

As mentioned above, the most important numerical variable is the mass resolution, the min-

imum mass of a resolved particle group. Because the number of galaxies increases towards low

masses, the number of galaxies in a simulation depends sensitively on this lower mass limit. The

box size also comes into play, however, as this determines the number of relatively rare, high-

mass objects that form, thereby determining the maximum mass for which statistical results are

meaningful.

Table 1 lists the numerical parameters of the simulations described in §2.1, in particular the

characteristic minimum and maximum masses associated with the resolution and box size. We

define the maximum mass, Mmax, to be the baryonic mass of the 10th largest galaxy in the simula-

tion volume, identified as described in §2.2. Mmin denotes the mass corresponding to an 8-particle

minimum group size, and Mc denotes the adopted cutoff mass corresponding to the 64-particle

minimum. All three 11.11h−1 volumes have about the same maximum mass at z = 3. The min-

imum mass is determined by the resolution, so the L11/128 simulation has a substantially lower

minimum mass.

Figure 1 shows particle groups in the L50/144, L11/64, and L11/128 simulations at z = 3.

In any given simulation, the mass function begins to turn over at a mass 5-10 times higher than

the 8-particle minimum of the SKID groups. Comparison to the next higher resolution simulation

shows that this turnover is a numerical artifact. If we instead restrict attention to masses above our

adopted 64-particle threshold Mc, then the mass function in a higher resolution simulation gives

a fairly smooth continuation of that in the lower resolution simulation. The envelope of the three

mass functions approximately follows a Schechter function.

All the analyses that follow include only galaxies with masses above Mc. Because of their

different resolutions and box sizes, our simulations probe different mass ranges. In the case of

L50/144, one can see from Figure 1 that this range is nearly disjoint from that of the smaller

volume simulations.

The lower panel of Figure 2 compares the comoving number density ν of galaxies above the 64-

particle threshold in the four simulations, as a function of time (lower axis label) or redshift (upper

axis label). The upper panel shows the comoving density µ of baryonic mass in these resolved

galaxies. Once again, the effects of mass resolution and box size are clearly evident. L11/128 has

the highest number and mass densities. L11/64 and L11/64′ have fewer galaxies, of course, since

they have the same upper mass cutoff as L11/128 but a lower mass cutoff that is eight times higher.

However, if the power law form of the low end of the mass function, roughly n(M) ∝ M−1.1 in

Figure 1, continued to arbitrarily high mass, then L50/144 would have the highest number and

mass densities because it has the largest dynamic range Mmax/Mc. (For n ∝ M−1, the number

of galaxies per logarithmic interval is constant, and the mass per logarithmic interval increases

linearly with M .) In reality, the maximum mass Mmax of L50/144 lies well into the exponential

cutoff regime of the mass function, and as a consequence the galaxy population of L50/144 has the
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Fig. 1.— The mass function at z = 3 in the L50/144 (solid histogram), L11/64 (dashed histogram),

and L11/128 simulations (dotted histogram). Error bars reflect Poisson errors. The solid curve is

a Schechter function overlaid for comparison.
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lowest mass density and by far the lowest number density of the four simulations.

Turning from numerical considerations to evolution, we see that number and mass densities

both increase most strongly at early times, i.e. for z > 2. In the simulations that continue to

z = 0, the number of objects becomes approximately constant for z < 2, and the difference in

mass density between L50/144 and L11/64 stays about the same. As discussed in §4 below, the

number of galaxies remains roughly constant even though merging continues to late times because

new galaxies also continue to form. In contrast to the number density, the total mass in galaxies

continues to grow, both from the formation of new groups and from the accretion fed growth of

existing galaxies.

Figure 3 shows this behavior in terms of the corresponding rates of change in mass density µ̇

and number density ν̇. The differences between simulations are greatest at high redshift, where

the hierarchical mass scale is lowest. For z < 2 the results at different resolutions agree, indicating

that the formation rate of very low mass objects has become negligible. The differences in total

mass and number density apparent in Figure 2 must therefore be imprinted at early times.

The physical quantity one would like to know is the mass or number density of galaxies above

some specified mass M . In practice M cannot be below the mass resolution of the simulation,

Mc, and the mass and number densities measured by the simulations are not those for all galaxies

above a given mass but only for galaxies below a maximum mass determined by the volume.

However, we can measure the same quantity in more than one of our simulations to assess the

robustness of our measurements given these limitations. The L11/64 and L11/64′ simulations

have the same resolution and box size, but there is a small difference in the quantities plotted in

Figures 2 and 3, represented by the filled squares and four point stars. These differences show

the random fluctuations associated with two different realizations of the initial power spectrum in

this volume. We can assess the impact of our finite resolution on these quantities by comparing

the L11/64′ simulation (four point stars) to the L11/128 simulation analyzed with the mass cutoff

Mc = 6.8× 109M⊙ of L11/64′. These results are shown by the three point stars in Figures 2 and 3.

The good agreement between the three and four point stars indicates that we can robustly measure

number and mass densities for galaxies above the 64-particle threshold mass Mc, and that finite

resolution effects on our statistics above this threshold should be small.

To relate our numerical results to an observational context, we would like to know the ap-

proximate luminosity of galaxies corresponding to our resolution threshold Mc. Although we have

stellar masses for each of our galaxies, the mass-to-light ratio of the stellar populations depends

sensitively on the assumed initial mass function and on the age, metallicity, and extinction of the

stellar population. Furthermore, the overall scale of the galaxy baryon masses may be sensitive

to some cosmological parameters, especially Ωb. Given these uncertainties, the most robust way

to identify our mass threshold with an approximate luminosity threshold is by matching the space

densities of simulated and observed galaxy populations. If we match the mass function in Figure 1

to Blanton et al.’s (2001) determination of the luminosity function from the Sloan Digital Sky Sur-
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Fig. 2.— The total comoving mass (top) and number density (bottom) of galaxies as a function

of cosmic time for galaxies with masses above Mc = 5.4 × 1010M⊙ (L50/144–open squares), Mc =

6.8 × 109M⊙ (L11/64–solid squares, L11/64′–four point stars, L11/128–three point stars), and

Mc = 8.5 × 108M⊙ (L11/128–open triangles).
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Fig. 3.— The rates of change of mass (top) and number density (bottom) above the masses shown

in Figure 2. The number and mass densities for masses above Mc = 5.4 × 1010M⊙ (L50/144–open

squares) and Mc = 6.8 × 109M⊙ (L11/64–solid squares) agree for z < 1.5.
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vey, the implied luminosity corresponding to the threshold Mc of L50/144 is ∼ L∗/4, the precise

value depending on whether we match the g′ or r′ luminosity function and whether we match space

densities at Mc or at L∗.

4. Evolution of the galaxy population through accretion and mergers

4.1. Galaxy creation and destruction

The instantaneous rate of change in galaxy number in the simulations is determined by the

relative rates of formation and destruction. Galaxies are destroyed either through merging with

another larger galaxy or though disruption. In the upper panel of Figure 4, open squares show

the rate of change ν̇ of galaxy number density from the L50/144 simulation. (These are the same

as the open squares in the lower panel of Figure 3, but the vertical scale is greatly expanded.)

Filled squares show the creation rate of new galaxies; in general these galaxies are not entirely

new, but they have gained enough mass since the last output to cross the mass threshold Mc. The

difference between the filled and open points is the destruction rate, shown also by the filled squares

in the lower panel. Open squares and filled triangles in this panel show the contributions to the

destruction rate from mergers (which make one galaxy from two) and disruption (which moves a

galaxy from above Mc to below Mc), respectively. Figure 5 shows creation and destruction rates

for Mc = 6.8× 109M⊙, from L11/64. This plot is noisier because of the smaller number of galaxies

in the simulation, but it is qualitatively similar except for the higher number densities associated

with less massive galaxies (note the change in vertical scale from Figure 4).

In both cases the creation rate climbs rapidly to a peak at z ≈ 3 and declines steadily thereafter,

though new galaxies continue to form (i.e., to cross the Mc threshold) down to z = 0. The merger

rate climbs more gently, reaching a broad maximum at z ∼ 1−2 and declining only slowly at lower

redshift. Mergers always dominate over disruption as a destruction mechanism. At high redshift

the creation rate is much larger than the destruction rate, but the balance begins to shift at z < 3.

By the present day, the creation and destruction rates are nearly equal, and both are much larger

than the net rate. This result shows that a high galaxy merger rate need not lead to rapid evolution

of the galaxy luminosity function, since other galaxies can grow to replace the ones that are lost.

4.2. Growth of mass through accretion and mergers

Figures 2 and 3 show that the total mass in resolved galaxies increases with time, as one would

expect. Since we only count mergers among resolved objects, all new mass must enter the population

through accretion. However, mergers redistribute mass within the resolved galaxy population, and

we can sensibly ask whether existing resolved galaxies gain more of their mass through accretion or

through merging with other resolved systems. Our methods for determining the smooth accretion



– 13 –

Fig. 4.— Contributions to the number density evolution for galaxies with masses above Mc =

5.4× 1010M⊙ (L50/144). Top panel: filled squares give the creation rate of new galaxies, and open

squares give the net rate (creation minus destruction). Bottom panel: filled squares give the total

destruction rate, and open squares and filled triangles show the respective contributions of mergers

and disruption.
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Fig. 5.— Same as Figure 4, for a mass threshold Mc = 6.8× 109M⊙ (L11/64). Note the change in

vertical scale, reflecting the higher number density of the less massive galaxies.
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and merger rates from the simulation outputs are fully described in the Appendix. The most

important point to recall here is that we define accretion to be true smooth accretion plus any

merging with galaxies below the cutoff mass Mc, since we have no reliable way to distinguish these

processes. For the remainder of this paper we will restrict our discussion to the L50/144 simulation

because it has the largest dynamic range and probes the mass range of greatest interest.

In Figure 6, pentagons show the total mass accretion rate for galaxies with masses above

Mc = 5.4 × 1010M⊙; except for the minor effects of disruption and mass loss, this is the same

quantity shown by the open squares in Figure 3 (top panel). Since we would like to know how

existing galaxies acquire mass, we subtract the contribution from newly formed galaxies and plot

the remainder as the filled squares. This globally averaged mass accretion rate in galaxies above

5.4×1010M⊙ rises rapidly until z ≈ 2 and declines slowly thereafter. At z = 0, the accretion rate is

about 1/3 of its peak value. The rate of truly smooth accretion by galaxies above Mc is necessarily

lower than that shown in Figure 6, since higher resolution simulations would resolve some of this

accretion into mergers with small groups. In addition to the total accretion rate, we show the

contributions from accreted gas (open squares) and stars (crosses) separately. As expected, gas

dominates the type of accreted material.

Figure 7 shows the distribution of accretion rates at four different redshifts. The mean mass

accretion rate of resolved galaxies drops from Ṁ ≈ 40M⊙yr−1 at z = 1 − 2 to Ṁ ≈ 10M⊙yr−1 at

z = 0, though at each redshift the Ṁ distribution is broad. Gas accretion always dominates over

stellar accretion, as expected from the global properties in Figure 6.

Figure 8 shows the volume averaged rate at which resolved galaxies (M > 5.4 × 1010M⊙ in

L50/144) gain mass through merging with other resolved galaxies. The single most important

result of this paper comes from the comparison of Figure 8 to Figure 6: galaxies gain most of their

mass by accretion, not by mergers (note the large change in vertical scale). At z ∼ 2, accretion

dominates merging by about a factor of five. However, accretion declines more rapidly than merging

towards low redshift, and by z = 0 it dominates by only a factor of two. The ratio of accretion

growth to merger growth in galaxies above this mass threshold would drop if our simulations had

higher mass resolution and could therefore resolve objects that are currently counted in the smooth

accretion rate.2 Nevertheless, the total merging rate is fully determined for galaxies with a mass

above Mc = 5.4 × 1010M⊙, and in this mass range mergers contribute . 1/3 of the mass growth

rate at every redshift. Furthermore, we will show in §4.3 that most of the merger contribution

comes from relatively massive objects, so the overall accretion-to-merger ratio would remain high

even with higher mass resolution (see discussion in §5).

Focusing on the merger rate itself, we see that it climbs fairly quickly until z ∼ 1.5. The

variations thereafter appear largely stochastic, with a slight overall decline. The clear decline in

2However, a higher resolution simulation would not necessarily give a lower accretion-to-merger ratio for its full

population of resolved galaxies, since its mass resolution threshold would also be lower, and these less massive galaxies

would still tend to accrete unresolved material.
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Fig. 6.— Evolution of the mass accretion rate for galaxies above Mc = 5.4 × 1010M⊙ (L50/144).

solid pentagons show the total including the contribution from newly formed galaxies. Solid squares

show only the accretion rate onto existing galaxies, excluding newly formed objects. Open squares

show the contribution to this accretion from gas and crosses the contribution from stars.
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Fig. 7.— Distribution of accretion rates onto individual galaxies at different redshifts for galaxies

with masses above Mc = 5.4 × 1010M⊙ (L50/144). The solid line shows total accretion rates, the

dotted line gas accretion rates, and the dashed line stellar accretion rates. The quantity ¯̇M denotes

the mean accretion rate at each time.
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Fig. 8.— The rate of mass gain through merging as a function of time, for galaxies with masses above

Mc = 5.4 × 1010M⊙ (L50/144). Solid squares show the total rate, open squares the contribution

from gas, and crosses the contribution from stars. Note that the vertical scale is stretched by a

factor of five compared to Figure 7.
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the number rate of merging (Figure 4) is compensated by an increase in the typical mass of the

merging objects. Open squares and crosses in Figure 8 show the separate contributions of gas and

stars. Gas-rich mergers are important early on, where about half the accreted material is gas and

half is stars, but they are quickly overtaken by mergers with predominantly stellar systems.

4.3. Masses and mass ratios of merging galaxies

Figure 9 shows the probability distribution of the masses of smaller “satellite” galaxies that

merge into larger “parent” galaxies. Above the cutoff mass, Mc, the distribution generally appears

to follow a power law in mass. The slope of this power law decreases with redshift, presumably

following the evolution of the non-linear mass scale. At high redshift (z > 0.5), the estimated slope

is steep enough (α < −1) that small objects dominate in number, while large objects dominate in

mass (i.e., an integral for the total mass of merging objects diverges at the upper end). However,

at low redshift (z < 0.5), the slope flattens, so that large objects dominate in both number and

mass.

Figure 10 shows the distribution of merger mass ratio, the ratio f = Msat/Mpar between the

satellite galaxy and the larger parent with which it merges. At the earliest times (z > 2), large mass

ratios predominate, although the total amount of merging is somewhat smaller than at later times.

Subsequently, a low f tail develops, and the distribution becomes approximately scale free above the

effective resolution cutoff. The probabilities extend to lower and lower f as the simulation evolves.

The slopes of the distributions are quite steep, with higher mass ratios (f & 0.4) dominating by

number. However, it is important to keep in mind that our finite resolution suppresses low-f

mergers, and since the number of resolved galaxies is largest near Mc, there is some preference for

merger ratio near unity almost by definition.

Given the resolution-limited mass, Mc, the simulation also gives an exact or complete estimate

of the total amount of merging above a given mass ratio and corresponding parent mass. Stated

in more mathematical terms, for a given merger ratio f0, there is a corresponding parent mass,

M0 = Mc/f0, for which the simulation includes all mergers with f ≥ f0 and Mpar ≥ M0. Conversely,

given f0, the rate is not exact for Mpar < M0 because the total should include satellites with

Msat < Mc, which are unresolved in the simulation.

Figure 11 shows the total number merger rate ν̇(≥ M0,≥ f0) at different redshifts, while Figure

12 shows the corresponding mass merger rate µ̇(≥ M0,≥ f0). Both figures display a range of values

of f0 and M0. Of particular interest is the amount of major merging, since that could transform

a galaxy’s morphological type. We define a major merger to be f ≥ 0.25.3 With the present

3Simulations show that for f ∼ 1, mergers essentially transform galaxy types (e.g. Barnes 1988, 1992; Hernquist

1992, 1993; Barnes & Hernquist 1996), while for f ∼ 0.1, galaxies are damaged, but not completely destroyed (e.g.

Fullager et al. 1993; Walker et al. 1996).
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Fig. 9.— The mass distribution of galaxies that merge into larger galaxies as a function of smaller

galaxy mass, in four redshift ranges, for galaxies with masses above Mc = 5.4×1010M⊙ (L50/144).

The solid line shows total merged mass, the dotted line the gas mass, and the dashed line the stellar

mass. There is a cutoff in total mass at log M = 10.8, corresponding to the minimum mass Mc,

although stellar and gas contributions can be smaller. The line indicates the approximate slope α

of the high-mass end. The arrow on the abscissa denotes the mean merger mass.
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Fig. 10.— The fractional mass distribution of merger events into individual galaxies as a function

of merger mass ratio, f = Msat/Mpar, in four different redshift ranges, for galaxies with masses

above Mc = 5.4×1010M⊙ (L50/144). The solid line shows the distribution of total fractional mass,

while the dotted and the dashed lines show the distribution of the gaseous and the stellar mass

fraction, respectively. The line indicates the approximate slope α of the distribution. The arrow

on the abscissa indicates the mean mass ratio of the merger, which is roughly f̄ = 0.25 throughout.
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simulation, we can measure the amount of major merging exactly for Mpar ≥ M0 = 2.2× 1011M⊙,

approximately L∗. Overall, major merging appears to contribute significantly to the total amount

of merging measured in the simulation. For this threshold mass at z ∼ 1, 50% of the total mass

in merging comes from pairs with f0 ≥ 0.25. At z = 0, the contribution increases to nearly 75%.

In terms of number, the rate lies in the range from 10−6 − 10−5 Gyr−1 Mpc−3 for z < 3. Figure 13

shows the rates for both number and mass as a function of redshift for major merging. For z > 3,

major merging does not occur at this resolution limit. For z < 3, both rates climb. The number

rate reaches a stochastically varying plateau for z < 2, while the mass rate continues to climb until

z = 1, where it also reaches a plateau.

4.4. Mass loss

Fairly significant mass loss also occurs in the simulations. Figure 14 shows the mass lost from

galaxies as a function of time for galaxies with masses above Mc = 5.4 × 1010M⊙ (L50/144). The

trend follows the merging history shown above — it rises until z ∼ 1 and reaches a plateau for z < 1.

Overall, mass loss rates are about 25% of merging rates. Gaseous mass loss is nearly constant with

time, while stellar mass loss increases with time. Stellar mass loss dominates after z ∼ 0.5. Visual

inspection shows that the mass loss occurs in highly clustered regions.

4.5. Star formation

The volume-averaged star-formation rate is closely related to the growth of galaxies in the

simulation. Figure 15 plots the global star-formation rate µ̇sf for galaxies with masses above

Mc = 5.4 × 1010M⊙ (L50/144) as a function of time. Interestingly, the overall rate (filled squares)

closely follows the global rate of mass accretion shown in Figure 6 rather than the merging history

shown in Figure 8. We also plot separately the star formation contributed by gas that is newly

acquired through smooth accretion since the last time output and that contributed by gas already

present within the parent galaxy or merged satellite in our last time slice (crosses and open squares,

respectively). Most of the stars form from gas already present in galaxies. Moreover, since merging

rates are much smaller than star-formation rates (c.f. Figures 6 and 8), this implies that star

formation typically occurs in gas that was present in the parent galaxy at the previous timestep.

Hence, in our simulations, gas that enters a galaxy typically waits for at least the interval between

our outputs (1/3Gyr at high redshift and 4/3Gyr at low redshift) before converting to stars.

5. Discussion

The results presented here describe the growth of the central baryonic components of galaxies

in the context of hierarchical structure formation. We have focused primarily on the relative
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Fig. 11.— The cumulative number merger rate as a function of parent group mass for different

merger ratios: ν̇(≥ M0,≥ f0). Each sequence of points indicates a different f0: from top to

bottom, f0 = 1%, 25%, 50%, 75%, 100%. The solid symbols indicate the parent mass range for

which Msat ≥ Mc for f ≥ f0, i.e. the mass of the merged object lies above the 64-particle threshold.

The open symbols indicate parent masses for which Msat < Mc. Alternating symbols are used for

visual clarity.



– 24 –

Fig. 12.— The cumulative mass merger rate as a function of parent group mass for different

merger ratios: µ̇(≥ M0,≥ f0). Each sequence of points indicates a different f0: from top to

bottom, f0 = 1%, 25%, 50%, 75%, 100%. The solid symbols indicate the parent mass range for

which Msat ≥ Mc. The open symbols indicate parent masses for which Msat < Mc. Alternating

symbols are used for visual clarity.
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Fig. 13.— The evolution of number (bottom) and mass (top) merger rates with redshift for major

mergers, f0 = 25% and M0 = 2.2 × 1011M⊙.
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Fig. 14.— The rate of mass loss from existing groups per unit comoving volume as a function of

time, for galaxies above Mc = 5.4× 1010M⊙ (L50/144). Solid squares show the total, open squares

the contribution from gas, and crosses the contribution from stars.
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Fig. 15.— The star formation rate in galaxies above Mc = 5.4×1010M⊙ (L50/144) per unit volume

as a function of time. The solid squares show the total, the open squares the contribution from gas

already in groups and the crosses the contribution from gas that is recently accreted.
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contributions of merging and smooth accretion to the rate at which large galaxies gain mass.

Overall we find that accretion dominates, especially at higher redshift, while merging becomes

progressively more significant at later times.

The principal limitation of our results is that we cannot distinguish between smooth accretion

and merging with objects below our mass resolution threshold, which is Mc = 5.4 × 1010M⊙ for

our primary simulation (L50/144). As discussed at the end of §3, matching the observed galaxy

space density implies that this mass threshold corresponds approximately to a luminosity L∗/4.

Our analysis gives well defined, and, we believe, numerically robust predictions for the merger rates

of galaxies above this threshold with other galaxies above this threshold. These are lower limits

to the merger rates of galaxies above this threshold with all other galaxies, and our corresponding

accretion rates are upper limits to the rates of truly smooth accretion by these galaxies.

The mass spectrum of merging galaxies shown in Figure 9 gives useful guidance to the pos-

sible contribution of sub-resolution merging. Over roughly a decade in mass, the mass spectrum

is approximately a power law ∝ Mα, with α ∼ −0.8 at z = 0 and α ∼ −1.4 at z = 1 − 3. The

cumulative distribution of mergers above mass M scales as Mα+1, and the amount of mass con-

tributed by mergers above mass M scales as Mα+2, thus diverging towards the high mass end of

the spectrum. Thus, the measured slopes of the merger mass spectrum indicate that sub-resolution

mergers should contribute relatively little mass compared to resolved mergers. To obtain a quanti-

tative estimate, we assume that the measured power law mass spectrum extends from a high mass

cutoff Mh = 6 × 1011M⊙ (see Figure 9) down to a low mass cutoff Ml = 0. We then find that

merging galaxies below Mc should contribute roughly 25% of the total mass in mergers for z > 1

(α ∼ −1.4) and only about 5% of the total for z < 0.5 (α ∼ −0.8). Thus, at high redshift, the

simulation appears to account for more than 75% of the total mass in merging, whereas at low

redshift it accounts for at least 95%. Combined with the results in Figures 6 and 8, this implies

that merging overall accounts for no more than 25% of the total mass in accretion and merging

combined for z > 1 and no more than 35% of the total for z < 0.5. While higher resolution sim-

ulations will be needed to verify this estimate, the extrapolation from our current results implies

that truly smooth accretion always exceeds merging by at least a factor of two in contributing to

the mass evolution of galaxies.

It is interesting to compare the mass spectrum of mergers of baryonic objects found here to the

mass spectrum of dark matter halo mergers, derived by Lacey & Cole (1993) using the extended

Press-Schechter formalism. The comparison is not exact because we determine the mass distribution

of all merging objects, whereas Lacey & Cole (1993) determine the distribution of objects falling

into a single halo. The merger mass spectrum that they find is steeper than the one shown in our

Figure 9. Nevertheless, the high redshift behavior is qualitatively similar in both cases: low mass

objects dominate in number but high mass objects dominate in mass. At low redshift there is a

qualitative difference in the two results: our scaling implies that high mass objects dominate in both

mass and number, while Lacey & Cole’s implies that low mass objects still dominate in number but

high mass objects dominate in mass. This difference could plausibly reflect the different dynamics
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of baryon and dark matter mergers. When two dark halos merge, the galaxies that they contain

will not merge immediately. Dynamical friction can drag together massive galaxies more quickly

than low mass galaxies, and this should make the merging mass spectrum of galaxies shallower

than that of dark halos.

Our main point of contact with observations is through merging rates. Observationally, the

efforts focus on determining the evolution of pair fraction with redshift (Zepf & Koo 1989; Carlberg

et al. 1994; Yee & Ellingson 1995; Woods, Fahlman, & Richer 1995; Patton et al. 1997; Abraham

1998; LeFèvre et al. 1999; Carlberg et al. 2000). The difficulty lies in identifying pairs of galaxies

that should merge in a time of order the system dynamical time at increasingly large redshift. Here

we use the true physical merger rates, since these are the quantities we have available from the

simulations, but we do not investigate whether the observational analyses accurately infer these

rates.

From their analysis of pairs selected from the CNOC2 and CFGRS surveys, Carlberg et al.

(2000) have recently estimated the rate of mass growth due to merging in galaxies above about

0.2L∗ out to z = 1. They find an integrated mass growth rate of about 2 × 10−2L∗ Gyr−1 per

galaxy, with an estimated uncertainty of a factor of two. Their 0.2L∗ threshold should correspond

approximately to our Mc threshold, though there is a factor ∼ 2 uncertainty in this identification.

While Carlberg et al. (2000) do not explicitly present mass ratios for their pairs, it is likely that for

such large galaxies the mergers are predominantly major (f ≥ 0.25). From Figure 13 we find that

the major merging rate µ̇mge at and above Mc varies from 2 × 10−2 to 3.5 × 10−2M⊙ Mpc−3 yr−1

between z = 1 and z = 0, while the comoving number density of objects varies from 4.2 × 10−3 to

5.5×10−3 Mpc−3 over the same interval. Dividing the merger rate by the comoving number density

and by an assumed value of 2.2 × 1011M⊙L−1
∗ yields rates of mass growth from major merging in

the range 2× 10−2 − 5× 10−2L∗ Gyr−1 per galaxy. The agreement with the Carlberg et al. (2000)

results is encouragingly good, given the theoretical and observational uncertainties that enter the

comparison.

Another interesting feature of our results is the mass loss due to merging. Although the group

finding algorithm introduces some uncertainty in the measurement, it does appear that a significant

fraction of the mass in merging satellites winds up as intergalactic debris. Visual inspection of the

simulations shows that this material permeates galaxy clusters and large galaxy groups and forms

low-density halos around massive galaxies. Recent observational and theoretical work has provided

evidence for the existence of such material, particularly in galaxy clusters (e.g. Theuns & Warren

1997; Ciardullo et al. 1998; Ferguson, Tanvir & von Hippel 1998; Calcanéo-Roldán et al. 2000).

In future work, we will examine in more detail the properties of the debris produced by merging

galaxies.

One obvious way to extend the work presented here is to employ new, higher resolution sim-

ulations. We are currently evolving a simulation similar to L11/64 but using 1283 particles in

a 22.22h−1 Mpc box. This simulation will have larger dynamic range than L11/64 and greater
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overlap with L50/144, improving our ability to assess numerical resolution effects. In the longer

term, a simulation with 2883 particles in a 50h−1 Mpc box would have the same mass resolution,

Mc = 6.8×109M⊙, as L11/64, sufficient to settle many of the remaining issues regarding the growth

of L∗ galaxies in numerical simulations.

Motivated in part by the kinetic equation approach described in the Appendix, we have focused

here on volume-averaged rates of accretion and mergers. These rates provide a good global view of

activity in the resolved galaxy population, but there are other questions that can only be addressed

by examining accretion and merger histories as a function of environment or galaxy by galaxy.

For example, we would like to know what fraction of galaxies experience a major merger between

z = 0.5 and the present day, or what fraction have quiescent accretion histories from z = 1 to

z = 0, and we would like to know how those fractions correlate with galaxy mass, environment, and

stellar age. The analysis of mass acquisition can also be extended to examine how galaxies gain

angular momentum or random kinetic energy. We will present results from such analyses in future

work. Studies of this sort, applied to steadily improving numerical simulations, should provide a

solid foundation for understanding the mass, luminosity, and morphological evolution of the galaxy

population.

We thank Jeff Gardner for providing the basis for our merger code and for performing the

L11/128 simulation. We also thank Mark Fardal, Enrico Vesperini and Martin Weinberg for helpful

discussions. This work was supported by NASA Astrophysical Theory Grants NAG5-3922, NAG5-

3820, and NAG5-3111, by NASA Long-Term Space Astrophysics Grant NAG5-3525, and by the

NSF under grants ASC93-18185, ACI96-19019, and AST-9802568. The simulations were performed

at the San Diego Supercomputer Center and NCSA.

A. Evolutionary equation

The simulations analyzed above can be viewed as Monte Carlo solutions of the kinetic equation

that describes the evolution of the mass function n(M, t) (and includes a large number of additional

degrees of freedom, which we have projected over in our analysis). In the continuum limit, a simple

form of the equation can be written:

∂n

∂t
= −

∂

∂M
[nṀ ] +

∫ M

Mc

dM ′n(M − M ′, t)n(M ′, t)Γ(M − M ′,M ′, t)

− n(M, t)

∫
∞

Mc

dM ′n(M ′, t)Γ(M,M ′, t) + C(M, t) − D(M, t). (A1)

On the right-hand side, the first term gives the rate of change of the baryonic mass M of a galaxy

with accretion rate Ṁ . Accretion gives rise to advective evolution in the mass phase space so the

term is analogous to a continuity term. In writing this, we have assumed that the accretion Ṁ

depends uniquely on the mass M , whereas, in reality, a sample of galaxies at mass M would have
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a distribution of accretion rates. What is written here can be thought of as the evolution of the

‘average’ galaxy of mass M .

The second and third terms describe the merging of galaxies. The former gives the rate of

creation of new galaxies of mass M through the merging of pairs with masses M ′ and M − M ′ at

the rate Γ(M − M ′,M, t). The latter gives the loss rate of galaxies at M through collisions with

galaxies at M ′ at the rate Γ(M,M ′, t). Note that we have ignored mass loss and disruption in

writing these terms.

The fourth and fifth terms denote the creation and destruction of galaxies of mass M , respec-

tively. In the simulation, galaxies are not created at all masses; instead they usually pass directly

through the minimum mass threshold Mc by mass accretion. In this case, one could introduce

the creation rate as a boundary condition. Sometimes, however, sub-Mc galaxies can merge and

produce a new galaxy with a mass somewhat larger than Mc. As a result, we can qualitatively

describe the creation function as a one-tail distribution that peaks at Mc and has a fairly short

tail to higher mass. Pure destruction does not really occur in the simulations at our adopted mass

threshold, and the term has only been included for completeness.

By taking the first moment of equation (A1) with respect to M , one obtains the equation

describing the evolution of the total baryonic mass in galaxies. From this, one can see that the

total mass can change only through accretion onto and mass loss from existing galaxies and through

creation and destruction. Merging, by contrast, alters only the number of galaxies.

B. Changes in total mass

It is straightforward to generalize equation (A1) to the discrete form that is required for analysis

of the simulations. Assuming the discretized form of the equations, we write down the expressions

relating the total accretion and mass loss to the change in the total amount of mass in galaxies

between two times. Let there be N1 groups at time t1 and N2 groups at time t2 where t2 > t1.

Then the total mass in groups at either time tk

Mk =

Nk∑
i

mi, (B1)

and the change in mass in groups between the two times

∆M = M2 − M1 = Macc − Mloss, (B2)

where Macc is the mass accreted smoothly and Mloss is the mass lost from the progenitor groups

at time t1. Here we have included mass growth from created galaxies in the accretion term and

mass loss from destroyed galaxies in the loss term. Defining fi as the fraction of group i at t1 that
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contributes to some group at t2, we can write

Mloss =

N1∑
i

(1 − fi)mi, (B3)

So that

Macc = M2 − (M1 − Mloss) = M2 −

N1∑
i

fimi ≡ M2 − Mgrp, (B4)

where Mgrp denotes the group mass at t1 that contributes to the group mass at t2. Using Mgrp,

we can define the merged mass

Mmerge = Mgrp −

N2∑
j

fimaxjmimaxj, (B5)

where fimaxj and mimaxj denote the fraction and total mass of the largest group at t1 that contributes

to group j at t2.

C. Changes in gas/star mass

The expressions given above change when considering individual gas and star components

because of star formation. In this case, defining Mi as the total gas mass in Ni groups at time ti,

we can write the total change in gas mass in groups:

∆Mg = Mg
2 − Mg

1 = Mg
acc + Mg

s − Mg
loss − M s

g (C1)

where Macc denotes the amount of gas accreted into groups, Mg
s the gas mass created from stars,

Mg
loss the amount of gas lost from pre-existing groups, and M s

g the stellar mass created from gas.

Of course, in the present simulations there is no stellar evolution mass loss so Mg
s = 0. As in the

definition above, Mg
loss =

∑
i(1 − fi)m

g
i , the respective sum of the fraction of mass in groups at

t1 that does not remain in groups at t2 . For stars, the treatment is analogous; however the star

formation terms change sign.

To determine the M s
g term, we must consider the gas and star masses of the individual particles

at consecutive outputs. However, because of the finite time resolution, it is impossible to say

whether star formation occurs before or after material is added to the new system. Here we assume

that star formation occurs after material is added to a new system at time t2.

With the total particle mass at time t1 µk,1 = µg
k,1(t1) + µs

k,1, the total stellar mass in groups

at t1 that contribute to the total mass in groups at t2 is

M s
grp(t1) =

N1∑
i

fim
s
i =

N1∑
i

fi

ni∑
k

µs
i,k,1. (C2)
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However, the stellar mass of any particle may differ at t2, so that M s
grp(t2) 6= M s

grp(t1). The

difference is, of course, related to the net gain or loss due to star formation and stellar evolution

mass loss:

M s
g − Mg

s = M s
grp(t2) − M s

grp(t1). (C3)

Similarly, the change in gas mass implies that

Mg
s − M s

g = Mg
grp(t2) − Mg

grp(t1). (C4)

Since there is no stellar evolution mass loss, Mg
s = 0. The treatment for accreted matter is

analogous.
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