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ABSTRACT 

 

GROWTH OF ATLANIC SALMON (Salmo salar) IN FRESHWATER 

 

SEPTEMBER 2010 

 

DOUGLAS BRADLEE SIGOURNEY, B.S., UNIVERSITY OF NEW HAMPSHIRE 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Benjamin H. Letcher 

  

 

 

Growth plays a key role in regulating ecological and population dynamics.  Life history 

characteristics such as age at maturity, fecundity and age and size at migration are tightly 

linked to growth rate.  In addition, size can often determine survival and individual 

breeding success.  To fully understand the process of growth it is important to understand 

the mechanisms that drive growth rates.  In Atlantic salmon, growth is critical in 

determining life history pathways.  Models to estimate growth could be useful in the 

broader context of predicting population dynamics.  In this dissertation I investigate the 

growth process in juvenile Atlantic salmon (Salmo salar).  I first used basic modeling 

approaches and data on individually tagged salmon to investigate the assumptions of 

different growth metrics.  I demonstrate the size-dependency in certain growth metrics 

when assumptions are violated.  Next, I assessed the efficacy of linear mixed effects 

models in modeling length-weight relationships from longitudinal data.  I show that 

combining a random effects approach with third order polynomials can be an effective 

way to model length-weight relationships with mark-recapture data.  I extend this 
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hierarchical modeling approach to develop a Bayesian growth model.  With limited 

assumptions, I derive a relatively simple discrete time model from von Bertalanffy 

growth that includes a nonparametric seasonal growth function.  The linear dynamics of 

this model allow for efficient estimation of parameters in a Bayesian framework.  Finally, 

I investigated the role of life history in driving compensatory growth patterns in 

immature Atlantic salmon.  This analysis demonstrates the importance of considering life 

history as a mechanism in compensatory growth.  Information provided in this 

dissertation will help provide ecologists with statistical tools to estimate growth rates, 

estimate length-weight relationships, and forecast growth from mark-recapture data.  In 

addition, comparisons of seasonal growth within and among life history groups and 

within and among tributaries should make a valuable contribution to the important 

literature on growth in Atlantic salmon. 
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PREFACE 

 

Understanding how individuals within and among populations perform under 

different environmental regimes is an important goal of ecologists.  One way to assess 

performance is to focus on biological growth over time.  Because of the interaction with 

environmental conditions, influences on life history, links to survival, and ultimate 

consequences on population dynamics, growth (somatic and gonadal) has been the 

subject of many ecological studies (Gaston and Lawton 1988, Werner 1988, Brown 1995, 

Arendt 1997).  For example, growth can influence life history by determining size and 

age at maturity as well as fecundity (Roff 1992).  This influence in turn can strongly 

impact the population dynamics of a species living in a particular environment.  Changes 

in the mean growth rates of individuals within a population can also have significant 

impacts on the flow of energy through an ecosystem (Lawton 1971, Odom 1971).  

Identifying the mechanisms controlling growth in a particular species or population is 

critical to understanding the dynamics of that population and how it interacts with its 

community. 

The study of salmonids in small stream environments offers an enhanced 

opportunity to study growth because their environment is relatively accessible and often 

many individuals can be tagged and recaptured and growth trajectories can be analyzed 

for individuals (Juanes et al. 2000).  Studies on stream salmonids have demonstrated the 

link between growth and competition (Jenkins et al. 1999), growth and life history 

pathways (Heggenes and Metcalfe 1991, Berglund 1992, Berglund 1995), and growth 

and movement (Hughes 1998).  The ability to recapture many individuals over time 

allows the opportunity to use detailed survival models (Lebreton et al. 1992) in 
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combination with information on growth trajectories to enhance the understanding of 

how growth and size at particular times of the year influence survival.  Combined with 

new technology to mark and recapture animals such as passive integrated transponder 

(PIT) tags (Prentice et al. 1990) and portable antennas (Roussel et al. 2001, O’Donnell et 

al. 2010) a wealth of information can now be accessed with important ecological 

implications.  Untangling the link between growth, survival and life history is not only 

critical to gaining a complete understanding of a particular species, but may also help 

illuminate general ecological processes and allow for the testing of ecological theory. 

In Atlantic salmon, the need to understand the process of growth is made 

particularly urgent by the unprecedented decline in abundance throughout its range 

(Parrish et al. 1998).  A crucial goal in freshwater is to understand the causes of 

variability in smolt production within and among river systems (Power and Power 1994, 

Whalen et al., 2000).  The smolt stage in the life history of Atlantic salmon is a period 

during the freshwater phase that juveniles begin to undergo a metamorphosis both 

physiologically and morphologically in order to prepare for life at sea (Hoar 1976, 

Thorpe 1982, Langdon and Thorpe 1985).    Effective management of anadromous 

salmon populations hinges on the ability to accurately predict the number of smolts a 

spawning stock can produce (Kennedy and Crozier 1993, Power and Power 1994, Chaput 

et al. 1998).  Many attempts have been made at modeling smolt production (Bagliniere et 

al. 1993, Chaput et al. 1998).  However, these studies generally are descriptive, and thus, 

are unable to define the mechanisms responsible for variations in the number and size of 

smolts in a particular year class.  Because growth is linked to the timing of smolting and 

survival to the smolt stage could be size dependent (Quinn and Peterson 1996) a better 
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understanding of the mechanisms controlling growth may help illuminate population 

level responses resulting in smolt production.   

A number of ecological studies have focused on growth modeling to answer a 

diversity of questions.  In fisheries management, generalized growth models are used to 

assess the mean growth rate of individuals in a population to assess harvest regulations.  

Models such as the von Bertalanffy model are based on simple physiological principles 

and are used to model asymptotic growth from age zero through adulthood.  Recent 

advancements of this basic modeling framework include estimating parameters from 

mark-recapture data (Wang et al. 1995, Laslett et al. 2002) and accounting for temporal 

variability (Jones et al. 2002, Szalai et al. 2003).  In Atlantic salmon, models based on the 

basic von Bertalanffy framework have been used to understand variation in growth 

trajectories and size structure (Jones et al. 2002, Gurney et al. 2007).  Continued 

development of these models holds promise for being able to predict growth and 

understand the consequences of growth on population dynamics (Gurney et al. 2008). 

 

Objectives 

In this dissertation I used data and on individually tagged salmon to investigate 

the growth process in Atlantic salmon.  In order to explore the best ways to model growth 

and to better understand the growth process in Atlantic salmon I developed the following 

objectives: 

1) Evaluate commonly used growth metrics and assess their dependence on size.  I 

use both models and growth data of individually tagged fish from the field and laboratory 

to assess the size dependency of different growth metrics 

 

2) Develop methods to estimate length-weight relationships from individually tagged 

fish.  For this objective I take advantage of linear mixed effects models to estimate 
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length-weight relationships when there are multiple observations for individuals.   

 

3) Develop a seasonal growth model based on first principles and apply Bayesian 

techniques to estimate parameters and parameter uncertainty. To accomplish this 

objective I focus on simple von Bertalanffy dynamics but include a seasonal growth 

function to allow growth to vary over time.  The Bayesian framework allows me to take 

advantage of prior information to estimate parameter values 

 

4) Analyze the interaction between size-dependent growth and life history. I use data 

from both the field and laboratory to look at the effect of life history on size-dependent 

growth in juvenile salmon. 

 

Summary and Conclusions 

A major goal of ecology is to understand the distribution and performance of 

individuals in a population over time.  Doing so will require the use of appropriate 

techniques that can deal with complexity in data and make as few assumptions as 

possible.  In chapter 1 I found that the choice of growth metrics carries underlying 

assumptions about the growth process.  The instantaneous growth rate equation tends to 

scale negatively with size as a consequence of the relationship between size and 

metabolism.  An alternative is the standardized mass-specific growth rate equation which 

can adjust for the effect of metabolism on growth when the metabolic scaling constant is 

known.  However, both estimates of growth in weight and growth in length may be 

necessary to understand the growth process depending on the question being asked. 

The study of length-weight relationships has long been a cornerstone of fishery 

science.  Length-weight relationships (LWRs) are often estimated from a particular 

location at a particular time using cross-sectional data.  With the advent of technology 

that allows the efficient mark and recapture of animals, biologists often have multiple 

measurements of length and weight at the individual level.  In chapter 2 I looked at the 

use of linear mixed effects models to take advantage of repeated measures (i.e. 
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longitudinal) data when estimating LWRs.  I found they can be successfully combined 

with polynomials to estimate LWRs when longitudinal data are available and the 

relationship between the log of length and the log of weight is not necessarily linear. 

Such hierarchical models can be particularly useful because they allow other levels such 

as location or time to be included in the hierarchy. 

In chapter 3 I focused on the development of a growth model with the goal of 

including a temporal function that would allow inference as to the seasonal variation in 

growth.  I found that a relatively simple discrete time model can be derived from the von 

Bertalanffy function.  The advantage of this model is the dynamics are linear which 

simplifies estimation of parameters.  I adopted a Bayesian framework to estimate 

parameter values and estimates of uncertainty.  I found this model performed well when 

applied to field data and was able to predict seasonal dynamics and differences between 

two different life history groups of salmon, early smolts, which do not mature in 

freshwater, and mature parr, which do mature in freshwater. 

The effects of size and growth have long interested ecologists as the nature of this 

relationship can have important implications for population dynamics.  In chapter 4 I 

focused on the interaction between size and life history on growth rates of immature 

Atlantic salmon.  The results suggest that fish on a smolt life history pathway may 

undergo a compensatory growth response as early as the fall before migration whereas 

fish that delay migration a year do not display compensatory growth.  The results from 

this analysis have implications for understanding the dynamics of smolt production and 

the age and size structure of migrating smolts. 
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In summary, this dissertation provides some useful tools that can be used by 

ecologists that study a variety of taxa.  In addition, it was my goal to investigate the 

growth process in Atlantic salmon with the aim of gaining a better understanding of the 

dynamics of life history on growth.  Atlantic salmon have provided a model organism to 

study in this regard.  The ideas and tools provided in this dissertation should be of use to 

both applied and basic ecologists alike in future studies of growth. 
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CHAPTER 1 

SIZE-INDEPENDENT GROWTH IN FISH: PATTERNS, MODELS AND 

METRICS 

 

1.1. Abstract 

 A combination of a dynamic energy budget (DEB) model, field data on Atlantic 

salmon Salmo salar L. and brown trout S. trutta L. and laboratory data on Atlantic 

salmon was used to assess the underlying assumptions of three different metrics of 

growth including specific growth rate (G), standardized mass-specific growth rate (GS) 

and absolute growth rate in length (GL) in salmonids.  Close agreement was found 

between predictions of the DEB model and the assumptions of linear growth in length 

and parabolic growth in weight.   Field data comparing spring growth rates of age 1+ year 

and age 2+ year Atlantic salmon demonstrated that in all years the larger age 2+ year fish 

exhibited a significantly lower G, but differences in growth in terms of GS and GL 

depended on the year examined.  For brown trout, larger age 2+ year fish also 

consistently exhibited slower growth rates in terms of G but grew at similar rates as age 

1+ year fish in terms of GS and GL.  Laboratory results revealed that during the fall of the 

age 0+ year the divergence in growth between future smolts and non-smolts was similar 

in terms of all three metrics with smolts displaying higher growth than non-smolts, 

however, both GS and GL indicated that smolts maintain relatively fast growth into the 

late fall where G suggested that both smolts and non-smolts exhibit a sharp decrease in 

growth from October to November.  During the spring, patterns of growth in length were 
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significantly decoupled from patterns of growth in weight.  Smolts maintained relatively 

fast growth though April in length but not in weight.  These results suggest GS can be a 

useful alternative to G as a size-independent measure of growth rate in immature 

salmonids.  In addition, during certain growth stanzas, GS may be highly correlated with 

GL. The decoupling of growth in weight from growth in length over ontogeny, however, 

may necessitate a combination of metrics to adequately describe variation in growth 

depending on ontogenetic stage particularly if life histories differ.  

1.2. Introduction 

Quantifying individual growth rates in a population is often an important 

component of ecological studies.  Variation in growth can represent differences in 

competitive ability (Nordwall et al., 2001; Harwood et al., 2002; Byström & Andersson, 

2005), life history differences (Rowe & Thorpe, 1990; Letcher & Gries, 2003), or 

variation in environmental quality (Coghlan & Ringler, 2005).  In studies of fish 

populations, a number of methods can be used to characterize growth rates (Wootton, 

1990). Researchers generally focus on changes in weight and/or length over a finite 

interval.  When initial sizes and ages are the same among individuals, comparisons of 

growth rates are relatively straightforward.  However, many studies are interested in 

interactions among individuals of different sizes and/or ages (Nordwall et al., 2001; 

Byström & Andersson, 2005).  When size differs among individuals, choice of a growth 

metric is susceptible to underlying assumptions about the physiological relationship 

between size and growth. 

A frequently used metric of growth rate in fish populations is the instantaneous or 

specific growth rate (G) equation (Ricker, 1979).  This growth rate metric somewhat 
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misleadingly appears to adjust for size differences because it divides instantaneous 

absolute growth rate by initial size (
wdt

dw
) (Wootton, 1990).  For two individuals to 

express the same G, they must grow at an equal proportion of their instantaneous size.  

This metric assumes exponential growth (Ricker, 1979), but does not adjust for the 

scaling of metabolism with size.  The allometric relationship between size and 

metabolism in animals is well established (Peters, 1983; Schmidt-Nielsen, 1984).  Studies 

on fish growth have demonstrated an inverse relationship between size and G which is 

attributed to the scaling of metabolism with size (Brett, 1974; Elliott, 1975; Buckel et al., 

1995).  Thus, larger individuals are physiologically constrained to grow at a decreasing 

proportion of their body size (Winberg, 1975). 

Poikilotherms, like fish, often exhibit parabolic growth during the immature phase 

of their life history, which has been attributed to the relationship between size and 

metabolism (Winberg, 1971; Ostrovsky, 1995).  Under the assumption of parabolic 

growth, an equation for standardized mass-specific growth rate (GS), which incorporates 

growth rate allometry and standardizes growth across size ranges, can be derived (Iwama 

& Tautz, 1981; Ostrovsky, 1995).  Calculating GS requires knowledge of the allometric 

growth rate exponent describing the scaling of G with size.  The exponent can be derived 

from the negative relationship between size and G.  A number of studies on salmonid 

growth have estimated a value of approximately 0.31 for salmonids (Elliott, 1975; Elliott 

& Hurley, 1997).  By adopting this value of the exponent, recent studies quantifying 

growth rates in salmonids have opted to use GS to calculate individual growth rates in lieu 

of G (Vollestad et al,. 2002; Quinn et al,. 2004; Grader & Letcher, 2006).   
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Although GS may offer a useful alternative to G to calculate growth rates in terms 

of weight, growth rates in fishes are often reported in terms of increases in length instead 

of weight.  Information on length may be more complete or reliable and researchers may 

choose to report information on just one aspect of growth.  Weight can often be difficult 

to measure accurately under field conditions and length measurements may be less prone 

to measurement error.  Although the relationship between size and growth rate in weight 

in fish has been well documented, the relationship between size and growth in length is 

less clear and usually dependent upon an assumed relationship between length and 

weight.  Under the assumption that weight is proportional to the cube of length, von 

Bertalanffy growth predicts a decrease in absolute growth rate in length (GL) with an 

increase in length (Ricker, 1979).  Ostrovsky (1995) mathematically demonstrated that 

under specific assumptions of a constant length-weight relationship, growth in length is 

linear.  Ostrovsky (1995) also noted, however, that in some chironomid species growth in 

length is parabolic.  Studies that report growth in length, however, often use the relative 

growth rate equation, which assumes exponential growth in length, to quantify growth in 

length (Wootton, 1990).  Thus, it is not always clear what growth metric to use when 

there is size variation in length nor is it clear whether or not growth in length can be used 

as a surrogate for growth in weight. 

 Theoretical models of fish bioenergetics offer ways to assess scaling of growth 

rates both in terms of length and weight with size because they include mechanistic rules 

for the scaling of physiological processes with size.  One method of modelling growth 

that includes flexibility in energy allocation pathways and has been successfully applied 

to describe growth in salmonids is based upon the theory of dynamic energy budgets 
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(Koojiman, 2000; Jones et al., 2002).  Broeckhusien et al. (1994) initially used this 

dynamic energy budget (DEB) approach to simulate compensatory growth dynamics of 

salmonids.  Their DEB model divides the weight of an organism into different 

components, which include an immobilizable, structural component, which cannot be 

used to meet maintenance requirements and a mobilizable, reserve component, which can 

be used to meet maintenance requirements.  Growth in length is directly related to growth 

in structural carbon and growth in weight is related to the combined growth of both 

structure and reserve carbon.  Jones et al. (2002) applied a variant of this model to field 

data of individually tagged juvenile Atlantic salmon Salmo salar L.  Their DEB model 

decouples growth in weight from growth in length, and thus, a constant length-weight 

relationship need not be assumed.  This DEB model was capable of capturing the 

seasonal growth dynamics of juvenile Atlantic salmon in both length and weight.   

 In this paper, the equations of Ostrovsky (1995) are briefly reviewed to 

demonstrate the relationship between size, G and GS and the assumptions necessary for 

linear growth in length.  The process-based DEB model of Jones et al. (2002) is then used 

to predict growth trajectories of individuals under constant conditions and compare the 

use of different growth metrics to quantify growth rates when there is significant size 

variation.  To empirically assess the relationship between size and different metrics of 

growth rate, an extensive set of field data on spring growth rates of individually tagged 

age 1+ year and age 2+ year Atlantic salmon and brown trout Salmo trutta L. was used.  

Another topic of interest is how flexible energy allocation strategies may act to decouple 

growth in length from growth in weight such that growth in one dimension may not be 

representative of growth in another dimension.  Atlantic salmon offer a model species to 
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explore such questions because individuals of the same age can take on different life 

history strategies that are highlighted by flexible growth dynamics.  To ascertain the 

influence of flexible energy allocation on the interpretation of different growth metrics, 

data from a laboratory study of Atlantic salmon expressing two different life histories 

were used. 

The purpose of this study was to compare extent to which different growth 

metrics exhibit size-dependence when the underlying growth process is not necessarily 

exponential or parabolic and the relationship between weight and length is not necessarily 

constant.  A second objective was to demonstrate how the decoupling of growth in 

weight from growth in length may necessitate a combination of metrics to adequately 

describe variation in growth trajectories.   

 

1.3. Materials and Methods 

The equation for G divides instantaneous absolute growth rate in weight (
dt

dW
) 

by current weight (W).  The general equation for G can be written as 

 

    
dt

dW

W
GW

1
                               (1) 

 

Under the assumption of parabolic growth, absolute growth rate scales as a function of 

weight (W) according to the equation 
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bW

dt

dW  1
                          (2) 

 

where  is a constant related to the growth of an individual of unit size and b is an 

allometric scaling constant such that 0<b<1 (Gamito, 1998).  Substituting equation 2 into 

equation 1 (i.e. dividing equation 2 by W), demonstrates that G also scales with size  

 

    
bWG                                  (3) 

 

which results in a negative linear relationship on a double logarithmic scale (log G vs log 

W) where log() is the intercept and -b is the slope. Studies that aim to quantify growth 

in the absence of size-dependence are generally interested in calculating .  Ostrovsky 

(1995) showed that under the assumption of allometric growth, an equation for 

standardized mass-specific growth rate (GS) can be derived as follows: 

 

             
tb

WW bb

t




 0                              (4) 

 

where  represent GS, W0 represents weight at the start of the growth interval and Wt 

represents weight at the end of the growth interval.  This equation requires that the 

allometric growth rate exponent b is known.  The exponent can be estimated empirically 

by performing a linear regression log(G) vs log(W) over a range of sizes and estimating 

the slope coefficient.   
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Ostrovsky (1995) also demonstrated mathematically that if the relationship between 

length and weight is assumed to be  

 

   W=aL

                                                    (5) 

 

where a and  are constants, then an equation for growth in length can be derived as 

 

   cbb KLLa
dt

dL   111)(                (6) 

 

where K=a
-b-1

 and c=b are constants.  If c=1 (i.e.
b

1
 ) then equation 6 is 

transformed into a straight line function such that  

 

 

   K
dt

dL
                                                   (7) 

 

Thus, absolute growth in length (GL) is often calculated as the difference in length 

between two time periods such that 

 

   
t

LL
G

t

L

0
                     (8) 

 where Lt and L0 represent final and initial lengths, respectively, and t represents that time 

interval between measurements. 
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1.3.1. DEB simulations 

Using the DEB growth model of Jones et al. (2002), growth of 30 individuals of 

different sizes was simulated for a 30 day period.  Starting length was selected from a 

normal distribution with a mean of 10 cm and a standard deviation of two cm to provide a 

reasonably wide range of initial sizes. Model equations and parameter values are 

provided in Table 1.1.  For all parameters, the same values reported in Jones et al. (2002) 

for the baseline (population level) model were used.  Weight was calculated by assuming 

each individual started at the same nutritional state (), which was above the "defended" 

level (p0) or the level below which allocation to reserves increases (>0 + w, see Table 

I for definitions).  In the version of Jones et al. (2002), the seasonal food function is 

described by four parameters which estimate the rise and fall and magnitude of food over 

the course of a year.  For the purposes of our simulation, the food environment was fixed 

to be maximum (F=1) and temperature was set constant at 15 C.  Using the predicted 

initial and final weights, G, GS and GL were calculated for each individual.  From these 

simulated results, the allometric growth rate exponent (b) was determined by calculating 

the slope of the relationship between log weight (W) and log G.  Several choices of W can 

be used when performing the regression including initial mass (W0) and mean mass (W ) 

over the growth period (Elliot & Hurley, 1995).  Because the choice of W can lead to 

spurious estimates of b, the iterative approach suggested by Elliot & Hurley (1995) was 

used to calculate b.  After the value of b was determined, GS was calculated for each 

individual and the relationship between log W0 and log GS assessed.  In addition, the 

relationship between initial length and GL was also assessed. 
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1.3.2. Field Data 

Field data on spring growth rates of juvenile Atlantic salmon and brown tout from 

an ongoing study of individually tagged salmonids were used to empirically examine the 

relationship between size and different growth metrics.  Data were collected from the 

West Brook River, a tributary to the Connecticut River.  Since 1997, a number of 

samplings were conducted each year to address seasonal variation in growth and survival.  

All fish were captured by electrofishing.  All fish larger than 60 mm fork length and 

greater than two grams in weight were anesthetized and tagged with a PIT (passive 

integrated transponder) tag.  Further details on the study site and data collection are given 

elsewhere (Letcher et al., 2002; Letcher & Gries, 2003; Carlson & Letcher, 2003).  

Spring growth was the focus of the analysis because growth rates are highest during this 

interval. 

To test for a relationship between size and growth rate, one cannot simply run a 

regression of initial size vs growth rate because measurement error can result in a 

spurious negative correlation (Lytle, 2001).  To circumvent this problem, Lytle (2001) 

suggests the use of reduced major axis (RMA) regression of initial vs final size.  This 

approach reduces the bias due to sampling error by taking into account error in the x 

variable as well as the y variable.  If all individuals are growing exponentially in weight 

and linearly in length then a slope of one from the regression of initial vs final natural log 

(loge) weight and from the regression of initial vs final length would reflect a null 

hypothesis of no size dependence in growth.  A slope less than one indicates that smaller 

individuals are growing relatively faster than larger individuals and vice versa if the slope 
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is greater than one (Carlson et al., 2004).  However, it is unclear what the slope should be 

if there is measurement error and individuals are displaying parabolic growth.  To 

understand how the slope of initial vs final loge weight is affected by both measurement 

error and parabolic growth, data were simulated over a range of sizes comparable to the 

range of sizes observed in the field data.  An estimate of measurement error was used that 

is in the range of error expected from our data (Letcher et al., 2003). To simulate 

parabolic growth the following equation was used 

 

  bb

t WbtW

1

0 ][      (9) 

 

where W0 and Wt are initial and final weight, respectively,  is the underlying growth 

rate and b is the allometric exponent set to a value of 0.31.  Growth was simulated to 

mimic the magnitude of growth observed during the spring growing season.  The slopes 

of initial vs final loge weight were calculated using RMA regression on the simulated 

data.  A total of 5000 simulations were performed and the mean slope was calculated as a 

null expectation of what the slope should be under parabolic growth and a level of 

measurement error comparable to that observed in the field data.  Next, RMA regressions 

were performed on initial vs final loge weight and initial vs final length for spring 

intervals using individually tagged juvenile Atlantic salmon and brown trout.  Individuals 

in both the age 1+ year and age 2+ year age classes were combined in the analysis to 

include a range of sizes for both species.  The slopes of initial vs final loge weight were 

compared to the a priori expectation based on statistical simulations.   
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 To compare growth metrics in distinguishing between differences in growth 

among groups that differ in initial size G, GS and GL were calculated for both age 1+ year 

and age 2+ year Atlantic salmon and brown trout captured over the spring interval for a 

number of different years.  To calculate GS an estimate of b reported in the literature for 

juvenile Atlantic salmon (b=0.31, Elliot & Hurley, 1997 ) and brown trout (b=0.308, 

Elliot, 1975) were used.  It is possible that estimates of the allometric exponent may vary 

among populations, however, Iwama & Tautz (1981) report that inaccuracy in the 

estimate of b should have little effect on the estimate of growth rate.  The interest was in 

comparing these metrics when there are differences in the size of the two groups being 

compared.  For each growth metric, a two-way ANOVA was performed with growth rate 

as the response variable and year and age as categorical predictor variables.  An honest 

significance difference (HSD) post-hoc test was used to test for differences among age 

groups within each year.   

Another method that can be employed to compare specific growth rates among 

groups when there is a range of sizes is to use initial size as a covariate to control for the 

effect of size on growth rate (Bacon et al., 2005). To assess the utility of this method and 

to adjust for differences in the length of the growth interval, general linear models (GLM) 

were constructed using loge G as the response variable, year and age as categorical 

predictor variables and loge initial weight and length of the growth interval as covariates. 

   

1.3.3. Laboratory Data 

The analysis used to compare growth metrics in the field data was repeated on a 

set of laboratory data on growth of juvenile Atlantic salmon.  The data were collected in 
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an experiment investigating differences in growth rates between smolts and non-smolts 

raised in a laboratory environment (see Obedzinski & Letcher, 2004 for details).  

Differences in growth, shape and body condition among smolts and non-smolts has 

previously been well described (Thorpe, 1977; Rowe & Thorpe, 1990; Huntingford et al., 

1992; Letcher, 2003). The intention of this analysis is to bring attention to the possible 

decoupling of growth in length from growth in weight over ontogeny and provide another 

example of comparing growth metrics when sizes differ among groups of the same age.  

All fish used in this analysis were from the same stock and the same cohort.  Fish were 

initially tagged in the fall of their age 0+ year at a size greater than 6 cm and a weight 

greater than 2 grams.  Length and weight were recorded for each fish at approximately 

one month intervals from October to June resulting in a total of eight growth intervals.  

By the late spring sample fish were easily assigned a life history status based on a 

combination of size and morphological characteristics (Thorpe, 1977; Nicieza, 1995).  

For each growth interval, G, GS and GL were calculated and compared as metrics for 

quantifying differences in growth among the two life history groups. To calculate GS, a 

value of b for Atlantic salmon reported in the literature was used (Elliot & Hurley, 1997).  

As with analysis of field data, we performed a two-way ANOVA on each growth metric 

with growth rate as the response variable and sampling interval and life history group as 

categorical predictor variables.  An HSD post-hoc test was used to test for differences 

among life history groups within each growth interval. 

 

1.4. Results 
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1.4.1. DEB Simulations 

A tight negative relationship between initial weight and G was predicted by the 

DEB growth model of Jones et al. (2002) (loge G=-2.54-0.23 loge W0, r
2
=0.99).  Using 

the iterative approach of Elliot & Hurley (1995), a value of 0.2828 was estimated for the 

allometric growth rate exponent b.  With this value of b, the GS equation appropriately 

adjusted estimates of growth rate in weight such that there was no relationship between 

size and growth rate (loge GS=-2.19+1.64x10
-5

loge W0, r
2
=0.005).  A slight negative 

relationship between initial length and GL was predicted by the model; however, the slope 

was close to zero such that differences in GL between the largest individual and smallest 

individual were negligible (GL =0.92-0.0005 L0, r
2
=0.99). 

 

1.4.2. Field Data 

Statistical simulations indicated that under parabolic growth with an allometric 

exponent of 0.31, the slope of initial vs final loge weight is approximately 0.84 with 

estimates ranging from 0.81 to 0.87 when there is measurement error in both initial and 

final weight.   For juvenile Atlantic salmon slopes from the RMA regression of initial vs 

final loge weight were below this value suggesting that larger fish were growing slower 

than smaller fish even after adjusting for the effects of parabolic growth (Table 1.2).  

RMA regressions of initial vs final length produced slopes that were generally less than 

one also suggesting slower growth by larger fish in terms of length (Table 1.2).  For the 

brown trout data, the slopes of the RMA regressions of initial vs  final loge weight were 

generally within the range of our null expectation for size-independent parabolic growth, 

suggesting that large and small fish were growing at the same mass specific rate (Table 
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1.3).  These results were in agreement with results from the analysis of initial vs final 

length, where slopes were consistently around one indicating no size dependence in 

growth in length (Table 1.3). 

Differences in growth rates among age classes depended on the growth metric 

analyzed as well as on the year and species.  For Atlantic salmon there was a significant 

effect of age and year on G (Table 1.4).  Age 1+ year fish consistently had a higher G 

than age 2+ year fish for all years (Figure 1.1a).  For GS, a significant age and year effect 

as well as an interaction between age and year was also detected (Table 1.4).  However, 

in contrast to G, in some years there were no differences in growth among age classes 

and in other years age 1+ year fish grew faster than age 2+ year fish (Figure 1.1b).  There 

was also a significant effect of age and year on GL (Table 1.4). For most years, the results 

for growth in length mirrored the results from the analysis of GS.  In years when age 1+ 

year fish grew faster than age 2+ year fish in GS they also grew faster in GL, with the 

exception of 1999 where there was no significant difference in GL but there was a 

significant difference in GS (Figure 1.1c).    

 For the brown trout, analysis there was a significant effect of age on G (Table 

1.5).  As with juvenile Atlantic salmon, the larger age 2+ year class had significantly 

lower G than the smaller age 1+ year class in all years examined (Figure 1.2a).  For GS, 

there was no significant age effect (Table 1.5).  Although growth rates varied among 

years, there were no significant differences among age classes within years (Figure 1.2b).  

The results for GL were similar to GS except a significant age x year interaction was 

present (Table 1.5).  In years of slow growth, age 2+ year fish seemed to have lower 

growth rates than age 1+ year fish and in years with fast growth, age 2+ year fish seemed 
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to exhibit faster growth than smaller age 1+ year fish (Figure 1.2c).  However, similar to 

the results from GS, there was no significant difference in growth among age classes 

within years.    

 The GLM model indicated a significant age and size effect on G (Table 1.6).  The 

interaction term was also significant suggesting that the relationship between size and G 

differs among age classes.  For Atlantic salmon, there was a significant negative 

correlation between length of the growth interval and G. The effect of growth interval 

was only marginally significant for brown trout. 

 

1.4.3. Laboratory Data 

For all growth metrics examined, there was a significant effect of life history 

status and sample date as well as a significant interaction between the two predictor 

variables (Table 1.7).  Over the first growth interval (October), future smolts displayed 

faster growth rates than future non-smolts in terms of all three metrics (Figure 1.3).  

During the proceeding interval (November), both smolts and non-smolts undergo a 

substantial decrease in G (Figure 1.3a); however, GS suggested that smolts only exhibited 

a minor decrease in growth (Figure 1.3b).  This pattern is similar in terms of GL, with 

smolts displaying only a minor decrease in growth from October to November (Figure 

1.3c).  Thus, the pattern in growth during the first two intervals are similar for both GS 

and GL with smolts exhibiting faster overall growth than non-smolts and maintaining 

relatively fast growth during the late fall interval.  The pattern of growth over the winter 

intervals is similar in terms of all three metrics, with both life history groups displaying 

lower growth rates overall and smolts maintaining higher growth than non-smolts.  By 
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February differences in growth in weight were similar in terms of both GS and G with no 

significant difference among life history groups, although during the March intervals, G 

suggests that non-smolts had surpassed smolts in terms of growth rate where as GS 

suggests that smolts still maintained a higher growth rate than non-smolts.  Growth in 

length; however; suggest that smolts maintained significantly faster growth rates than 

non-smolts until the April interval.  By May non-smolts grew faster than smolts in terms 

of all three metrics. 

 

1.5. Discussion 

 One goal of this paper was to compare different growth metrics when neither 

exponential growth nor parabolic growth is explicitly assumed in the growth process and 

the relationship between length and weight is not necessarily constant.  To simulate 

growth in length and weight in a manner that does not rely on these assumptions, a 

mechanistic process-based model, which includes a simple rule for energy allocation, was 

used.  This model was chosen because it decouples growth in weight from growth in 

length, is based on dynamic energetic budget theory of growth, and was found to 

accurately predict growth trajectories in both length and weight of juvenile Atlantic 

salmon.  There was strong agreement between model predictions and the assumption of 

parabolic growth under constant conditions.  The model also predicted a linear growth 

trajectory in length.  Application of the GS equation to the simulated growth trajectories 

appeared to successfully standardize growth rates across size ranges such that growth rate 

in weight was not size dependent.  This result lends credence to the use of the GS 

equation as a size-independent measure of growth rate in salmonids and suggests that an 
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assumption of linear growth in length may be valid for salmonids during the immature 

phase of growth. 

 Testing for size dependence in growth rates in the wild can be difficult because 

error in measured variables can result in a negative bias (Lytle 2001).  One way to 

address this problem is to use RMA regression on initial vs final size.  The RMA 

regressions on field data generally suggested that during most spring intervals, growth in 

juvenile Atlantic salmon was size dependent with larger individuals growing at a slower 

rate than smaller individuals both in terms of weight and length, but that growth in brown 

trout was generally not size dependent.  For Atlantic salmon, slopes of initial vs final 

length were less than one in all but one year and slopes of initial vs final loge weight were 

less than 0.84.  This result suggests that there is size dependence in growth over these 

intervals.  A possible explanation for this size/age dependence is discussed in the 

following paragraph.  For brown trout, the slopes of initial vs final length were generally 

around one and the slope of initial vs final loge weight were generally around 0.84.  

Although this does not definitively prove that brown trout are growing linearly in length 

and parabolically in weight (with an allometric exponent of 0.31), it is consistent with our 

null expectation.  In a study on growth rates in brown trout, Elliot (1975) found a strong 

support for parabolic growth in weight over a range of sizes.  This relationship has been 

established in other salmonids (Brett, 1974) including Atlantic salmon (Elliot & Hurley, 

1997). There is a paucity of information, however, investigating the relationship between 

size and growth in length in fishes.  When quantifying growth in length some studies 

report relative growth in length (Rowe & Thorpe, 1990; Metcalfe et al., 2002), which 

assumes exponential growth whereas other studies report absolute growth in length 
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(Whalen & Parrish, 1999; Steingrímsson & Grant, 2003), which assumes linear growth.  

The present investigation of this relationship is more consistent with an assumption of 

linear growth in length.    

In a comparison of growth metrics, differences in growth rate depended on the 

growth metric used for both Atlantic salmon and brown trout.  For both species, the 

larger age 2+ year classes always exhibited slower growth in weight when growth rate 

was quantified using G.  The observed slower growth of the larger age class is consistent 

with previous studies that report an inverse relationship between size and G (Elliot, 1975; 

Jobling, 1983; Elliot & Hurley, 1997).  Using just this metric of growth, it would be 

unclear if differences among age classes are the result of ecological factors (e.g. limited 

food availability for larger fish) or solely due to the effect of size on G.  When growth in 

weight was quantified using GS, there was no effect of age on growth for brown trout 

whereas differences in growth rates among age classes of Atlantic salmon depended on 

the year examined.  Also, the pattern in growth in length in terms of GL was consistent 

with the pattern in growth in GS.  For brown trout, there was no age effect and for 

Atlantic salmon in years when age 2+ year fish grew slower in GS they also exhibited 

slower growth in GL.  These results are qualitatively similar to the RMA regressions in 

suggesting an age effect in growth for salmon but not for brown trout.  In a study on 

growth rate of brown trout in Norwegian streams, Vollestad et al. (2002) found that GS 

tended to decrease with age, however, their study covered a wider range of age classes 

throughout the summer and fall, when maturity may have influenced differences in 

growth rates among age classes.  The apparent slower growth of age 2+ year salmon is 

not surprising given the complex life histories of salmon in the Westbrook.  Most of the 
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fast growing salmon emigrate as age 2+ year smolts in the spring (Letcher et al., 2002; 

Letcher & Gries, 2003).  Thus, slower growing individuals are left during the spring 

interval.  This pattern of smolting and emigration may explain why age 1+ year fish 

exhibit faster spring growth than age 2+ year fish. 

Although RMA regressions generally agreed with analyses of growth metrics, 

some discussion of the inconsistencies is warranted.  Under our null expectation, if there 

is no size-dependence in GL or GS, then the slope of initial vs final length should be one 

and the slope of initial vs final loge weight regressions should be approximately 0.84.  

This expectation was generally met for brown trout, but for Atlantic salmon slopes from 

RMA regressions indicated slower growth of larger fish in most years in both length and 

weight, but analysis in terms of GL and GS indicated in some years there was no 

difference among age classes.  This discrepancy may partly be an artifact caused by 

variation in the growth rate interval.  Growth over the spring likely varies as 

environmental conditions such as flow, water temperature and food availability change.  

If the growth interval varies, it may appear that individuals with a shorter growth interval 

are growing at a faster rate.  Results from the GLM indicated that length of the growth 

interval was a significant predictor of growth in Atlantic salmon data, but only marginally 

significant in brown trout.  A cursory examination of growth intervals revealed that age 

2+ year Atlantic salmon were often captured over shorter time intervals than age 1+ year  

Atlantic salmon, which may have biased their growth rates upward.  This effect of 

differences in the growth rate interval may partly explain the discrepancy between the 

RMA regressions and the analysis of the growth rate metrics  
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Results from the GLM were difficult to interpret because of a significant 

interaction between age and initial weight for both Atlantic salmon and brown trout.  

Using initial size as a covariate offers an advantageous alternative to adjust for the effect 

of size on G because an estimate of b is not needed.  This approach has been used in other 

studies as a way to adjust for differences in initial size when G is the response variable 

(Bacon et al., 2005; Jonsson & Jonsson, 2007).  However, if the relationship between size 

and G is non-linear due to ecological constraints for example, then the rate of decrease in 

growth in one group may be different from the rate of decrease in growth in another 

group leading to non-parallel slopes and complicating interpretation of growth rate 

differences.   

Differences in growth between smolts and non-smolts depended not only on the 

time of year and the ontogenetic stage, but also on the growth metric used to quantify 

growth rate.  During the age 0+ fall, future smolts exhibited faster growth than non-

smolts regardless of the metric used.  However, from the October to November both GS 

and GL suggested that future smolts only exhibit a minor decrease in growth where as G 

suggested a substantial decrease in growth for both groups.  Similar to the field data, 

characterization of the magnitude and timing of divergence in growth rate using GL 

closely matched those using GS, and hence, use of either growth metric would result in 

the same conclusion about timing and magnitude of divergence in growth among these 

groups.  Furthermore, the close relationship between GS and GL indicates that rapid 

growth in length accompanies rapid growth in weight over this growth period.  In the 

spring the choice of a growth metric was found to influence conclusions about 

differences in growth among life history groups.  Both G and GS indicated no significant 



 

 22 

difference in growth rates among life history groups, although G suggests that non-smolts 

surpass smolts in March in growth where as GS suggest that smolts are still growing 

faster.  Faster growth in length, however, is maintained by smolts late into the spring and 

it is not until the last interval that non-smolts surpass smolts in growth rate in terms of 

length.  Overall, these results suggest that during the spring, growth in length is 

significantly decoupled from growth in weight among these life history groups.  A 

number of studies have suggested that during certain life stages or seasons growth in 

length is decoupled from growth in weight (Edmundson & Mazumder, 2001; Bacon et 

al., 2005).  Using only one measure of growth may obscure interpretation of growth rate 

differences, and thus, a combination of both metrics may be necessary to more 

completely describe variation in the growth trajectory.    

The dynamic growth trajectories of Atlantic salmon through ontogeny offer one 

example of how variable energy allocation strategies can separately influence growth in 

length and growth in weight.  A growing body of literature is beginning to unravel the 

complex relationship between growth rates in fish and plasticity in energy allocation 

decisions (Post & Parkinson, 2001; Hurst & Conover, 2003; Garvey et al., 2004).  For 

example, research on compensatory growth shows that fish recovering from starvation 

may prioritize energy allocation to replenishing lipid reserves over growth in structural 

tissue (Nicieza & Metcalfe, 1997; Metcalfe et al., 2002).  In temperate fishes, body size 

and season can interact with selection pressures in determining energy allocation 

strategies.  For example, Garvey et al. (2004) found that growth in length during winter 

might be selectively advantageous for smaller members of a cohort when predation is 

high.  Similarly, Post & Parkinson (2001) found that for rainbow trout Oncorhynchus 
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mykiss (Walbaum) entering the winter season, selection favors energy allocated to 

somatic growth for small fish, but for large fish an energy storage strategy is more 

profitable.  Thus, selective pressure to grow in length or weight may differ among 

individuals of different sizes independent of metabolic constraints   For Atlantic salmon, 

life history plays a significant role as fish that are preparing to enter the marine 

environment undergo a series of physiological and morphological changes to prepare for 

life at sea (McCormick & Saunders, 1987).  In this study, a prioritization towards growth 

in length was observed in fish that were transitioning to the smolt stage.  The plasticity in 

growth demonstrated by studies of growth in fishes highlight the importance of 

considering energy allocation strategies when comparing growth rates among individuals 

from different size classes and environments.  Future studies that aim to relate 

environmental conditions to growth rate should be careful to consider the influence of 

energy allocation patterns when quantifying growth rate and correlating variation in 

growth to environmental variables.   

Growth is a metabolic process and therefore subject to metabolic constraints 

(Brett, 1979; Winberg, 1971).  A number of studies have demonstrated a clear inverse 

relationship between G and body size in fish (Brett, 1974; Elliot, 1975), which has been 

attributed to the scaling of metabolism with size (Peters, 1983).  It is important, however, 

to note that in ecological settings, other constraints on growth might dominate the size- 

growth rate relationship.  For example, ontogenetic niche shifts in diet may lead to an 

increase in growth with size as fish transition to piscivory (Olson, 1996; Post, 2003).  In 

such cases morphological constraints dictate the size-growth rate relationship.  

Nonetheless, size represents an important influence on growth rates.  Many important 
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studies aim to quantify difference in growth performance among groups of different sizes 

including studies on interspecific competition (Harwood et al., 2001), intercohort 

competition (Byström & Andersson, 2005) and compensatory growth (Ali et al., 2003).  

It is fundamental to studies of this nature that the effect of size on growth rate is taken 

into account when interpreting differences in growth performance.  There are a number of 

methods and approaches to quantifying growth in fishes, but each is dependent upon 

underlying assumptions of the growth process (Ricker, 1979; Ostrovsky, 1995).  The 

results of the present study generally supported an assumption of parabolic growth in 

weight and linear growth in length during juvenile development in salmonids.  In 

addition, growth in length appears to be tightly coupled with growth in weight early in 

ontogeny, and therefore, substituting one measure of growth for another may not 

compromise interpretation of growth rate differences among individuals or groups even 

when there is size variation.  Differences in life history strategies and the effects of 

maturity may, however, result in changing energy allocation strategies over ontogeny 

(Vollestad et al., 2002).  During later life history stages, flexible energy allocation 

strategies may decouple growth in length from growth in weight.  To fully describe 

growth, simultaneous analysis of both growth in length and weight may be necessary to 

provide a more complete description of variation in growth trajectories. 
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 Table 1.1. Equations and parameter values from the dynamic energy (DEB) model. 

state variables Definition                                            

S           Structural Mass                                                  

R           Reserve Mass 

L           Length (cm) 

W           Weight (g) 

global parameters Definition                                           Value 

W0  Weight scale                                        0.01394 

  Weight-length power                           0.684                       

  Weight-carbon power                          0.72 

A0  Assimilation scale                                0.095 

M0  Basal metabolic rate scale                    0.014 

P  Basal metabolic rate power                  0.75 

Tm  Basal metabolic rate temperature         6.0 

Ta  Assimilation temperature                     12.0 

  Length-structure power                        0.248 

L0  Length-scale power                              2.35 

0 Defended reserve ratio                         2.44 

w Allocation switch width                       0.362 

k0 Max. proportion of assimilate  

 allocated to S                                      0.232 

F Food                                                        1 

Equation Definition Equation 

   No. 
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p
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Ta

T ] 

 

Net carbon assimilation rate      

     (10) 
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Table 1.2. Results from reduced major axis (RMA) regressions of (a) initial length (L0) vs 

final length (Lt) and (b) natural log of initial weight (Loge W0) vs natural log of final 

weight (Loge Wt) for individually tagged juveniles Atlantic salmon captured over eight 

different spring sampling intervals. Age 1+ year and age 2+ year fish were combined in 

all analyses.  

 

 

Regression 

Sample 

(year) 

 

n 

Slope Coefficient 

(SD) 

 

r 

(a) L0 vs Lt 9   (1998) 218 0.90 (0.01) 0.98 

 18 (1999) 342 0.85 (0.01) 0.97 

 25 (2000) 327 1.02 (0.02) 0.96 

 32 (2001) 207 0.88 (0.01) 0.98 

 38 (2002) 266 0.94 (0.02) 0.96 

 43 (2003) 286 0.83 (0.02) 0.94 

 48 (2004) 390 0.83 (0.02) 0.94 

 52 (2005) 325 0.90 (0.02) 0.89 

     

(b) Loge(W0) vs Loge(Wt) 9   (1998) 218 0.68 (0.01) 0.97 

 18 (1999) 341 0.64 (0.01) 0.94 

 25 (2000) 327 0.73 (0.01) 0.94 

 32 (2001) 207 0.69 (0.01) 0.96 

 38 (2002) 266 0.76 (0.02) 0.93 

 43 (2003) 286 0.62 (0.01) 0.93 

 48 (2004) 390 0.65 (0.01) 0.93 

 52 (2005 324 0.74 (0.02) 0.84 
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Table 1.3. Results from reduced major axis (RMA) regressions of (a) initial length (L0) vs 

final length (Lt) and (b) natural log of initial weight (LogeW0) vs natural log of final 

weight (Loge Wt) for individually tagged brown trout captured over six different spring 

sampling intervals. Age 1+ year and age 2+ year fish were combined in all analyses. 

 

Regression Sample 

(year) 

 

n 

Slope Coefficient 

(S.D.) 

 

r 

(a) L0 vs Lt 25 (2000) 40 1.06 (0.03) 0.98 

 32 (2001) 80 0.96 (0.02) 0.98 

 38 (2002) 99 1.02 (0.02) 0.98 

 43 (2003) 34 1.03 (0.03) 0.98 

 48 (2004) 42 0.97 (0.03) 0.98 

 52 (2005) 137 1.01 (0.02) 0.97 

     

(b) Loge(W0) vs Loge(Wt) 25 (2000) 41 0.81 (0.07) 0.82 

 32 (2001) 81 0.84 (0.08) 0.61 

 38 (2002) 100 0.86 (0.05) 0.83 

 43 (2003) 35 0.75 (0.07) 0.85 

 48 (2004) 43 0.77 (0.10) 0.64 

 52 (2005 137 0.78 (0.05) 0.71 
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Table 1.4. Results from a two-way ANOVA on spring growth rates of juvenile Atlantic 

salmon where age (1+  year or 2+ year) and year are included as independent variables 

and the dependent variable is either a) G, b) GS or c) GL.  

 

       Effect        d.f.  MSE F P 

(a)     Intercept          1       0.292 42058.73 <0.0001 

         Year          7       0.002     243.76 <0.0001 

         Age          1       0.014   2085.16 <0.0001 

         Year x Age          7     0.0001       16.64 <0.0001 

         Error    2344   0.00001   

     

(b)     Intercept          1        1.470 43863.00 <0.0001 

         Year          7        0.008     250.38 <0.0001 

         Age          1        0.004     121.91 <0.0001 

         Year x Age          7        0.001       23.31 <0.0001 

         Error    2344    0.00003   

     

(c)     Intercept          1      291.37 43619.94 <0.0001 

         Year          7          1.06     157.90 <0.0001 

         Age          1          0.99     148.30 <0.0001 

         Year x Age          7          0.14       21.36 <0.0001 

         Error    2346          0.01   

 

 

 

 



 

 29 

Table 1.5. Results from a two-way ANOVA on spring growth rates of brown trout where 

age (1+  year or 2+ year) and year are included as independent variables and the 

dependent variable is either a) G, b) GS or c) GL.  

       Effect        d.f.  MSE F P 

(a)     Intercept          1     0.044 6820.54 <0.0001 

         Year          5   0.0002     33.35 <0.0001 

         Age          1     0.002   325.24 <0.0001 

         Year x Age          5 0.00001       1.35       0.24 

         Error      423 0.00001   

     

(b)     Intercept          1     0.245 7385.47 <0.0001 

         Year          5     0.001     33.19 <0.0001 

         Age          1 0.00002       0.53       0.47 

         Year x Age          5 0.00005       1.48       0.20 

         Error      423 0.00003   

     

(c)     Intercept          1   49.454 8092.80 <0.0001 

         Year          5     0.171     27.91 <0.0001 

         Age          1   0.0002       0.04       0.85 

         Year x Age          5     0.018       2.93     <0.05 

         Error      423     0.006   
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Table 1.6. Results from a general linear model (GLM) using loge specific growth rate (G) 

as the response variable, age and year of sampling as fixed effects and loge initial weight 

and length of the growth interval as covariates for both a) juvenile Atlantic salmon and b) 

brown trout captured during multiple spring seasons.  Only age 1+ year and age 2+ year 

fish were used in the analysis for both species. 

       Effect    d.f. MSE F P 

(a)     Intercept      1   46.13  723.73 <0.0001 

         Year      7     7.11  111.58 <0.0001 

         Age      1     3.62    56.82 <0.0001 

         Loge(W0)      1   26.69  418.67 <0.0001 

         Interval      1     0.58      9.03   0.003 

         Year x Age      7     1.34    21.00 <0.0001 

         Age x Loge(W0)      1     3.53    55.31 <0.0001 

         Error 2338     0.06   

     

(b)     Intercept      1   16.13  481.55 <0.0001 

         Year      5     0.68    20.24 <0.0001 

         Age      1     1.05    31.44 <0.0001 

         Loge(W0)      1     6.84  204.10   0.07 

         Interval      1     0.11      3.26 <0.0001 

         Year x Age      5     0.02      0.46   0.80 

         Age x Loge(W0)      1     0.98    29.24 <0.0001 

         Error  420     0.03   
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Table 1.7. Results from a two-way ANOVA on growth rates of Atlantic salmon grown 

under laboratory conditions over several growth intervals from age 0+ fall to age 1+ 

spring.  Independent variables are sample and smolt group (smolt or non-smolt) and the 

dependent variable is either a) G b) GS or c) GL. 

       Effect    d.f.  MSE F P 

(a)     Intercept     1       0.016 9904.08 <0.0001 

         Smolt Group     1   0.00002     11.39   <0.001 

         Sample     7     0.0008   535.98 <0.0001 

         Smolt Mode x Sample     7     0.0002   127.23 <0.0001 

         Error 923 0.000002   

     

(b)     Intercept     1       0.329 9046.80 <0.0001 

         Smolt Mode     1       0.001     33.76 <0.0001 

         Sample     7       0.012   315.91 <0.0001 

         Smolt Mode x Sample     7       0.005   130.10 <0.0001 

         Error 923   0.00004   

     

(c)     Intercept     1     89.942 12943.69 <0.0001 

         Smolt Mode     1       1.783     333.51 <0.0001 

         Sample     7       2.318     256.63 <0.0001 

         Smolt Mode x Sample     7       0.431       62.03 <0.0001 

         Error 888       0.007   
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           Figure 1.1: Mean 95% CI growth rates in terms of (a) specific growth rate (G) (b)  

           standardized mass-specific growth rate (GS) and (c) growth rate in length  

           (GL) for age 1 () and age 2 (□) Atlantic salmon captured over spring  

           intervals for eight consecutive years (*** indicates a significant difference    

           (P<0.0001) determined from a HSD post-hoc test). 
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  Figure 1.2: Mean 95% CI growth rates in terms of (a) specific growth rate (G)  

              (b) standardized mass-specific growth rate (GS) and (c) growth rate in length  

              (GL) for age 1 () and age 2 (□) brown trout captured over spring intervals for  

              six consecutive years (*** indicates a significant difference (P<0.0001)  

              determined from a HSD post-hoc test). 
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  Figure 1.3: Mean 95% CI growth rates in terms of (a) specific growth rate (G)  

              (b) standardized mass-specific growth rate (GS) and (c) growth rate in length  

              (GL) for smolts () and non-molts (□) grown under laboratory conditions  

              from age 0 fall to age 1 spring (*** indicates a significant difference  

  (P<0.0001) determined from a HSD post-hoc test). 
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CHAPTER 2 

INDIVIDUAL VARIATION IN LENGTH-WEIGHT RELATIONSHIPS:  

APPLICATION OF A HIERARCHICAL APPROACH TO THE STUDY OF 

LENGTH-WEIGHT RELATIONSHIPS 

 

 

2.1. Abstract 

The study of length-weight relationships has long been a cornerstone in fisheries 

science.  Information can be used in production models and in quantifying body condition 

and hence overall health of a population.  Recently, standard approaches to estimating 

length-weight and condition in fishes have received more scrutiny and hierarchical 

approaches have been proposed.  However, few studies have addressed the mechanisms 

that cause variation in length-weight relationships at different levels.  In this paper, we 

review causes of individual variation in length-weight relationships through a set of 

simulations.  We found that a dynamic allometry not only gives rise to a nonlinear 

relationship between log length and log weight but also can result in individual variation 

when individuals are growing at different rates.  We suggest that a random effects 

approach using polynomials can capture both the individual level variation and changes 

in morphology that may occur over ontogeny.  We applied this approach to laboratory 

data on growth of individually marked juvenile Atlantic salmon and found that an LME 

model with a 3
rd

 order polynomial provided the best fit to the data.  Finally, we use this 

hierarchical approach to study the dynamics of length-weight relationships among three 

separate populations of Atlantic salmon that vary along a latitudinal gradient. We discuss 

advantage and disadvantages to this approach in contrast to other existing methods. 
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2.2. Introduction 

The estimation of length-weight relationships (LWRs) has long been an important 

component of fishery science (Ricker 1975, Quinn and Derisio 1999).  Information from 

LWRs can serve two main purposes 1) to provide estimates of biomass from length data 

and 2) to provide estimates of condition and hence the overall health of a group or 

population (Winters and Wheeler 1994, Marshall et al. 2004, Kimmerer et al. 2005).  The 

study of length-weight relationships has a long history in the fisheries literature as 

accurate estimation of LWRs is often vital to proper management of fisheries (Lai and 

Hesler 2004, Froese 2006, He et al. 2008).  The importance of LWRs to both basic and 

applied fisheries science warrants a clear understanding of the dynamics of LWRs and 

careful consideration of methods to accurately estimate them. 

 Despite its importance, fishery scientists have traditionally paid little attention to 

estimation of LWRs as they are generally estimated with simple ordinary least squares 

(OLS) regression techniques on log transformed data (Hillborn and Walters 2001, 

Robertis and Williams 2008).  This method assumes a constant length-weight allometry.  

Recently, however, criticism of the simplicity of this method has resulted in a renewed 

interest in developing appropriate modeling techniques (Lai and Hesler 2004 , He et al. 

2008, Robertis and Williams 2008).  For example, Robertis and Williams (2008) 

demonstrated that the OLS method can produce bias predictions of weight for different 

length categories which can in turn result in a size-dependent bias in biomass estimates 

for a given size-class. In addition, many studies have observed that length-weight 

relationships can vary over spatial and temporal scales (Winters and Wheeler 1994, 

Brodziak and Mikus 2000, Kimmerer et al. 2005, Gerritsen and McGrath 2007). Some ad 
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hoc methods for estimating length-weight relationships include running separate 

regressions for categories based on size classes, times and locations over which the data 

were collected.  However, such approaches generally require large amounts of data which 

are difficult to collect and ignore the hierarchical structure of the data (He et al. 2008).   

 An alternative way to deal with multiple levels of variation is to apply linear 

mixed effects (LME) models. LME approaches are becoming increasingly common in the 

fisheries and ecological literature as they offer a robust statistical approach to deal with 

complex data sets that can be readily subdivided into multiple hierarchical levels (Clark 

2003, Rivot et al. 2004).  A number of studies have recently proposed the use of LME 

models as a way to deal with multiple levels of variation in LWRs and address violations 

of assumptions that are often ignored in simpler approaches (Lai and Hesler 2004, He et 

al. 2008).   

 Although these new approaches have offered sophisticated techniques to deal with 

multiple levels of variation, few studies have addressed the fundamental biological 

reasons for variation in LWRs.  A more thorough understanding of the growth process 

that gives rise to observed LWRs could help illuminate the levels at which significant 

variation may occur.  Numerous studies have outlined the connection between size, 

metabolism and growth in mass; however, studies of LWRs rarely address these concepts 

explicitly.  General scaling laws predict a decline in metabolic demands with an increase 

in size (Peters 1983, Schmidt-Nielsen 1984).  As a result in temperate fishes there tends 

to be an inverse relationship between size and energy depletion (Shuter and Post 1990, 

Schultz and Conover 1999).  In addition, smaller fish are often more susceptible to 

predation.  A growing body of literature is beginning to reveal how these competing 
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selective pressures give rise to dynamic energy allocation patterns (Post and Parkinson 

2001, Hurst and Conover 2003, Garvey et al. 2004).  These studies suggest that size, 

season and even the presence or absence of predators can often determine if it is more 

profitable to grow in length vs mass (Hurst and Conover 2003).  This dynamic energy 

allocation can have direct consequences for LWRs, for example, in a study of age 0 

rainbow trout rainbow trout (Onchrhynchus mykiss), Post and Parkinson (2001) found 

that even over a relatively narrow size range there is evidence of a bi-phasic allometry 

which they attributed to the flexibility of energy allocation as fish grow.  Therefore, the 

scaling relationship between size and metabolism and the role of energy allocation 

decisions may result in dynamic LWRs even within an individual over time.  

Understanding how these processes affect variation can help guide the modeling process. 

 Because this pattern of energy allocation is size and environment specific it may 

be reasonable to suspect that within a cohort there may be individual differences in 

LWRs depending on growth rate and local environment.  Traditionally, studies of LWRs 

only include cross-sectional data where only one data point is recorded for each 

individual.  Developing technology has led to an increasing ability to individually mark 

animals and gather longitudinal data where multiple records of length and weight 

information for an individual are recorded (Juanes et al. 2000, Gamble et al. 2008).  

Consequently, capture mark-recapture (CMR) studies are becoming pervasive in the 

ecological and fisheries literature. Previous applications of LME methods to estimation of 

length-weight relationships have looked at different levels of variation among groups in 

time or space (Lai and Hesler 2004 , He et al. 2008); however, we are not aware of any 

papers that have estimated LWRs at the level of the individual.   The increasing number 
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of CMR studies with individuals illuminates the need to develop methods that 

appropriately handle the complexity of longitudinal data.   

 In this paper we take a mechanistic approach to investigate variation in LWRs. 

We first use basic simulations to demonstrate how a changing allometry can influence the 

LWRs both within a single individual and among individuals that are growing at different 

rates.  We then use Atlantic salmon as a model species to investigate complexity in the 

length-weight relationship.  Atlantic salmon are an ideal species in this respect as they 

exhibit considerable flexibility in their energy allocation throughout ontogeny (Metcalfe 

1998, Thorpe et al. 1998).  For example, prior to entering the marine environment 

migrating individuals undergo a morphological change becoming longer and thinner 

(McCormick et al. 1998, Letcher 2003).  In addition, in laboratory settings they are 

known to exhibit seasonal changes in appetite entering a period of anorexia where they 

lose weight despite being fed (Simpson et al. 1996).  All these factors make their LWRs 

challenging to model.  Finally, there are many studies of juvenile Atlantic salmon in situ 

where longitudinal data are available because they are easy to mark and recapture 

probabilities are often high.  Ultimately, this paper has three goals 1) to illuminate 

mechanisms responsible for variation in LWRs at the individual level and 2) offer a 

statistical modeling approach to deal with this variation and 3) apply the new modeling 

approach to investigate variation in LWRs of individually marked juvenile Atlantic 

salmon sampled across three streams that vary in latitude. 
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2.3. Materials and Methods 

2.3.1. Simulations 

To simulate growth under a dynamic allometry we used the allometric scaling of 

age 0+ rainbow trout estimated in Post and Parkinson 2001 as a baseline model.  In their 

study, they found the length-weight allometry was bi-phasic with a switch to a steeper 

allometry at ~100 mm fork length.   To simulate growth rate we used a baseline value of 

0.5 mm/day which approximates the maximum growth rate observed in Atlantic salmon 

in our field data.  We simulated growth for 120 days which is roughly equivalent to the 

length of the growth season for Atlantic salmon in the streams we sampled.  To mimic 

seasonal growth in length we used a linear model starting at 0.5 mm/d and extending to 0 

mm/d as growth towards the end of the growth season approaches 0 in our study systems. 

We assumed an allometric relationship between length and weight such that 

 

       W=aL
b
                                                                       (1) 

 

Under this relationship growth in weight (
dt

dW
) can be derived from growth in length 

(
dt
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) through an application of the chain rule 
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To solve for Wt equation 2 was integrated numerically using Heun’s method.  We used 

the following algorithm to simulate a switch in allometry  
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      where b1=2.903 and b2=3.278.         

 We first examined the results for growth of one individual to compare the degree 

to which a single individual’s LWR deviates from an assumed log linear relationship.  

Next, to assess the effect of variation in growth in producing variation in LWRs among 

individuals we simulated growth under increasing levels of growth variation using a 

sample size of 10 individuals.  The degree of growth variation between each simulation 

was adjusted by increasing the coefficient of variation (CV) of mean growth rate such 

that the CV was 10%, 20% and 50% of the mean for the three simulations respectively.  

In each simulation growth rate was autocorrelated such that the slowest growing 

individual always had the slowest growth rate and the fastest growing individual always 

had the fastest growth rate.  Autocorrelation in growth rate is known to occur in a natural 

setting therefore we felt justified in including it in our simulations (Pfister and Peacor 

2003).  We compare estimated LWRs graphically. 

 

If L≤100mm 

If L>100mm 
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2.3.2. Laboratory Data 

 We used a set of laboratory data for juvenile Atlantic salmon to explore how 

LWRs vary among individuals and over size ranges among two distinct life history 

groups. These data offer several advantage including having several observations for each 

fish, being able to unambiguously assign each individual to one of two life history groups 

(smolt or parr) based on its morphology at the end of the experiment, limited 

measurement error and equally spaced growth intervals.  These data were collected in a 

separate experiment investigating the differences in growth and morphology between two 

life history groups.  Details of the experiment are described elsewhere (Obedzinski and 

Letcher 2004, Pearlstein et al. 2007, Sigourney et al. 2008).  Briefly, all fish were 

anethetized in MS-222, measured for length and weight and a PIT tag was inserted in the 

peritoneal cavity.  Fish were randomly placed into one of four circular tanks in a manner 

that ensured equal biomass among tanks.  At the end of the experiment parr could be 

easily distinguished from smolts as they exhibited a longer thinner shape, and difference 

in coloration.  In addition, most smolts were significantly larger than parr at the start of 

the experiment. 

 We fit several different models to the data which included 3
rd

 order polynomials 

and simpler linear models which excluded higher order polynomials.  To compare models 

we used Aikaike’s Information Criterion (AIC) (Burnham and Anderson, 2002).  For 

each model, delta AIC values were computed by taking its AIC value subtracting it from 

the AIC value of the top model (Burnham and Anderson, 2002).  All models were fit 

using restricted error maximum likelihood (REML).  Although it is possible to fit models 

with random coefficients, preliminary analyses showed little variation was explained by 
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including random coefficients, therefore, we only considered models with random 

intercepts in the final analysis.  For the top model we assessed the importance of the 

random effects with a likelihood ratio test (LRT). Because LRTs cannot be applied when 

using REML we used maximum likelihood (ML) to fit the top model with and without 

random effects and then compared the two models with a LRT (Pinheiro and Bates, 

2000).   

 

2.3.3. Field Data 

Using a similar LME approach as applied to the laboratory data, we estimated 

LWRs and seasonal changes in condition among three different streams for which we 

have mark-recapture data.  The streams occur along a latitudinal gradient from 

Massachusetts to New Brunswick, Canada and include the West Brook (WB) a 3
rd

 order 

tributary to the Connecticut River located in Whately, Massachusetts USA (42°25′N 

72°39′W), Shorey Brook (SB) a 2
nd

 order tributary to the Narraguagus River located in 

Beddington, Maine USA (44°49′N 68°03′W) and Catamaran Brook (CB) a 3
rd

 order 

tributary to the Little Southwest Miramichi River located in Renous, New Brunswick 

Canada (46°52′N 66°06′W)Data from all three streams were collected in a manner 

consistent with the sampling design outlined by Juanes et al. 2000.  Fish were captured 

using backpack electrofishing.  Captured fish greater then 60 mm fork length and 2 g in 

weight were anesthetized and tagged interperitoneally with a 11.5 mm passive integrated 

transponder (PIT) tag.  Fish were then returned to the same section of stream from which 

they were captured (see Letcher and Gries 2003 and Horton et al. 2009 for more details 
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on sample design).  In all three streams there were four primary sampling occasions 

(spring, summer, fall, prewinter) (Table 2.1).  

 We used data collected from the 2001 sampling season as it provided the most 

comprehensive dataset of tagged individuals.  We compared a number of models which 

varied in complexity. For example, we included maturity status and season as predictor 

variables because condition is known to fluctuate as a function of these variables.  We 

also tested for river effects and differences in scaling relationships among rivers as well 

as seasons.  This analysis would allow us to assess changes due to river or season and 

whether or not changes are consistent among rivers. Finally, we compared 3
rd

 order 

polynomial models to simpler linear models to test whether a more complicated nonlinear 

model is necessary to capture the relationship between log transformed length and log 

transformed weight across the size ranges within the data.  As outlined above, we used 

AIC as a model selection criterion for models with different fixed effects.  To address the 

importance of random effects we used the same procedure as outlined above for the 

laboratory data.   

 

2.4. Results 

2.4.1. Simulations 

Our simulations showed that a dynamic allometry not only results in a nonlinear 

relationship between log length and log weight over ontogeny but also demonstrated how 

variation in growth rates can act as a mechanism to increase variation in LWRs.  

Simulation results for one individual illustrates how the LWR deviates from a linear 

relationship even over a relatively narrow size range (Figure 2.1).  Repeating the 
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simulations with ten individuals suggested that with a small amount of variation in 

growth (CV=10%) the resulting variation in individual slopes and intercepts was 

negligible (Figure 2.2a). However, a doubling of the growth rate variation (CV=20%) 

produced a more noticeable variation in slopes and intercepts (Figure 2.2b). Finally, large 

variation in growth (CV=50%) translated into large differences in estimated slopes and 

intercepts (Figure 2.2c).   

 

2.4.2. Laboratory Data 

Our exploratory analysis of the laboratory data yielded two prominent growth 

patterns in terms of the relationship between length and weight.  First, we found that 

there was considerable variation in LWRs among individuals as evidenced by variation in 

individual intercepts (Figure 2.3a) and slopes (Figure 2.3b).  In addition to this individual 

level variation, the two life history groups (smolts and parr) separated out into separate, 

distinct groups in terms of the mode and distribution of estimated slopes and intercepts. 

These empirical histograms appeared to follow a Gaussian distribution suggesting that an 

LME approach might be appropriate for these data.  The second pattern we found is a 

distinct change in LWRs from pre-winter to post-winter.  During the pre-winter phase 

both parr and smolts follow similar LWRs with overall slopes close to three for both life 

history groups (Figure 2.4).   During the post-winter phase the estimated allometry for 

smolt LWRs was considerably less than three as individuals following this pathway 

become longer and thinner whereas the estimated allometry for parr LWRs was greater 

than three as larger fish become more rotund as they grow. 
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 The full LME model with higher (3
rd

) order polynomial effects, life history effects 

and sample effects had the lowest AIC indicating that the most complex model was also 

the most parsimonious (Table 2.2).  Also, a likelihood ratio test indicated that inclusion 

of random effects provided significant improvement to model fit (P<0.0001).  We found 

close agreement between predicted and observed log weights for a randomly chosen 

smolt (Figure 2.5a) and a randomly chosen parr (Figure 2.5b). 

 

2.4.3. Field Results 

Analysis of field data suggested considerably variation in LWRs among rivers, 

seasons and life history groups.  Although the most complex model had the lowest AIC, 

parameter estimates and standard errors were nonsensical suggesting a problem with 

convergence, therefore, we excluded this model from further analysis.  After excluding 

the most complex model we found the top model did not include a higher order 

polynomial effect (Table 2.3). We found 3
rd

 order polynomial models were among the 

top models in our candidate set, however, delta AIC values indicated little support for 

these models.  Individual variation appeared to be significant as indicated by a likelihood 

ratio test (P<0.0001) and a decomposition of variance components.  The top model 

included effects of log length, river, season and maturity as well as interactions among 

these variables (Table 2.4).  Within rivers, there was evidence of seasonal changes in 

LWRs (Table 2.4).  Among rivers LWRs were similar in most seasons except in spring 

where the allometric slope for CB was less than that for the other rivers and SB appeared 

to have a significantly lower intercept indicating lower condition (Figure 2.6).  Mature 

and immature parr had similar LWRs in spring and early summer but the onset of 
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maturation leads to significant increases in condition for weight of mature parr in fall 

(Table 2.4).  Finally, our results also suggest some interesting differences in seasonal 

changes in condition among rivers for immature parr.  In WB, where fish attain the 

largest sizes, there appeared to be a significant drop in condition from early summer to 

fall (Figure 2.7a).  This pattern of decreasing summer condition was similar in SB (Figure 

2.7b).  Comparisons of estimated LWRs for CB, however, suggested little change in 

condition between summer and fall (Figure 2.7c). 

 

2.5. Discussion 

One goal of this paper was to demonstrate the effect of a dynamic allometry on 

LWRs both within and among individuals.  Fishery scientists have long recognized that 

LWRs can differ as fish enter different growth stanzas (Ricker 1975, Froese 2006), but it 

is rare that the mechanisms behind these changing LWRs are discussed.  Population level 

studies often tend to look at variation in LWRs at large temporal or spatial scales and 

over large size ranges (Winters and Wheeler 1994, Brodziak and Mikus 2000, Kimmerer 

et al. 2005, Gerritsen and McGrath 2007). These studies often attribute observed 

variation to large scale environmental fluctuations (Winters and Wheeler 1994, Brodziak 

and Mikus 2000, Gerritsen and McGrath 2007).  However, on a smaller scale, dynamic 

allometry can arise from individuals switching their energy allocation tactic as they grow.  

An increasing body of literature is beginning to support this notion of flexible energy 

allocation in young fishes (Post and Parkinson 2001, Hurst and Conover 2003, Garvey et 

al. 2004).   For example, the theory of dynamic energy budgets decouples growth in 

length from growth in weight via an energy allocation rule (Broekhuizen et al. 1994, 



 

 48 

Koojiman 2000, Jones et al. 2002).  In a physiological context, this rule recognizes that 

individual organisms may be capable of making decisions about how to allocate energy 

to growth in structural mass or growth in energy reserves.  Depending on the ecological 

context different allocation strategies may be more optimal than others and result in a 

dynamic allometry between length and weight.  Our simple simulations using bi-phasic 

allometry demonstrated how variation in growth rates among individuals can result in 

variation in LWRs over a narrow size range. 

 Recognition of the complexity of LWRs has led to a recent resurgence of methods 

to deal with different levels of variation; however, we are not aware of any studies that 

have explicitly addressed this combined problem of individual variation and dynamic 

allometry.  With the increasing number of CMR studies, the need for appropriate 

modeling approaches to handle variation among individuals is apparent.  Hierarchical or 

LME approaches are quickly becoming common in the literature as sophisticated 

methods to deal with multiple levels of variation.  Hai and Hesler (2004) showed that 

they can be readily applied to the study of LWRs when there are different levels of 

variation among groups.  However, the underlying assumption is that within a group the 

allometry is static (linear).  Using higher order polynomials help to relax the assumption 

of a linear relationship between log length and log weight but are rarely used when 

modeling the relationship between size and weight (but see Hochachka and Smith 1991 

and Weatherhead et al. 1996 for examples).  Including higher order polynomials has the 

advantage of being nonlinear in the mathematical sense but linear in the statistical sense 

and therefore amenable to a LME modeling framework. 
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 Exploratory analysis of laboratory data on Atlantic salmon growth revealed 

evidence of both individual variation in LWRs and a life history dependent dynamic 

allometry.  Atlantic salmon represent a challenging species for which to study LWRs 

because their complex life history includes a morphological change as they prepare to 

switch environments (McCormick et al. 1998, Letcher 2003).  Other aspects of the 

salmon life history include bimodal variation in growth rates and winter starvation which 

tends to uncouple the otherwise tight relationship between length and weight even in a 

laboratory setting.  We tested our modeling approach on this laboratory data set and 

found that the most complex model with a sample (seasonal) effect and a higher order 

(3
rd

) polynomial effect was the most parsimonious model.  We further found for a given 

individual of both life history groups, the model was able to capture the overall variation 

in weight as a function of length.  This result lends credence to this modeling approach as 

a potential method to capture variation in LWRs and speaks to the underlying complexity 

in LWRs that can arise from dynamic life history tactics.   

 Another advantage of the LME approach is that it is readily applicable to field 

situations where there are likely missing observations resulting in unbalanced designs 

(Gillies et al. 2006).  Our analysis of field data on three separate Atlantic salmon 

populations did not detect a polynomial effect (delta AIC>10); however, variation among 

individuals was significant suggesting that a general LME approach was appropriate.  

One reason why a higher order polynomial was not needed in the field data is possibly 

because the size range is too narrow within any given season and river combination.  We 

did find, however, that LWRs are complex with slope coefficients varying among rivers 

and among seasons within a river.  Because our dataset only included three rivers and one 
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year we did not include temporal or spatial hierarchical effects.  However, it is common 

on surveys to have multiple levels (tributaries) collected over multiple years.  This can 

readily be put into a hierarchical framework where quantifying the random variation may 

be of interest.  Using this approach we were able to use one model with all individuals 

that accurately reflects the data structure to estimate the best model describing LWRs.   

Our comprehensive analysis of this complex dataset allowed us to reveal 

interesting differences among streams in terms of LWRs and condition within a unified 

modeling framework.  Our results suggest that condition decreases from summer to fall in 

WB and SB but remains steady and even increased slightly in CB.  This result is 

intriguing as summer temperatures are generally higher in Catamaran routinely exceeding 

20
○
 C which is presumably more stressful for Atlantic salmon (Breau et al. 2007).  

However, when coupled with cross-tributary comparison of summer growth, this result is 

not surprising as fish in CB maintain positive growth rates over summer where as fish in 

both WB and SB exhibit negligible and occasionally negative growth in mass over 

summer (Letcher and Gries 2003, Sigourney et al. 2006, Horton et al. 2009).  Therefore, 

changes in condition may partly reflect differences in summer feeding.  In addition, these 

differences in fall condition may partly reflect changes in energy allocation strategies in 

response to winter conditions.  Because winters are longer in CB energy allocation 

strategies may differ such that parr put more energy into lipid accumulation in the fall to 

survive longer winters.  There is increasing evidence in the literature that energy 

allocation strategies may be flexible, and therefore, adaptable among populations (Post 

and Parkinson 2001, Metcalfe et al. 2002, Hurst and Conover 2003, Garvey et al. 2004).  
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Therefore, adaptation to longer winters may partly explain why juvenile Atlantic salmon 

in CB have higher condition in the fall then in the more southern streams. 

Sophisticated statistical techniques to deal with data complexity are continuing to 

evolve in the fisheries and ecological literature.  New methods come with advantages and 

disadvantages.  In this study we aimed to resolve the mechanisms of variation in LWRs at 

the individual level and design an appropriate modeling approach to deal with this 

variation.  Our modeling approach allows us to relax some assumptions about LWRs so 

that they are not necessarily linear on a log-log scale and they can vary among 

individuals.  This approach should be applicable among a wide variety of species 

especially because metabolic scaling is a common mechanism dictating scaling 

relationships in all species (Peters 1983, Schmidt-Nielsen, 1984).  Other approaches offer 

some advantages such as not assuming constant variance over the entire size range (see 

He et al. 2008).  Such complexity could be combined with our modeling strategy in a 

Bayesian framework; however, the tradeoff might be tractability. 
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Table 2.1. Median dates for each electrofishing sample conducted in 2001 in which age 1 

Atlantic salmon were captured in West Brook (Massachusetts, USA), Shorey Brook 

(Maine, USA) and Catamaran Brook (New Brunswick, Canada). 

    River    Season Median Sample Date 

West  spring    3/13/2001 

Shorey spring    4/23/2001 

Catamaran spring    5/19/2001 

West  summer    6/9/2001 

Shorey summer    6/6/2001 

Catamaran summer    6/28/2001 

West  fall    9/8/2001 

Shorey fall    9/14/2001 

Catamaran fall    9/10/2001 

West  prewinter    12/6/2001 

Shorey prewinter    11/24/2001 

Catamaran prewinter    10/26/2001 
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Table 2.2. Summary of the top LME models fit to laboratory data of repeated 

measurements of length and weight for individual Atlantic salmon where log length (L), 

life history (LH) and sample date (SD) were used to predict log weight.  L
3
 indicates a 3

rd
 

order polynomial was used for log length. The percentage of variation between 

individuals (%B) and within individual (%W) is shown where * indicates that significant 

(P<0.05) variation was explained by inclusion of a random intercept in the model. 

 

Model ∆AICc % B % W 

L
3
*LH*SD     0    73*    27 

L*LH+SD   165    71*    29 

L
3
*LH+SD   300    67*    33 

L
3
+SD   612    57*    43 

L
3
+LH+SD   617    56*    44 
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Table 2.3. Summary of top LME models fit to field data of individually tagged juvenile 

Atlantic salmon where log length (L), river (R), maturity status (M) and season (S) where 

used to predict log weight.  L
3
 indicates a 3

rd
 order polynomial was used for log length. 

The percentage of variation between individuals (%B) and within individual (%W) is 

shown where *indicates that significant (P<0.05) variation was explained by inclusion of 

a random intercept in the model. 

 

          Model ∆AIC %B %W 

L*R*S+S*M+R*M    0  43*  57 

L
3
+S*M+R*M   18  40*  60 

L
3
*R+S*M+R*S   23  40*  60 

L*M+R*S+S*M   26  40*  60 

L
3
*M+R*S*M   30  40*  60 
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Table 2.4. Estimated coefficients and standard errors from top LME model fit to field 

data of individually marked juvenile Atlantic salmon. The slope and intercept represent 

the LWR for immature juvenile Atlantic salmon captured in the fall in Catamaran Brook.  

WB and SB represent the river effect of West Brook and Shorey Brook, respectively.  PP 

represents the effect of mature salmon.  The effects of season (spring, summer, prewinter) 

with respect to the fall season are also included. 

 

Parameter          Estimate      Std.Error DF p-value 
Intercept -10.714774 0.239814 1085 <0.0001 

Slope 2.827914 0.054816 947 <0.0001 

SB -0.192917 0.530745 1085 0.7163 

WB -0.575452 0.308322 1085 0.0623 

summer -1.099731 0.312392 947 0.0005 

spring 2.617004 0.469756 947 <0.0001 

prewinter 0.415703 0.315729 947 0.1883 

PP 0.078036 0.00794 1085 <0.0001 

LogL*SB 0.045468 0.118246 947 0.7007 

LogL*WB 0.135787 0.068253 947 0.0469 

LogL*summer 0.248766 0.072231 947 0.0006 

LogL*spring -0.635565 0.111723 947 <0.0001 

LogL*prewinter -0.103094 0.072034 947 0.1527 

SB*summer 0.418172 0.634719 947 0.5102 

WB*summer 1.254467 0.397486 947 0.0016 

SB*spring -3.551435 0.714008 947 <0.0001 

WB*spring -2.179792 0.530881 947 <0.0001 

SB*prewinter -1.39637 0.742214 947 0.0602 

WB*prewinter -1.105183 0.413743 947 0.0077 

summer*PP -0.044764 0.006513 947 <0.0001 

spring*PP -0.05796 0.007932 947 <0.0001 

prewinter*PP 0.00611 0.007689 947 0.427 

SB*PP -0.025578 0.014396 1085 0.0759 

WB*PP -0.013501 0.00897 1085 0.1326 

LogL*SB*summer -0.072239 0.142854 947 0.6132 

LogL*WB*summer -0.252025 0.088998 947 0.0047 

LogL*SB*spring 0.836381 0.165388 947 <0.0001 

LogL*WB*spring 0.54296 0.124293 947 <0.0001 

LogL*SB*prewinter 0.308975 0.165248 947 0.0618 

LogL*WB*prewinter 0.238051 0.091264 947 0.0092 
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Figure 2.1: Simulated length-weight relationship for one individual with bi-phasic 

allometry. 
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Figure 2.2: Results of estimated length-weight relationships for 10 simulated  

            individuals growing with biphasic allometry where the coefficient of  

            variation in growth rates among individuals is (a) 10%, (b) 20% and (c) 50%. 
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Figure 2.3: Individual intercept values (a) and slope values (b) estimated from 

separate regressions of log length on log weight performed on repeated 

measurements of individual juvenile Atlantic salmon grown in a laboratory.   
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Figure 2.4: Length-weight relationships estimated from combined data of individually 

marked juvenile Atlantic salmon measured before winter and after winter. Allometric 

slopes (b) for each life history group (smolt or parr) are provided in figure legend. 
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Figure 2.5: Predicted log weights from a linear mixed effects model vs observed  

log weights of an individually tagged juvenile Atlantic salmon which (a) 

transformed into a smolt in the spring and (b) remained as a parr in the spring.  
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 Figure 2.6: Spring length-weight relationships for three separate rivers estimated  

 from a linear mixed effects model for juvenile Atlantic salmon. 
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           Figure 2.7: Estimated differences in log weight as a function of log length between  

           summer and subsequent fall for juvenile Atlantic salmon captured in 2001 in (a)      

           West Brook (b) Shorey Brook and (c) Catamaran Brook as predicted from a linear   

           mixed effects model. 
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CHAPTER 3 

 

 

MODELING SEASONAL GROWTH TRAJECTORIES OF INDIVIDUALS 

USING A BAYESIAN HIERARCHICAL APPROACH 

 

3.1. Abstract 

Modeling physiological growth is an important component to understanding 

ecological dynamics, but in practice can prove difficult for a number of reasons. For 

example, in many temperate environments growth can be highly seasonal, growth 

performance often differs among individuals, and measurement error can contribute to 

parameter uncertainty.  We derive a simple first order autoregressive growth model from 

von Bertalanffy growth dynamics which includes a nonparametric seasonal growth 

function.  To estimate parameters we adopt a Bayesian state space framework that 

directly incorporates auxiliary information of the food environment and measurement 

error to derive informative priors.  In addition, our model is hierarchical allowing for 

variation among individuals. We demonstrate the model’s flexibility by applying it to two 

distinct life history groups of age 1+ Atlantic salmon, mature residents (parr) and 

immature emigrants (smolts) that are known to exhibit differences in their seasonal 

growth trajectories.  We did not detect any differences in consumption or maintenance 

parameters but we did find subtle differences in their seasonal growth functions.  The 

ability of the model to recover these life history patterns adds credence to its flexibility.   

Although we apply the model to a particular species as an example, the model is widely 

applicable across species because it is based on first principles of growth and does not 

assume species specific parameter values. 
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3.2. Introduction 

Modeling physiological growth has remained a crucial endeavor in studies of both 

animal (Elliot and Hurley 1997) and plant populations (Schneider et al. 2006, Clark et al. 

2007). Knowledge of the factors influencing growth is important for assessing the health 

of populations (Clark and Clark 1999, Bjorndal et al. 2000), biomass production (Ricker 

1975, Quinn and Derisio 1999), and population dynamics (Clark and Clark 1999, Nisbet 

et al. 2000, Gurney et al. 2008).  Because growth is a complex combination of 

physiological functions influenced by an array of intrinsic and extrinsic factors, it is often 

best understood by first reducing the process into its basic components.  One way in 

which this task is achieved is through the development of growth models. 

 Informative growth models can aid managers directly and serve as an important 

component of more complex population or production models.  There are a number of 

approaches to modeling growth, each with certain advantages and disadvantages.  For 

example, the use of bioenergetic models has experienced considerable success in 

determining consumption rates and growth (Kitchell et al. 1977, Rice and Cochran  

1984).  However, they are difficult to parameterize, can require great effort to construct 

and due to local physiological adaptation are often only applicable to the species and 

population for which they were developed (Ney 1993, Munch et al. 2002, Chipps and 

Wahl 2008).  Linear statistical models allow the researcher to identify factors that may 

influence growth (e.g. Vollestad et al. 2002, Bacon et al. 2005), but their lack of 

mechanistic underpinnings makes them prone to bias especially as growth tends to be a 
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nonlinear process.  A more general modeling approach is to use ontogenetic growth 

models such as the von Bertalanffy model (von Bertalanffy 1938).  This model lacks the 

detail that is included in more realistic bioenergetic models; however, it is derived from 

first principles of growth and its generality allows it to  be fit to a wide range of 

organisms as it tends to capture the essential elements of the growth process (West et al. 

2001). 

 Traditional applications of the von Bertalanffy model usually involve fitting the 

model to size-at-age information of a particular species or population (Ricker, 1975).  

However, more recent modifications have attempted to account for temporal variability in 

the growth dynamics as growth is highly sensitive to changes in the environment (Szalai 

et al. 2003).  For example, organisms living in temperate environments will often exhibit 

strong seasonality in their growth dynamics (Baba et al. 2004, Bacon et al. 2005, 

Strothotte et al. 2005).  This seasonality can reflect a mixture of fluctuations in 

temperature and food availability as well as other factors that affect the growth process 

(Vollestad et al. 2002, Letcher and Gries 2003).  A model that can inform this dynamical 

process is potentially useful in contributing to more complex models of seasonal changes 

in ecosystems. 

 Because individuals will often vary in their performance, growth not only varies 

temporally but also varies among individuals within a population (Letcher et al 1997, 

Pfister and Stevens 2002 , Pfister and Peacor, 2003). Traditional studies may ignore 

individual variation due to lack of information at the individual level.  With the growing 

number of capture-mark-recapture (CMC) studies, longitudinal (i.e. repeated measures) 

data are becoming increasingly common suggesting the need for more sophisticated 
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approaches that address individual-level variation (Fujiwara et al. 2005).  Such data are 

advantageous because they provide information on how changes in individual size vary 

among individuals over time.  This variation adds a level of stochasticity to models that 

will generate inaccurate estimates if it is ignored (Clark 2003).  A Bayesian hierarchical 

framework offers a tractable and informative method to understand and account for the 

magnitude of individual variability in growth in a population (Clark 2003, Clark et al. 

2005).  For example, accounting for individual heterogeneity in capture probabilities and 

survival can be a difficult task in mark-recapture studies, but this is easily accomplished 

in a Bayesian framework by implementing Markov chain Monte Carlo (MCMC) methods 

which allow for integration over the random effects (Zheng et al. 2007).  Additionally, 

understanding effects of individual variability can provide key insights into the 

underlying mechanisms driving population dynamics (Letcher et al. 1996, Nisbet et al. 

2000, Pfister and Stevens 2002, Fujiwara et al. 2004, Fujiwara et al. 2005 ).  

 Another source of variation that can influence parameter uncertainty is 

measurement error.  Because all models are simple abstractions of some underlying 

process, a certain degree of process error must be assumed, however, when measurement 

error is also a factor parameter bias and uncertainty can be considerable (Hilborn and 

Mangel 1997, de Valpine and Hastings 2002, Paulsen et al. 2007).  With growth models, 

measurement error can result in predicted growth trajectories that are unrealistic (Clark et 

al. 2007).  For example, error in tree growth measurement can result in estimates that 

suggest negative growth even though such estimates are generally unrealistic biologically 

(Clark and Clark 1999, Clark et al. 2007).  A state space modeling framework offers one 

approach to separate measurement error from process error (de Valpine and Hastings 
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2002).  State-space models define the observation process explicitly making it 

independent from the underlying dynamics process.  The ecological literature has 

recently undergone a steady increase in the number of studies employing a state-space 

approach (de Valpine 2003, Royle and Kerry 2007, Calvert et al. 2009, Rich et al 2009). 

 Until recently, models that could estimate parameters from complex data sets of 

repeated observations were rare in the ecological literature as statistical methods were not 

available or commonly employed (but see Jones et al. 2002).  The advent of hierarchical 

Bayesian techniques such as MCMC provides an opportunity to fit relatively complex 

models to datasets even when some of the data are sparse all within a unified 

probabilistic framework (de Valpine 2009).  In addition, a hierarchical model can be 

embedded within a state-space framework and thus models can simultaneously address 

individual variability and observational uncertainty.  With the increase in computer 

power and availability of software packages to perform MCMC integration, the 

application of these techniques has become increasingly common in the ecological 

literature (Cressie et al. 2009). 

 In this paper we derive a discrete time growth model based on von Bertalanffy 

growth dynamics.  We apply our model to CMC data of age-1 juvenile Atlantic salmon 

(Salmo salar).  Atlantic salmon offer an ideal species to test the utility of our model 

because they exhibit a high degree of individual and seasonal variation in growth as well 

as tremendous plasticity generating two distinct life histories which include fish that 

remain immature during their second year of growth and emigrate in the following spring 

(smolts) and fish that mature during the fall of their second year of growth but remain as 

residents the following year (parr).  Using modern statistical methods, our model 
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provides a comprehensive framework to estimate both seasonal variation and individual 

variation in growth in the face of measurement uncertainty.   

 

3.3. Methods 

3.3.1. Data Collection 

Our study was conducted in the West Brook, a second-order tributary of the 

Connecticut River located in western Massachusetts, U.S.A. (42º25 N; 72º40 W).  The 

study site is c. 1 km long and consists of 47 contiguous sections that average 20.3 m in 

length and 101.7 m
2
 in area.  Further details of the study site and data collection can be 

found elsewhere in the literature (Letcher et al. 2002, Letcher and Gries 2003) so we will 

provide only relevant details here.  To capture individuals, electrofishing was conducted 

in an upstream direction using a two pass removal approach.  Sampling occurred on six 

occasions throughout the course of the year from March through December.  Each 

sampling occasion took approximately ten days.  Captured salmon were placed in buckets 

before tagging.  Each fish that was large enough for tagging (>60 mm and > 2.0 g) was 

placed in a solution of MS-222 that was buffered with sodium bicarbonate.  Once a fish 

was sufficiently anaesthetized, it was scanned for a PIT tag, measured for total length and 

fork length and weighed.  If a PIT tag was not present, the fish was tagged by making a 

small incision just below the pectoral fins and inserting a tag into the peritoneal cavity.  

In addition, all fish were lightly squeezed around the abdomen to check for milt, 

indicating a mature parr.  All fish were returned to the section of capture.   

In addition, during each fish sampling occasion, one benthic sample of 

invertebrates and one invertebrate drift sample were conducted during three different 

days at three different locations within the study site prior to electrofishing.  Information 
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gained from the invertebrate sampling was used to help inform seasonal fluctuations in 

food availability.  Details of collection and sorting can be found in Grader and Letcher 

(2006).   

 A picket weir was constructed each year to capture migrating smolts following the 

design of Anderson and McDonald (1978).  The picket weir was placed in the brook early 

in the season and kept in the brook throughout the course of smolt emigration (March – 

June).  The trap was located c. 3 km downstream of the study site.  All fish captured in 

the trap were measured for fork length and weighed.  All fish captured in the weir were 

processed at the trap.   

 

3.3.2. Model Development 

To derive our model we start by assuming growth in weight follows basic von 

Bertalanffy dynamics where assimilation is a product of consumption rate and food 

availability.  If we assume that random noise in the growth scales with consumption, then 

the underlying dynamic can be written as the following stochastic differential equation 

(SDE): 

  3

2

3

2

)( zWmWtFW
dt

dW
      (1) 

    

where F(t) represents a seasonal growth function (SGF),  is consumption, m is 

maintenance and z represents correlated Gaussian noise.  To derive an equation for 

growth in length we assume length is related to weight through the allometric 

relationship: 



 

 70 

  3

1

WL           (2) 

We can then write the equation for growth in length as  
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which we can re-arrange to show 
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To perform the integration we make a Stratonovich interpretation of the SDE (Socha 

2008).  This interpretation is appropriate in this modelling framework because growth 

represents a continuous process where noise in the dynamics is likely to be highly 

correlated due to the complexity of physiological feedback mechanisms.  By assuming 

that z is weakly correlated instead of representing uncorrelated white noise, we can 

integrate both sides using standard calculus.  As such, we can use the integrating factor 

method to integrate both sides of the equation as follows 
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After performing the integration and substituting in dummy variables we can show 

 tiititi tfbLL ,,1, )(          (6) 

     

where  
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       (7)  

As a result, the underlying assumptions are that consumption varies among individuals, 

but not as a function of body size, and the SGF and maintenance rate are constant among 

individuals.   

 

3.3.3. Bayesian State-Space Estimation 

To estimate parameter uncertainty we adopted a Bayesian state space framework.  

This framework allows us to include both process error in the state dynamics and 

observation error in the observed states.  In addition, because the model assumes 

individual variability in consumption within this hierarchical framework the consumption 

parameters can be modeled as random effects with hyperparameters defining the 

distribution of the individual random effects. We consider the true length of an individual 

as unobservable and the observed length as a Gaussian process dependent on 

measurement error.   

 For our likelihood we assume a normal distribution given the unobserved states  

    
O

tiL , |Li,t ~N(0,Ve)       (8) 

where 
O

tiL ,  is the observed length of individual i at time t, and Ve represents measurement 

error in length. 
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 For the growth process we also assume a normal distribution given the model 

such that  

  Li,t+1|Li,t,δ,bi,f(t),VP~N(0,VP)      (9)  

where VP represents process error in the growth dynamics and bi represents the random 

effect for individual i. The full posterior can be written as: 
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                 Random Effects 

  x  P()                  Priors. 

The likelihood, the process model, and the prior distribution for the random effects are all 

assumed to follow a normal distribution. P() represents the prior distirbution for the 

hyperparamters for the random effects b  and Vb, the SGF  f(t), the unobserved inital 

states Li,t=1 and the variances Vp and Ve. Prior distributions are listed in Figure 3.1.  For 

most parameters, conjugate uninformative priors were used (e.g. inverse gamma priors 

for variances, (Gelman et al. 2004)).  However, for the SGF and measurement error, we 

took advantage of the Bayesian framework to develop general methods that use auxilliary 

information to develop infomorative priors that reduce posterior uncertainty. 

 

3.3.3.1. Seasonal Growth Function 

To approximate the seasonal growth function in discrete time we use a flexible, 

nonparametric step function of the form  
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for all t where  represents the set of real numbers and 1A is an indicator function 

such that  1A (t)=1 if tA and 0 otherwise.  

 To specify a prior distribution in the seasonal growth function (SGF) we collect 

the coefficients i  in the vector f


and assume a multivariate normal distribution such 

that 

  f


~MVN(Muf,Cf)       (12) 

where the vector f


represents a vector of the coefficients defining the food function. 

To specify the covariance function we assume Cf decays over time.  Therefore, we 

specify Cf as 

  
2)(())(),((   tt

f vetftfC      (13) 

where v is the variance in the food function,  is the time lag and  represents the rate of 

decay in covariance with the time lag.  An intuitive description of the covariance function 

can be found in Munch et al. (2005).  We assume a value of 0.5 for  and 10 for v.   

 One issue with the SGF is that it is confounded with mean consumption ( b ).  To 

minimize the confounding between these two parameters we can make use of 

multivariate conditioning where we can specify the prior for the food given a specified 

condition.  To do so we can use the inverse of partitioned matrices to introduce a 

constraint.  This constraint yields a multivariate distribution for f


, with updated mean 

fuM
~

 and covariance fC
~

, given the condition that for any time t the expectation of f(t) is 

constrained to be one (details are described in Appendix A).   
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 Now that we have specified a prior food function that is conditioned such that f(t) 

must sum to one, we can incorporate prior information on the food environment.  If we 

assume the likelihood of the observed food data (FO) given the food function can be 

written as  

 P( OF


 | f


, Vf)~N(0, Vf)       (14) 

where Vf is the variance in the food, then we can use Baye’s rule to derive a multivariate 

normal distribution for f


such that 
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Where the mean and covariance of the informative prior are  
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 Because invertebrate biovolume was measured three times per sample, we could 

calculate a variance in food availability for each sample.  For Vf we substituted a value of 

0.781 which represents the highest observed value in variance among all samples.  For all 

fixed values , v, and Vf we assessed sensitivity to prior choices with a sensitivity 

analysis. 

 

3.3.3.2. Measurement error 

In this state-space framework it can be difficult to obtain estimates of both 

measurement and process uncertainty simultaneously.  We therefore developed a 

straightforward approach to generating an informed prior of measurement error 

uncertainty.  We first assume that the observed size of fish is equal to its true size plus 

some degree of error.  From this relationship we can use Baye’s rule to derive the 
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probability of the measurement error and the true sizes of the fish given the observed 

sizes as 
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where 0X


 is the vector of observed fish sizes, 
TX


 is a vector of true fish sizes and Ve 

represents measurement error.  Using this relationship, we can again employ Baye’s rule 

to show, 
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We can rearrange this equation to show 
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Our goal is to derive a probability distribution for Ve that minimizes our uncertainty in Ve.  

We first assume our likelihood function P( OX


| TX


, Ve) is normally distributed.  Next, 

we need to define a prior distribution for Ve.  We chose P(Ve) to be distributed as an 

inverse gamma function with shape parameters  and where we set  equal to an initial 

guess of the measurement error.  Based on previous field work we found measurement 

error in length to be approximately 1 mm.  We then set  = 2 so that our prior distribution 

in Ve is sufficiently vague.   

 Because the inverse gamma distribution is conjugate to the normal likelihood the 

posterior distribution for Ve will also be in the form of an inverse gamma pdf with a 

defined expectation and variance such that 

 

   P(Ve | data)~IG(',')      (21) 
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With some algebra, it can be shown that the shape parameter B' is equal to B (our 

initial guess at the measurement error) plus the sum of squares (SS) of repeatedly 

sampling N fish n times.  We can also define our uncertainty in Ve as the variance of this 

distribution.  By substituting different values for the sum of squares for length that were 

in the range of what we expect the measurement error might be we calculated this 

variance for different sample sizes of N and n.  We found that even with a fairly large 

measurement error we could minimize the uncertainty in Ve by setting N=10 and n=10.  

Thus, we sampled fish under field conditions and repeatedly measured 10 salmon parr 

each for a total of 10 times.  In order to minimize observer bias, fish were randomly 

chosen for each measurement so the observer was not aware of which fish was being 

measured.  We used these data to then quantify the SS which we used to estimate 

expected values of Ve.   

 

3.3.3.3. Gibbs Sampling 

Because full conditional distributions could be defined for all growth parameters 

and the latent states we could make use of the efficient Gibbs algorithm to sample from 

the posterior (Appendix B).  We assessed convergence by examining trace plots and 

using standard diagnostics (Gelman et al. 2004) 

  

3.4. Results 

3.4.1. Parameter Estimates 

We found reasonable estimates of marginal posterior uncertainty for the 

parameters of interest (Table 3.2).  Posterior medians and high overlap of 95% Bayesian 

confidence intervals suggested little difference between the two life history groups in 
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both the mean consumption and maintenance growth parameters.  Bayesian credible 

intervals were wider for the smolt group than the parr group most likely as a result of 

fewer salmon that could be classified as smolts (n=26) vs parr (n=66).  Low sample sizes 

occur because many individuals are not captured during critical periods of life history 

expression (fall for mature parr and spring for migrating smolts) therefore they cannot be 

assigned to a life history group.  Another issue contributing to uncertainty is missing 

observations among individuals.  Fortunately, salmon tend to have high capture rates (p = 

0.6 – 0.8, Letcher et al. 2002 ) yielding a high number of recaptures for each fish.  

Sensitivity analysis verified that marginal posterior distributions of all parameters were 

insensitive to choices made in the prior.  The random effects seemed to add an important 

component of variation for both smolts and parr as evidenced by posterior estimates of 

the variance component (Vb) and Bayesian CIs that did not cover zero (Table 3.2).   

  

 

3.4.2. Seasonal Growth Function 

The SGF revealed subtle difference between the two life history groups in terms 

of their seasonal growth trajectories (Figure 3.1).  Both parr and smolts exhibited high 

growth during the spring interval.    Although there was high overlap in confidence 

envelopes, the mean posterior distribution suggested some subtle differences in summer 

and fall growth.  During summer months it appeared that the smolt life history may have 

experienced slower growth than the parr life history.  By fall however, this pattern 

reversed where smolts began to exhibit a slight increase in their SGF but the SGF of parr 

remained low. 
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3.4.3. Model Predictions 

We found very close agreement between observed growth sizes and model 

predictions for both parr (Figure 3.2a) and smolts (Figure 3.2b) despite the fact that there 

were many more observations for length (Nobs) for parr (Figure 3.2a) than smolts (Figure 

3.2a) .  Posterior predictive growth trajectories suggested our model was able to capture 

the seasonal shape of individual growth trajectories as well as the variability among 

individuals (Figure 3.3a-f). The close agreement between observations and prediction is 

not all that surprising as the individual variation and seasonal parameters add a high 

degree of flexibility.  We found close model fit for individuals with many observations 

(Figure 3.2a and d, parr and smolt respectively).  Also, information about an individual’s 

size at the end and beginning of the growth seemed to help pin down uncertainty where 

observations were missing (Figure 3b and e, parr and smolt respectively).  Uncertainty 

around unobserved sizes tended to be substantial if there were only a few observations 

towards the end or beginning of the growth trajectory (Figures 3c and f, parr and smolt 

respectively).    

 

3.5. Discussion 

A primary goal of model development is finding the interface between realism 

expressed as model complexity and tractability that allows estimation of model 

parameters from data.  We took a mechanistic modeling approach to derive a relatively 

simple fist order autoregressive model from von Bertalanffy growth dynamics.  The von 

Bertalanffy model offers a general ontogentic growth model that captures the basic shape 

of animal growth trajectories without relying on a complex set of parameters.  By the 
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same token, complexity can be added to the baseline model to develop more informative 

growth models.  One advantage of our current model is that the dynamics are linear 

which allows for efficient estimation of parameters in a Bayesian framework.  Also, the 

generality of this model allows it to be applied to other populations or species without 

needing to assume parameter values as is often the case with more complex bioenergetic 

models.  Although this model lacks the detail of more realistic bioenergetic models, this 

framework allowed us to incorporate two key components of growth variation, temporal 

and individual, while separating process uncertainty from measurement uncertainty. 

 

3.5.1. Seasonal Growth Function 

Posterior predictions for the seasonal growth function indicated large seasonal 

differences in growth as well as subtle differences among life history groups in growth 

depending on the season.  Seasonal variation in growth is well documented in stream 

salmonids as warming temperatures and the emergence of invertebrate prey tend to 

promote fast growth in spring followed by a decrease in summer as conditions generally 

become unfavorable for growth (Letcher and Gries 2003, Strothotte et al. 2005).  To 

account for this predictable spring growth spurt we could take a parametric approach and 

try and fit a specific growth function that allows for this rise and fall (see Jones et al. 

2002).  However, this approach does not allow for flexibility in seasonal growth that may 

occur among life histories, populations or species.  By including a nonparametric 

function we added flexibility which allows the growth function to vary independent of 

Julian date.  Nonparametric Bayesian approaches are becoming increasingly popular as 

they allow the data to define the shape of the function of interest without having to 

assume an underlying parametric form (Munch et al. 2005).  Because salmon exhibit 
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wide plasticity in their growth dynamics, a flexible approach is necessary to delineate life 

history differences. 

 Previous attempts at modeling growth in salmonids involved the development of 

laboratory derived models based on temperature with the idea that temperature is the 

major factor contributing to growth variation (Elliott and Hurley 1997, Forseth et al. 

2001).  Although these models experienced some success when applied to field data, they 

also have a tendency to underestimate the high spring growth and overestimate summer 

growth (Bacon et al. 2005). We found our model was able to predict interesting seasonal 

patterns in the growth trajectories of smolts and resident parr that corroborate previous 

studies on growth dynamics (Letcher and Gries 2003, Bacon et al. 2005).  For example, 

feeding was highest in the spring but there was essentially no difference between life 

history groups in either the SGF or the other growth parameters.  This lack of difference 

suggests that life history differences in growth dynamics are not manifest during this 

spring growth stage.  During the early summer growth phase, parr seemed to gain a slight 

growth advantage over smolts.  This difference may be a function of size disparity 

between these two groups.  Smolts are on average larger than parr during the summer 

(Letcher and Gries, 2003).  During stream residency, larger individuals tend to require 

deeper pool like habitats to attain positive growth which is limited in summer due to a 

decrease in flow (Hutchings 1986, Halvorsen and Svenning 2000, Sigourney et al. 2006).  

In addition, average size of invertebrate prey decreases in the summer (Grader and 

Letcher, 2006).  Byström and Andersson (2005) showed that capture success can 

decrease with size depending on the size of the prey which may explain summer 

differences between life history groups.  In contrast to this early summer period, the 
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growth function suggested a slight increase in late summer/early fall for migrating 

smolts.  This pattern is consistent with the idea that smolt need to reach a threshold size 

for seaward migration and that there is a sensitive “window” occurring in the fall 

(Metcalfe 1998, Thorpe et al. 1998).  The ability of the model to recover these patterns 

indicates its ability to capture important biological aspects of the growth process.  

 

3.5.2. Parameter Estimates and Random Effects 

Posterior estimates and Bayesian confidence intervals of metabolism and mean 

consumption suggested little difference among life history groups.  This result is not too 

surprising as size differences between these two groups tend to be established during 

their first year of growth (Letcher and Gries 2003).  It is important to note, however, that 

although we made use of multivariate conditioning to reduce confounding between mean 

consumption ( b ) and the seasonal growth function, some caution is required when 

making direct biological interpretations of these parameters.  For example, one possible 

interpretation is that all the variation in growth between these two groups is due to 

seasonal changes in the growth environments that they experience.  As discussed above, 

this interpretation may be partly valid as differences in size can influence food 

availability and habitat availability.  However, there are also likely behavioral and 

physiological differences (Metcalfe et al. 1986, Rowe and Thorpe 1990).  For example, 

during fall smolts are motivated to feed to gain a threshold size for migration (Metcalfe 

1998) where as maturing parr are allocating energy into gonadal growth and reproduction 

and not into growth in length (Metcalfe 1998, Thorpe et al. 1998).  

 Estimates of scale hyperparameters of the random effects suggested significant 

variation among individuals.  By allowing for individual variation in performance 
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through the consumption parameter our model is flexible enough to allow for change in 

the size rank among individuals.  Because our model makes no assumptions about the 

relationship between size and consumption (bi) individuals with different initial sizes can 

grow at rates that allow smaller fish to eventually surpass larger fish in size.  The 

mechanism that allows for rank change is variation in consumption, thus, an individual 

that is initially at a smaller size may have a higher consumption parameter and eventually 

exceed another individual in size.  An interesting extension of our model would be to 

apply it to the quantitative genetics framework.  There is much interest in the heritability 

of size trajectories and growth from natural populations (Wilson et al. 2003, Wilson et al. 

2005, DiBattista et al. 2009).  Because of the hierarchical nature of our model, 

information from pedigree analysis could be added as another level in the hierarchy and 

additive genetic variance could be quantified.  This approach could be advantageous in 

highly seasonal environments. 

 

3.5.3. Measurement Error 

We offer an objective method to directly incorporate information on measurement 

error into a Bayesian state-space model.  Application of the general state-space method 

has proven successful in overcoming the problem of imperfect detection in a variety of 

situations including analyzing population dynamics (Meyer and Millar 1999, de Valpine 

2003, Lindley 2003), survival estimation (Gimenez et al. 2007) , animal movements 

(Barraquand and Benhamou 2008, Jonsen et al. 2005 ), and growth (Fujiwara et al. 2005). 

Our method of assessing measurement error has a number of applications beyond our 

specific growth model.  For example, many studies use otoliths or scales to reconstruct 

the growth history of individuals (Li et al. 2008, McCarthy et al. 2008).  Another 
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promising approach to measuring individual size is through the use of underwater video 

(Harvey et al. 2002, Harvey et al. 2003).  These techniques, however, are all subject to 

measurement error.  Using our method, this error can be quantified in a probabilistic 

framework and used to derive informative priors to minimize parameter bias and 

posterior uncertainty.  We found the measurement error for length was quite low as 

salmon were anesthetized and we were able to make careful measurements.  Therefore, 

we felt comfortable simply fixing our prior to our empirical estimate of measurement 

error as sensitivity analysis revealed that the posterior was insensitive to different values. 

However, under more compromising conditions such as sampling at sea, careful 

measurement may be difficult.  With minimal effort our approach can be applied to 

reduce uncertainty arising from this source of error. 

 

3.5.4. Limitations 

Our present model lacks two potentially important factors regulating salmon 

growth: density and temperature (Forseth et al. 2001, Elliott and Hurley 2003, Imre et al. 

2005, Lobon-Cervia 2007).  Because the relationship between growth and temperature is 

well defined for salmonids and there is substantial prior information in the literature 

regarding parameter values this function could be easily added to the model.  Density 

may also be added as a covariate.  However, when adding covariates a difficult task is to 

avoid identifiability issues among parameters resulting from parameter confounding.  A 

more vexing problem is that our model may not perform well in a stochastic environment 

where autocorrelation in growth among individuals is low.  By allowing for individual 

differences in consumption rates we are essentially constraining growth to be 

autocorrelated in time.  It is important to realize, however, that in a natural setting other 
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environmental factors may be contributing to rank change, but the degree of growth 

autocorrelation may depend on the level of environmental stochasticity.  For example, in 

some environments changes in food availability, temperature regime, the presence or 

absence of predators and a number of other variables may lead to substantial temporal 

variability in the quality of the growth environment among individuals (Pfister and 

Peacor 2003).  When applying this model the degree of autocorrelation in growth should 

be considered. 

 

3.5.5. Summary 

Our goal in this paper was to develop a general growth model that can be applied 

to longitudinal data.  Model derivation is similar to one derived by Gurney et al. (2007) 

as it is based on von Bertalanffy growth dynamics and incorporates a seasonal function; 

however, their model was fit to length-at-age statistics where we aimed to derive a model 

that could be fit directly to mark-recapture data while making limited assumptions.  To 

this end, we adopted a Bayesian estimation framework more similar to the one described 

by Clark et al. (2007) where we used a hierarchical approach to incorporate uncertainty 

arising from individual variability and a state-space framework to address measurement 

error.  Unlike Clark et al. (2007), we’ve also included a seasonality function to assess 

within-year temporal variation. Although our model has advantages over previous growth 

models it is still subject to limitations.  We reiterate Elliott and Hurley (1997) who state 

“growth model development is an iterative process”.  Because there are a number of 

potential biotic and abiotic factors that also play important roles in the growth process it 

would be ideal to be able to integrate them within the modeling framework to be able to 

understand yearly variation in growth and variation among tributaries, rivers or 
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populations.  We feel this model offers a good basis that can be built upon in future 

growth modeling projects. 
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Table 3.1. Prior distributions on model parameters.  All distributions were centered on 

prior guesses of parameter values where c indicates constant (vague) priors for b  and  

1, tiL


.  Scale parameters were set as follows Vδ =1000, '

ba =2, and '

Pa = 2 to insure  

that priors were sufficiently vague to admit high prior uncertainty in parameter  

values. 

 

Parameter Prior 

δ ~N(δ Vδ) 

b  ~c 

Vb ~IG( '' , bb ba ) 

VP ~IG( '' , PP ba ) 

f


 See text 

1, tiL


 ~c 
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Table 3.2. Posterior median values and 95% Bayesian credible intervals for 

hyperparamters on consumption (   and Vκ ) and maintenance (δ). 

 

Life History 

 

Parameter 

 

Posterior median 

        Credible Interval      

2.5%                      97.5% 

Parr        δ           0.9354 0.8792                    0.9716 

      b            4.5605 3.4874                    6.4812 

      Vb           0.1985 0.1181                    0.3218 

 

Smolt 

      

       δ 

          

           0.9589 

 

0.8769                    1.0041 

      b             4.5224 3.0931                    7.1159 

      Vb            0.1543 0.0684                    0.3435 
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Figure 3.1: Predicted mean values for the seasonal growth function for juvenile  

Atlantic salmon parr (▬) and smolts (   ) including 95% Bayesian credible  

intervals for parr (-­­­) and smolts (− − ). 
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Figure 3.2: Predicted mean lengths vs observed lengths for all individual juvenile 

Atlantic salmon observed in (a) the parr dataset (r
2
=0.998, Nobservations=264) and (b) the 

smolt dataset (r
2
=0.999, Nobservations=113).   
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      Figure 3.3: Representative growth trajectories of individual parr (a-c) and  

    individual smolts (d-f). Open circles represent observed lengths.  

      Predictive means and () and credible intervals are shown (---). 
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CHAPTER 4 

 

INTERACTING EFFECTS OF SIZE, LIFE HISTORY AND SEASON ON 

GROWTH IN SALMONIDS: CAUSATION FOR COMPENSATORY AND 

FREQUENCY-DEPENDENT RESPONSES IN THE WILD? 

 

 

4.1. Abstract 

Size-dependent growth has long intrigued ecologists particularly because of its 

consequences on population dynamics.  Compensatory growth, an important form of 

size-dependent growth, has been intensively studied in a number of taxa.  Many studies 

have investigated this phenomenon by manipulating growth rates and comparing the 

responses of treatments to controls.  Few studies have observed its presence in a natural 

environment, and therefore, the functional role of compensatory growth is still somewhat 

ambiguous.  Because growth tends to have strong consequences on fitness, compensatory 

growth may be linked to life history strategies.  In this study we use strictly observational 

data from both the laboratory and the field to study the interaction between life history 

and the presence and strength of compensatory growth in immature Atlantic salmon.  

Because we could not always assign individuals to a life history group we used piecewise 

quantile regression to analyze regression plots when there might be a mix of the two life 

history groups.  We found that life history-dependent compensatory growth was evident 

in the laboratory and field depending on the season analyzed.  In addition, we found some 

evidence of an interaction between season and density on growth rate in age 1 salmon but 

not in age 2 salmon.  We hypothesize that this may be due to a conditional strategy where 

large age 1 salmon will accelerate fall growth in years of high density and smolt the 

following spring rather than try to survive an extra year in the stream where per capita 

mortality could be high.  Our results indicate that life history and season can be important 
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determinants of compensatory growth responses and can lead to the maintenance of two 

growth strategies: 1) those that display compensatory growth to reach an adequate size 

before migration and 2) those who forgo compensatory growth and remain in the stream 

for another year before migration.  This information could be useful in smolt production 

models that aim to predict the size and age structure of migrating smolts. 

 

4.2. Introduction 

Size-dependent growth has long interested ecologists both in terms of identifying 

the underlying causes and understanding the consequences in nature.  Although it is 

important to consider underlying biological scaling relationships that result from the 

relationship between size and metabolism when studying size-dependent growth (Peters 

1983, West et al. 2001), ecologists are often interested in understanding the eco-

evolutionary context that influences the size-growth rate relationship.  Changes in growth 

rate with size can determine key life history transitions such as the timing of ontogenetic 

habitat shifts (Altweg 2002, Tammaru et al. 2004, Vonesh and Bolker 2005, De Block et 

al. 2008).  This connection to life history has both ecological and evolutionary 

implications as the biotic and abiotic environment may be a cause of size-dependent 

growth, but as a consequence different life histories may evolve to maximize fitness 

where there are trade-offs between growth rate and survival (Abrams et al. 1996) 

One intriguing pattern of size dependent growth is compensatory growth.  This 

pattern occurs when smaller individuals grow faster than larger individuals decreasing the 

variance in size (Ali et al. 2003).  Compensatory growth has often been studied under 

laboratory conditions usually by subjecting one experimental unit to a reduction in food 
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or temperature (Ali et al. 2003).  Although this phenomena has been well explored 

through manipulative studies (Johnsson and Bohlin 2005, Vonesh and Bolker 2005) and 

theoretical modeling (Gurney et al. 2003, Mangel and Munch 2005, Skalski et al. 2005), 

observational studies from the field are lacking (but see Bjorndal et al. 2003 and Carlson 

et al. 2004).  Thus, the role of compensatory growth in nature is still somewhat 

ambiguous (Ali et al. 2003, Johnsson and Bohlin 2005) 

The fact that compensatory growth acts to decrease size variation suggests that it 

may play an important role in ontogenetic development for organisms that undergo a 

migration or metamorphosis that depends on attaining some critical size.  Indeed, many 

investigations into the causes and consequences have been conducted on the larvae of 

ephemeral pond breeding amphibians and insects that face strong selection pressure to 

reach a critical size (Altweg 2002, Vonesh and Bolker 2005, De Block et al. 2008).   In 

addition, compensatory responses are often evident in migratory animals where large size 

often increases survival during migration (Fraser et al. 2007, Hegyi and Torok 2007, Dale 

et al. 2008).  Empirical (Johnsson and Bohlin 2005) and theoretical studies (Mangel and 

Munch 2005, Mangel 2007) suggest that trade-offs exist between fast growth and current 

or future fitness (for a review see Metcalfe and Monaghan 2001).  These trade-offs might 

give rise to the expression of several life histories that vary in the degree to which they 

will engage in compensatory growth in a given environment.  Despite these implications 

there are few observational studies from the wild documenting the influence of life 

history on the strength of compensatory growth.  Studies of this nature could help clarify 

the role of compensatory growth in the wild and illuminate the ecological context under 
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which compensatory growth may be expected to manifest itself without unnatural 

manipulations of the growth environment. 

Atlantic salmon represent an ideal species to study in terms of the interaction of 

life history and size on growth rates.  For example, they showcase flexible life histories 

that are strongly influenced by growth (Thorpe 1977, Myers et al. 1986, Letcher and 

Gries 2003), undergo a long migration which includes both a morphological and 

physiological metamorphosis and a distinct change in environments (McCormick et al. 

1998), and they are relatively easy to mark and recapture in the wild (Juanes et al. 2000).  

In addition, this species is well studied so current investigations can be coupled with past 

research to establish common aspects of their population dynamics among geographical 

locations.  In the context of life history, it is well established that members within a 

cohort segregate by size with members in the different size modes adopting different life 

history tactics (Thorpe 1977, Metcalfe et al. 1990, Nicieza et al. 1991).  In addition, there 

are seasonal differences in feeding motivation (Metcalfe et al. 1986) and evidence that 

increased foraging incurs a cost (Nicieza and Metcalfe 1999).  These characteristics set 

the stage for possible trade-offs in different growth strategies that allow the expression of 

different phenotypes depending on size and the environment experienced.   

Previous laboratory studies on Atlantic salmon have established that they will 

undergo compensatory responses when subjected to a depression in growth (Nicieza and 

Metcalfe 1997, Metcalfe et al. 2002) and life history may play a role in determining the 

intensity of the response (Nicieza and Metcalfe, 1997).  In addition, some field studies 

have provided some evidence of compensatory growth responses in migrating juveniles 

(Nicieza and Braña 1993, Utrilla and Lobón-Cerviá 1999), but it was not always clear if 
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smaller migrants grew faster or simply delayed migration to reach a critical size 

threshold.  Thus, detailed studies into the timing of compensatory growth and the role of 

life history in natural environments are still lacking.  In this study, we use both laboratory 

and field data to look at the interaction between size and life history on growth and 

whether or not there is a life history dependent compensatory growth response.  Unlike 

other studies which unnaturally induce compensatory growth we use strictly 

observational data to isolate the effects of season and life history on the size-growth rate 

relationship. 

 

4.3. Materials and Methods 

4.3.1. Laboratory Data and Analysis 

We used a detailed dataset of monthly growth rates of yearling Atlantic salmon 

from the fall of their age 0 year to the spring of their age 1 year.  Growth trials were 

conducted at the Conte Anadromous Fish Research Center in Turners Falls, MA.  All fish 

were fed ad libitum and temperatures followed ambient temperatures of the Connecticut 

River.  Fish were anaesthetized with MS-222 (100 mgl
-1

) and measured monthly for 

length (mm) and weight (g).  To quantify growth we focused on absolute growth in 

length because it tends to be linear in salmonids during juvenile development (Sigourney 

et al. 2008, Nicieza and Alvarez 2009) and length measurements tend to be more accurate 

than weight measurements (Sigourney unpublished data).  Therefore, growth was 

calculated as: 
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Where L1 is size at the beginning of the interval L2 is size at the end of the interval and 

the difference between t2 and t1 represents the length of the growth interval in number of 

days.  Because we followed each individual until life history status was expressed in the 

spring we could retrospectively assign all fish to a life history group based on a 

combination of size and shape variables (see Pearlstein and Letcher 2008).  Using a 

combination of shape, size and growth as criteria we categorized fish into two groups: 1) 

parr (i.e. fish that did not metamorphose into migrants in the spring) and 2) smolts (i.e. 

fish that did metamorphose in the spring). 

 Sigourney et al. (2008) presented some brief analysis of this dataset showing the 

tendency of smolts to maintain growth in the late fall while parr exhibited decreased 

growth late in the season as temperatures drop.  In this analysis, we take a more detailed 

look at the monthly growth rates focusing on the interaction between size and life history 

on growth rates over four consecutive fall/early winter growth intervals.  We limited our 

analysis to these first few intervals because differences in energy allocation among life 

history groups during later development may obfuscate growth patterns.  We used 

general linear models (GLM) in which length was a covariate and life history was a 

grouping variable to test for an interaction between length and life history.  We analyzed 

each monthly dataset separately to identify the time course of an interaction between size 

and life history on growth rate. 

  

4.3.2. Field Sites and Data Collection 



 

 97 

To examine the interaction between size and growth rate in the wild, we used an 

extensive dataset of field data collected from three different systems over multiple years.  

Field data were collected from the West Brook (WB) a 3
rd

 order tributary to the 

Connecticut River located in Whately, Massachusetts USA (42°25′N 72°39′W), Shorey 

Brook (SB) a 2
nd

 order tributary to the Narraguagus River located in Beddington, Maine 

USA (44°49′N 68°03′W) and Catamaran Brook (CB) a 3
rd

 order tributary to the Little 

Southwest Miramichi River located in Renous, New Brunswick Canada (46°52′N 

66°06′W) (Figure 4.1).  CB is a completely natural system where populations are 

maintained through the natural reproduction of adults, populations in SB are maintained 

primarily through stocking fry in the spring although there is some limited natural 

spawning in this tributary and WB is solely maintained by the stocking of unfed fry in the 

spring (see Horton et al. 2009 for more details).  Each study site was sampled a minimum 

of four times a year starting in the spring when conditions allowed sampling and ending 

in the late fall or early winter just before freeze up. 

 There are a number of papers that detail how data were collected in the field sites 

so we will only present the pertinent information here (Letcher and Gries 2003, Horton et 

al. 2009).  Study sites were divided into 47 (WB), 37 (SB) or 22 (CB) continuous 

sections of approximately 100 m
2
.  Fish were captured using standard electroshocking 

techniques.  Each section was closed off using block nets.  All fish captured that were ≥ 

60 mm fork length and ≥ 2.0 g in mass were individually tagged with an 11 mm passive 

integrated transponder (PIT) tag.  Maturity was determined by applying gentle pressure to 

the abdomen and checking for the expression of milt.  In addition, scales were collected 

for age determination.   
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 In addition to the electroshocking samples, a picket weir was installed below each 

study site and was primarily used to collect migrating smolts in the spring.  The modal 

age of migration is 2 for WB and 3 for both SB and CB.  Similar to the laboratory data, 

we retrospectively assigned all individuals to the smolt life history group if it was 

captured during this time period and to the resident life history group if it was captured 

after the smolt run (for more details see Letcher and Gries 2003).    

  

4.3.3. Analysis of Field Data     

We only focused on known immature fish because the seasonal growth dynamics 

of mature parr differs substantially due to the allocation of energy to the development of 

gonads (Metcalfe et al. 1986).  Of the immature fish we could identify two life history 

groups, those that would emigrate in the spring (smolts) and those that would remain in 

the stream for an additional year (residents) (see Letcher and Gries 2003).  Ideally, we 

would be able to repeat the analysis that we performed with the lab data by testing for an 

interaction between life history and size on fall growth.  Unfortunately, it is difficult to 

assign large numbers of individuals to these groups because they have to survive and be 

captured at the right time (e.g. during the smolt migration) for a life history status to be 

assigned.  For CB and SB limited information on the smolt life history group precluded 

any meaningful analysis.  In WB; however, there were a number of year classes and 

sampling occasions where we could assign a reasonable number of individuals to the 

smolt life history group (Table 4.1).  Therefore, we used linear regression to test for the 

effect of size on growth rate for these subsets of smolt data.  Because the laboratory data 

suggested that the effect of life history on growth rate depended on season (see Results), 
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we looked at three different seasons leading up to the smolt migration which included 

fall, winter and spring. 

For the other years and streams the data are mostly comprised of unknown 

immature individuals that likely represent a mix of smolts that will migrate in the spring 

and smaller residents that will delay migration.  Because we know these two groups grow 

differently during this sensitive fall window and there is likely some overlap in size 

between those that smolt and those that remain as parr we developed two different 

hypotheses that should determine the shape of the bivariate relationship.  Based on 

previous studies both in the lab and field detailing differences in growth between parr and 

smolts we restricted our hypotheses to two main predictions. Our main hypotheses are 1) 

only life history dependent growth is occurring with smolts growing faster than residents 

or 2) life history dependent compensatory growth is occurring with residents displaying 

no compensatory response and faster growing smolts displaying a compensatory 

response.  Under the first hypothesis we might expect there to be an initial increase in the 

upper quantiles with size that represents the increase in growth rate as size increases from 

smaller residents to larger smolts followed by a flattening out of the upper residuals (see 

Figure 4.2a).  Under the second hypothesis we would expect a triangular pattern in the 

upper qunatiles with smaller smolts representing the fastest growing (compensating) 

individuals and then a general decrease in growth with size in the larger smolts (see 

Figure 4.2b).  Applying linear models to such a dataset could be misleading because of 

the heterogeneity in growth rates.  Therefore, to test these hypotheses we employed 

piecewise quantile regression.  We apply two different constraints, an increasing 

constraint and a decreasing constraint, to the upper 95th quantile that restrict the shape of 
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the quantile and compare them to a regression with no constraint.  The increasing 

constraint allows the quantile to increase and flatten out but not decrease.  Similarly, the 

decreasing constraint allows the quantile to decrease and flatten out but not increase 

again.  This pattern may occur if there is some sort of compensatory growth but is not 

restricted to the middle of the size distribution.  For all quantile regressions we set the 

penalty parameter (λ) to 6 to minimize prediction error.  We compare the different 

constraints with Akaike’s Information Criterion (AIC) to evaluate which hypothesis the 

data support the most.  To visualize the overall shape of the scatterplot cloud we also 

examined the 50th and 5th quantiles. 

As previously mentioned, CB is a natural system in which yearly variation in 

densities is highly dependent on the spawning stock biomass.  During the course of this 

study densities of parr fluctuated dramatically.  To test if there was a detectable 

difference in growth rates between a high density year (2001) and a low density year 

(2003) and whether or not this variation might be seasonally dependent we used 

ANCOVA with GL as the response variable, year and season as predictor variables, and 

length as a covariate.  If we did not detect an effect of length, we used ANOVA instead 

of ANCOVA.  We focused on CB because similar analyses of seasonal and yearly 

variation have already been conducted on WB and SB (Letcher and Gries  2003, Horton 

et al. 2009, Davidson et al. 2010).  Because in CB the percentage of individuals that 

smoltify differs by age class, we analyzed age 1 and age 2 fish separately.  For the age 2 

class, the sample size was low for the 2003 summer, therefore, we restricted our analysis 

to a comparison of fall growth rates between 2001 and 2003 for this age class.    
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4.4. Results 

4.4.1. Laboratory 

  Results from the laboratory data revealed that the effect of size on growth rate 

depended on the life history group and growth interval examined (Figure 4.3).  In 

October, there was little size-dependent growth in the parr group and positive size 

dependent growth in the smolt group leading to a significant interaction between length 

and life history on growth rate (F1,114 = 5.7, P=0.02).  This pattern was maintained over 

the November growth interval with a significant interaction between length and life 

history on growth rate (F1,115 = 15.1, P<0.001).  By December however, we did not detect 

a significant interaction between size and life history (F1,116 = 15.1, P=0.09) as size-

dependent growth appears to be weakly negative in the smolt group but remains weakly 

positive in immature parr (Figure 4.3c).  By the January growth interval there is a 

significant interaction between size and life history on growth rate with negative size 

dependence in smolts and positive size dependence in parr (F1,116 = 30.9, P<0.0001).  

 

4.4.2. Field 

Results from the linear regressions on subsets of known smolts from different 

year classes of salmon in WB indicated the relationship between size and growth rate 

depended on the year class and season.  For the 1996 year class there was no evidence of 

a strong compensatory response in the fall; however; by winter there was a significant 

negative relationship between size and growth rate which continued into the spring 

leading up to the smolt migration (Figure 4.4).  For the 1997 year class evidence of 

compensatory growth was weak, and none of the relationships were statistically 
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significant.  For the 1999 year class we found a negative relationship between size and 

growth rate in all three seasons analyzed; however, the relationship was not statistically 

significant until spring.  For the 2001 year class there was no December sample so we 

could only look at the spring interval.  The relationship was negative although not 

statistically significant (Figure 4.4) 

We found results from the piecewise quantile regression analyses to be mostly 

consistent with our expectations under the life history dependent compensatory growth 

hypothesis in WB (Figure 4.5), SB (Figure 4.6) and CB (Figure 4.7) with the exception of 

the 1997 and 1998 growth season in WB and 2002 in SB.  For these three datasets the 

quantile regression with the increasing constraint had the lowest AIC values although the 

delta AIC value for the regression with no constraint was 2 or less in all cases indicating 

little difference in support for the two hypotheses (Table 4.2). Piecewise linear 

regressions of the upper 95th quantile for 1997 and 1998 in WB suggested little change in 

GL with size.  The lower 5th quantile also seems to change little with size for 1997 but 

increase slightly for 1998 in WB (Figure 4.5).  For SB in 2002 all quantiles increase with 

size and then reached a plateau (Figure 4.6). 

For all other datasets analyzed the upper (95th) quantile generally increased with 

size and peaked somewhere in the middle of the size distribution after which there 

appeared to be a negative relationship between size and growth.  This pattern suggests 

that the fastest growing fish are in the middle of the size distribution.  Plots of the lower 

5th quantile were either flat or generally increased with size with some variation.  This 

relationship between size and growth rate resulted in a polygonal shape with the greatest 

variance in growth rate occurring in the middle of the size distribution.  This pattern 
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seemed relatively consistent across years and systems with the few exceptions mentioned 

above. 

Results from an ANCOVA showed no significant effect of length on GL therefore 

we used a two factorial ANOVA to test for the effect of season and year and there 

interaction on age 1 growth.  This analysis indicated a significant interaction between 

year and season (Figure 4.8).  Overall, growth is higher in the summer consistent with 

seasonal growth from the other tributaries; however, we found that growth in the fall of 

2001 was higher than in 2003 even though densities of parr where considerably higher in 

2001.  For age 2 we again found no effect of length so we used ANOVA to compare fall 

growth among the two years.  Opposite to age 1 fish, we found significantly higher 

growth in 2003 than in 2001 (Figure 4.9) 

   

4.5. Discussion 

Our results from both the laboratory and field suggest that relatively small parr 

which adopt the smolt life history tactic may compensate for small size by increasing 

individual growth rates; however, the timing and intensity of the compensatory response 

may vary among years and among populations.  Unlike the majority of compensatory 

growth studies which experimentally manipulate the growth environment to induce a 

compensatory response, we show that individual life history decisions can dictate 

whether or not an individual displays compensatory growth even when all individuals 

within a cohort are experiencing the same growth conditions.  This distinction is 

important because if life history is ignored and data are pooled then the application of 

standard statistical techniques may lead to erroneous conclusions concerning the presence 
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and strength of size dependent growth.  We addressed this problem by applying 

nonparametric quantile regression techniques to datasets where we could not confidently 

assign individuals to a life history group.  Overall, the combination of detailed laboratory 

and field data as well as novel statistical techniques used in this study helped establish the 

prevalence of compensatory growth across spatial and temporal scales. 

Our use of laboratory data allowed us to unambiguously assign a large number of 

fish to the correct life history group and observe their growth dynamics on a fine, 

monthly time/temporal scale.  The form of size dependent growth seemed to depend both 

on life history group and season.  Smolts initially seemed to display depensatory growth 

with the largest fish growing the fastest whereas the parr showed weak to no size 

dependent growth throughout the experiment. This pattern is consistent with many other 

studies that have shown that salmon establish strong dominance hierarchies in laboratory 

settings with larger fish gaining more access to food and growing faster (Thorpe 1977, 

Metcalfe et al. 1989, Metcalfe and Thorpe 1992).  During subsequent growth intervals, 

smolts began to exhibit a compensatory response leading to an interaction between size 

and life history on growth rates.  Our results complement previous compensatory growth 

studies on Atlantic salmon.  Nicieza and Metcalfe (1997) showed that both parr and 

smolts will respond to changes in the growth environment by increasing their growth 

rates, but there is a life history effect where smolts display a stronger compensatory 

response. Unlike their study, we show that this response can occur in smolts without 

manipulating the growth environment, and therefore, it may be an evolved response to 

ensure adequate size before migrating to sea.  In addition, Metcalfe et al. (1986) showed 

that smaller parr tend to exhibit a decrease in feeding motivation during the fall and 



 

 105 

winter months which may explain the overall differences in growth rates between parr 

and smolts.  These life history dependent growth strategies between the unwillingness of 

parr to grow and the strong compensatory response of smolts suggest tradeoffs in fitness 

depending on the life history tactic adopted. 

Our analyses of field data paralleled our findings in the laboratory although 

compensatory growth responses were not as strong.  Using a high quality dataset we were 

able to assign a reasonable number of individuals to the smolt life history group 

depending on the cohort analyzed.  A general pattern of compensatory growth and greater 

ability to detect compensatory growth as the growth interval approached the smolt 

window was evident.  We found a weak negative relationship between size and growth 

rate in the fall for two of the three intervals examined, but none of the regressions was 

statistically significant.  However, all spring intervals were negative and half were 

statistically significant.  Low sample sizes may have hampered our ability to detect 

statistically significant responses, but the general pattern appeared consistent with the 

laboratory data.  Nicieza and Braña (1993) estimated size at migration from scales to 

present evidence of compensatory growth in Atlantic salmon smolts; however, it was not 

clear if this pattern was the result of faster growth rates or delayed time of migration.  

Utrilla and Lobón-Cerviá (1999) used a similar analysis and also concluded that that 

smaller smolts exhibited compensatory growth prior to migration; however, they used 

specific growth rate as a metric for growth rate which is itself negatively size dependent 

(Sigourney et al. 2008).  Our study validates other studies and helps to establish a 

compensatory growth response in migrating smolts which may start as early as the fall 

before migration. 
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An inability to categorize immature fish into appropriate life history groups 

limited the number of datasets for which we could apply standard linear models to test for 

an interaction between life history and compensatory growth.  To be able to analyze the 

majority of datasets for which we could not confidently assign a large sample size to the 

different life history groups we used a novel form of nonparametric regression.  Our 

application of piecewise linear quantile regression to the analysis of scatter plots of fall 

size vs growth rate revealed that most years lead to a polygonal shape consistent with our 

hypothesis of life history-dependent compensatory growth.  Quantile regression is well 

suited for the study of complex ecological relationships; however, its use is still relatively 

rare in the ecological literature (Sharf et al. 1998).  Because many ecological 

relationships can result in scatterplots that have a polygonal shape (Sharf et al. 1998), 

nonparameteric quantile regression may be particularly useful, yet we are not aware of 

any ecological studies that apply this technique.  The laboratory data showed that there is 

overlap in size distributions and between parr and smolts with parr growing slower and 

displaying no compensatory response and smolts growing faster and potentially 

displaying compensatory growth depending on the season.  This relationship leads 

bivariate plots of size vs growth rates that have a polygonal shape with both the fastest 

and slowest growth rates occurring in the middle of the size distribution.  By using a 

nonparametric quantile technique we were able to expand the scope of our analysis across 

additional years and across populations to show that this life history dependent effect of 

growth can have a strong and consistent influence on the relationship between size and 

fall growth rates in immature juvenile salmon. 
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The negative relationship between density and growth rate has been well 

described by a negative power curve in stream salmonids including Atlantic salmom 

(Jenkins et al. 1999, Imre et al. 2005, Lobon-Cervia 2007).  However, our analysis of 

seasonal growth rates in CB suggests that, depending on the age class, density-dependent 

responses may not be consistent across seasons.  We found that variation in summer 

growth rates in CB was consistent with this negative relationship between density and 

growth but fall growth showed a weak positive relationship with density.  One 

explanation for changes in fall growth could be that other abiotic factors are influencing 

fall growth rates.  In an earlier study, Davidson et al. (2010) found that fall growth rates 

in WB correlated positively with fall discharge in age 1 salmon. In CB, however, average 

discharge was lower in 2001 when we observed higher growth rates and temperature 

profiles were roughly the same (Appendix C).  Because fall growth rates seemed to be 

linked to life history, one possible explanation for this counterintuitive pattern is that it 

represents a frequency-dependent life history response.  A number of studies on stream 

salmonids have demonstrated that at high densities per capita survival rates decrease 

(Elliot 1987, Marschall and Crowder 1995, Cattaneo et al. 2002).  Therefore, the 

probability of surviving to a specific size and age before smolting is partly density-

dependent.  In addition, some studies suggest that size may actually be selected against in 

small stream environments likely due to the inability of larger fish to find adequate refuge 

such as deep pools (Carlson et al. 2008, Letcher and Horton 2008). Complicating matters, 

Atlantic salmon smolts are faced with opposing selection pressures because physiological 

constraints and size selective mortality at sea select for a relatively large size at smolting 

(Lundqvist et al. 1994).  These opposing selection pressures may create dynamic fitness 
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surfaces that are conditionally dependent on the state of an individual (e.g. size), the 

environment (e.g. proportion of available refuges) and the life history tactic adopted (e.g. 

smolt or resident).  This change in fitness with density may lead to a conditional strategy 

in which the switch point (i.e. the size at which is more beneficial to smolt) changes with 

density.  In other words, in years of high density, the largest age 1 fish may actually gain 

higher fitness by accelerating growth and smolting at age 2 rather than trying to survive 

an extra year in the stream where competition for space may decrease survival.  Thus, 

both size and density may play a role in an individual’s decision to accelerate fall growth 

and smolt in the spring.  Frequency-dependent responses are evident in other aspects of 

salmonid life histories particularly in regards to early maturation in males (Gross 1985, 

Hutchings and Myers 1994), but few studies have considered tradeoffs with early 

smolting.  The potential for a shift in the costs and benefits of fast growth and early 

smolting may also explain some of the variation we observed in the field data in the 

apparent strength of compensatory growth. Regardless of the underlying mechanism, our 

results suggest that density-dependent growth may be seasonally dependent and could 

interact with life history in complex ways.  

For age 2 salmon fall growth was more consistent with a negative relationship 

between density and growth rates.  Unlike age 1 salmon, because age 2 salmon already 

have attained a critical size to smolt it may be that they do not increase their fitness by 

trying to undertake risky foraging in years of high density.  A number of studies suggest 

that larger size can lead to greater mortality particularly in the fall (Letcher and Horton 

2008, Carlson et al. 2008) and this mortality may be enhanced by risky foraging.   Also, 

salmon generally need adequate refuge to forage effectively.  Larger, older salmon 
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generally need deeper, pool like habitat (Hutchings 1986, O’Connell and Ash 1993, 

Sigourney et al. 2006) which was lacking in the study site.  For age 2 fish in years with 

high density, competition for good foraging habitat may inhibit continued growth, and 

therefore, density continues to have a negative effect in the fall.  It is important to also 

note that samples sizes were fairly low and the effect size was small so our results should 

be interpreted with caution. 

Understanding the interactive effects of environment and growth on life history 

decisions play a critical role in conservation and management of anadromous salmonids 

particular as future environmental conditions become more variable and uncertain (Gross 

1991).  For example, anthropogenic forces can change size selective mortality through 

changes in fishing practices (Gross 1991).  Also, changing predator fields and prey 

availability could alter the benefits gained from early migration (Mather 1998). In 

contrast, in stream survival and hence the relative fitness of delaying migration will 

depend on availability of appropriate refuges (Finstad and Einum 2009).  Ecologists and 

evolutionary biologists are becoming increasingly aware of the need to apply 

evolutionary principles to management practices (Crozier et al. 2008, Hendry et al. 2010).  

Application of evolutionary principles combined with the development of proximate 

models (see Thorpe et al. 1998) may be necessary to aid conservation and predict future 

fitness.   

In summary, we have demonstrated the role of life history in structuring the 

relationship between size and growth rates in Atlantic salmon.  Our results provide a 

conceptual framework to understand the ecological context under which compensatory 

growth responses may be expected to evolve in nature.  This information could be 



 

 110 

integrated into more mechanistic models of population dynamics.  In the case of Atlantic 

salmon, such models may help predict variation in smolt production and the size and age 

structure of migrating smolts, a key goal in management of this species (Power and 

Power 1994, Chaput et al. 1998).  From the view point of basic science, Atlantic salmon 

may serve as an effective conceptual model to understand variation in the strength of 

compensatory growth across species with similar complex life histories that undergo 

environmental transitions or migrations. 
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Table 4.1. Number of known Atlantic salmon smolts (N) in each year class for regression 

analysis of length on growth rate for different growth intervals in West Brook, 

Massachusetts. 

 

Year Class Season Median Date Start Sample Median Date End Sample  N 

1996 Fall        9/30/1997       12/15/1997 9 

 Winter      12/15/1997         3/14/1998 9 

 Spring        3/24/1998         4/23/1998  11 

1997 Fall        9/18/1998         12/5/1998 28 

 Winter        12/5/1998         3/17/1999 25 

 Spring        3/17/1999         4/30/1999 30 

1999 Fall        9/26/2000         12/7/2000 17 

 Winter        12/7/2000         3/13/2001 16 

 Spring        3/13/2001           5/9/2001 21 

2001 Spring          4/9/2003           5/9/2003 16 
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Table 4.2. Sample sizes by age class for each dataset used for quantile regression on  

 length vs fall growth rates for Westbrook (WB), Shorey Brook (SB) and   

 Catamaran Brook.  AIC and ∆AIC values are shown comparing three different  

 constraints on the 95th quantile.  

 

River Year NAge1 NAge2 Constraint AIC ∆AIC 

WB 1997    93     3  Increasing -383    0 

     None -382    1 

     Decreasing -372   11 

WB 1998    77     0  Increasing -225    0 

     Decreasing -225    0 

     None -224    1 

WB 1999   148     2  None -430    0 

     Increasing -422    8 

     Decreasing -408   22 

WB 2000   104     5  None -381    0 

     Decreasing -369   12 

     Increasing -353   28 

WB 2001    65     5  None -224    0 

     Increasing -214   10 

     Decreasing -210   14 

WB 2003    56    17  None -164    0 

     Decreasing -150   14 

     Increasing -149   15 

SB 2000    49    23  None -225    0 

     Increasing -214   11 

     Decreasing -169   56 

SB 2001    42    14  None -78    0 

     Increasing -71    7 

     Decreasing -50   28 

SB 2002    67      3  Increasing -127    0 

     None -125    2 

     Decreasing -107   20 

SB 2003   107     23  None -332    0 

     Increasing -318   14 

     Decreasing -291   41 

CB 2001   61     19  None -209    0 

     Increasing -188   21 

     Decreasing -179   30 

CB 2003    16     13  None -65    0 

     Increasing -57    8 

     Decreasing -57    8 
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Figure 4.1: Map showing the geographical locations of the study streams in  

Massachusetts (MA),Maine (ME) and New Brunswick (NB). 
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Figure 4.2: Hypothetical scatter plots expected under two different scenarios of 

size dependent growth where life histories are separated by size class including a) 

life history dependent growth and b) life history dependent compensatory growth. 
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Figure 4.3: Plots of linear regressions describing the relationship between length 

and growth rate for both parr () and smolts () grown under laboratory 

conditions during (a) October (b) November (c) December and (d) January 

growth intervals. Separate r
2
 values for each life history group are shown in each 

figure.  
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 Figure 4.4: Linear regressions of length vs growth rate for subsets of known  

 Atlantic salmon smolts for different year classes in WB. P-values for significant       

 regressions are shown below scatter plots. 
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Figure 4.5: Piecewise quantile regressions on length vs growth rates for different 

fall growth intervals of Atlantic salmon parr in WB. The upper 95th (----), median 

50th (), and lower 5th (----) quantiles are shown. 
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Figure 4.6: Piecewise quantile regressions on length vs growth rates for different 

fall growth intervals of Atlantic salmon parr in SB. The upper 95th (----), median 

50th (), and lower 5th (----) quantiles are shown. 
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 Figure 4.7: Piecewise quantile regressions on length vs growth rates for different  

fall growth intervals of Atlantic salmon parr in CB. The upper 95th (----), median 

50th (), and lower 5th (----) quantiles are shown. 
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 Figure 4.8: Comparison between summer and fall growth rates of age 1 immature  

Atlantic salmon sampled over a high density year (2001) and a low density year 

(2003) in CB.  A 2-way ANOVA indicated a significant effect of season 

(F1,192=235.2, p<0.0001), year (F1,192=31.8,  p<0.0001), and an interaction 

between season and year (F1,192=56.1 p<0.0001). 
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 Figure 4.9: Comparison of fall growth rates of immature age 2 Atlantic salmon  

            sampled in CB over two different years.  One-way ANOVA indicated a  

significant difference (F1,27=4.8,  p=0.04). 
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APPENDIX A   

MULTIVARIATE CONDITIONING OF THE SEASONAL GROWTH 

FUNCTION 

 

 As defined in the text the prior food function consists of a vector of coefficients 

that are distributed multivariate normal with a mean and a covariance f


~MVN(Muf,Cf) 

We can constrain the function such that when it is multiplied by some linear operator L it 

will have a specified condition 

 

  f | Lf=k 

 

where k=t-1 (i.e. the number of growth intervals).  Next we define a matrix H that consist 

of L and an identity matrix I as follows 

 

  
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Multiplying the matrix H by the original function f yields 
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Which is distributed normally as 
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Using the inverse of partitioned matrices we can derive a conditioned mean and 

covariance for f given the specification that the coefficients must sum to t-1.  The 

conditional mean and covariance is now 

 )()(
~ 1

f

T

f

T

fff LMukLLCLCMuuM    

 f

T
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T

fff LCLLCLCCC 1)(
~   

where k=t-1, and Muf and Cf are the prior mean and covariance for the n-variate normal 

distribution of f and L is a 1xk vector of ones.  This conditioning yields a multivariate 

distribution for f given the condition that for any time t the expectation of f(t) is 

constrained to be one.  Because we are constraining the food function to sum to t-1, we 

need to transform the observed fo  by dividing by the mean ( f  ) such that 
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APPENDIX B 

GIBBS SAMPLING 

 

To sample δ and bi jointly we can derive a bivariate conditional distribution.  We first re-

write the process equation using vector notation as 

 

 Lntt bfLL 


 ]][1[][1  

 

where 1tL


is a (n*t-1)x1 column vector of all individual lengths from time t=2 to t, tL


 is 

a (n* t-1)x1 column vector of all individuals from t=1 to t-1, 


is a nx1column vector of 

individual consumption parameters , 1n is an n x n identity matrix, f


is a 1x(t-1) vector of 

coefficients defining the food function,  indicates the Kronecker product, and L


 is a 

random error vector.  We can derive a multivariate distribution for a and 


 as 

 

δ, b


| ~MVN(δ,b,  δ,b) 

 

where  
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To derive conditional distributions for the latent states and the food function, we again re-

write the growth equation as: 

 

 iiii FbSLSL 


1  

 

where iL


 is a tx1 vector of lengths for individual i, S1 and S represent identity matrices of 

the form  
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The conditional for the food function f


can be written as 
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where If is a (t-1)x(t-1) identity matrix. 

 

We can also makes use of the Gibbs algorithm to sample iL


 states where we can show 

that that iL


is conditionally multivariate of the form 
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where Fmat is the same as defined above and OL,i is an indicator matrix of 1s and 0s with 

0s represent missing observations. 

 

For all hyperparameters we use the same conditional distribution for location and scale 

parameters where N indicates a normal distribution and IG indicates an inverse gamma 

distribution 
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where   and V represent the location and scale hyperparameters respectively, i  

represents the mean of the individuals parameters, SSi represents the sum of squares of 

individual parameters. 

 

Similar to the scale of the parameters for the hypereparameters we can also sample the 

variances for the process error in the growth dynamics (VP) from conditional inverse 

gamma distributions  
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APPENDIX C 

COMPARISON OF DISCHARGE AND TEMPERATURE IN CATAMARAN 

BROOK DURING THE FALL SEASON OF 2001 AND 2003 
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 Figure C1.  Comparison of average daily discharge measured at the mouth of  

      Catamaran Brook in 2001 and 2003 during the fall growth intervals  

      (September to October). Loess smoothing line are shown. 
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 Figure C2. Comparison of average daily water temperatures in Catamaran Brook  

     during the 2001 and 2003 fall growth interval.  Loess lines are shown. 
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