


As opposed to certain rigid cluster NMA modelingnesmes [14-16], while in
the current approach, no distinction has been défithe constituent residues can be
classified into certain flexible and rigid domaireading to a hinging motion of the
defined lobes. In addition to the outcome of theawdations reported, th@-factors
computed from NMA simulations have been plottednglavith the experimentally

obtained values from the Protein Data Bank.

Figure 5.3: A plot showing experimental versus calculaieféctors for Lactoferrin. The
calculated values are represented by the blue And, the red line represents the
experimentally reported values obtained from thad?n Data Bank.
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From Figure 5.3, a good agreement in the valuethef3-factors yet again
affirms the suitability of using an all atom NMA thedology. With regards to thg
factors, there are some interesting characteristias have been observed, and can be
associated with the model's behavior; primarilye tibserved peaks are found for atoms
in the outer periphery of the main cluster. It daexplained because we use spring
constants now instead of unity, so these spectbma are connected to other atoms
through stronger bonded force constant, and weakbomded force constants to other
non-covalently bonded atoms. This directly altéws $tiffness matrix and causes much
greater amplitude fop-factors for these specific atoms. With regardshi® observed
peaks, that is extremely high values of compugef@dctors, as mentioned, can be
attributed to the orientation of the structure actoferrin. Certain atoms were found to
be on the outer periphery, and constitute the aragids that are generally observed to
be hydrophilic like Arganine and Glutamic acid, aedd to be orient along the outer
periphery. As a result, the atoms that constithese residues, due to greater values of
mutual distances with other atoms, not only haveimmal non bonded interactions. This
is an effect that gets induced in to the ENM by\vhkie of cutoff distance and also the
values for non bonded force constants between stmims. Hence, in the chemical
information based ENM, these typical atoms are eesd such that they have strong
covalent bonds and weak non bonded force consta@hts. results in a much higher
value ofp-factors for these specific atoms. The Table Sptesents a set of such atoms
that were identified in Lactoferrin, and their stiwral details, elucidating their

orientation are represented in Figure 5.4.

48



Table5.1: Represents a list of atoms observed to have
high values of computefgifactors numbers, their types
and the amino acids they constitute.

Atom Number| Atom type | Residue name and number
253 N Arganine-30

254 C

255 N

256 N

676 N Arganine-86

1374 O Glutamic acid-178
3851 C Arganine-500
3852 N

3853 N

3929 O Glutamic acid-511

Another interesting observation from the plot Bfactors is that, the NMA
simulations are performed on an isolated molect@ileaatoferrin. This is the primary
reason for the observed peaks. As opposed tottigiseported values @tfactors in the
PDB are experimental values that are obtained faoalysis of a crystal and not of an
isolated molecule as in the simulations. As a tesfulhese, the peripheral atoms would
be surrounded by similar atoms from the neighbotiagtoferrin molecule. As a result

of this, there would be more non bonded interastiora real system.
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3. Arganine500 4. Glutamic acid 511

Figure 5.4. Images of atoms on the outer periphery obtainedmf the
conformation of Lactoferrin obtained from PDB. THeNM represents the
connections of these atoms with the surroundinmsato

Figure 5.5 shows the plot of the computed valuep-fafctors from NMA simulations

and the experimental values on a semi-logarithrmédes This is done so to observe the

proximity of the trend shown by the computed ad aglthe experimental values.
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Figure 5.5: Semi-logarithmic plot of computed as well as expemtal 3-

factors for Lactoferrin from all-atom NMA simulatio
5.4 Sensitivity Analysis

As in the case for amino acids, a similar sengjtimnalysis of studying the
effect of changes in the input parameters on thelai'® behavior in the case of
Lactoferrin has also been carried out. To estalthshrobustness of the model, the non-
boned force constants were varied between, 600sdymeto 60000dynes/cm. Moreover,
the connectivity matrix was also altered by chagginhe cutoff distance that in turn

altered the linking matrix and the overall stiffaexf the system.
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Figure 5.6. (a) Plot of normalized wavenumbers for Lactoferrin iaga the mode
number.(b) Normalized wavenumbers for Lactoferrin from modeniers 145 to 194,

elucidating the convergence up to the"1@ode.

A plot for normalized wavenumbers was then gendratea manner similar to

the one adopted for Lactoferrin as reported in Fagu6 (a) and (b). It is interesting to

note however that through this analysis, macronubdscinsinuate a greater sensitivity
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to the connectivity in the low frequency domain.irftplies that as long as the total
connectivity, which is determined by the definedoffudistance is not altered, the
animations suggest no change in the modeshapesh8utigh frequency, more local
modes, show a greater dependency on the absolute ofaforce constant, both bonded
as well as non-bonded assigned between atoms.diticadto the results for 1LFH as
illustrated in this section, simulations for 1LFGene performedOn comparing the
modeshapes and wavenumbers in both these casesithations for 1LFG, like in the
case for 1LFH show one to one correspondence wiéh existing literature. The

animations for 1LFG for all atom case have beenmsarized in Figure 5.7.
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Figure 5.7: First three modes for 1LFG obtained from simwolasi using chemical
information based NMA. They all suggest the globadtion of what is commonly
referred to as the head and the two lobes.
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Figure 5.8: First three modes for 1LFG obtained from simwolasi using ¢ NMA. They
all have been represented using RASMOL in a wineéaepresentation.
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Subsequent to running all atom simulations for 1L E&coarse grained model
was simulated and animations were generated tatascehe credibility of the new
modeling scheme. These animations for all-atom NAA G NMA are represented in
Figure 5.7 and Figure 5.8, respectively. As cagd®n from the animations, they are in
agreement. Moreover, these animations were als@amd with results generated in
another lab that is involved in study of biomolesu(Bahar Lab: School of Medicine,
University of Pittsburgh) which uses an Anisotropietwork Model to explore the
relationship between dynamics and function for mamyteins [77, 78]. Like the £
coarse grained model, it uses Elastic Network noglogy and represents the system in
the residue level. The macromolecule is thus reptesl as a network, or graph. Each
node is the & atom of a residue and the overall potential ispbnthe sum of harmonic
potentials between interacting nodes.

With regards to the wavenumbers, the one hindranttecomparing computed
wavenumbers with spectroscopy data is that thelabtai experimental frequency
assignment does not provide us with the same résolas that obtained from full atom
NMA. Therefore, the focus in this work has been inoorporating the sensitivity
analysis scheme to stress upon the fact that magdeshare not altered in the low
frequency domain, and the ratios of wavenumbersal®@ unaffected by variations in
the input, indicating that once the lowest frequeiscobtained, it can be matched with
the results from full atom NMA, since it would mesealing up and down the inputted
force constants. So, until the inputted force camist that exactly replicate the real

physical system are obtained, these normalizede@dees can be utilized for exploiting
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model's characteristics as opposed to absolutenmaveers; like in the case of Cysteine,
where in such a scaling was done once the lowesenwenmber was obtained and
subsequently, the higher wavenumbers were detednime matching the lowest

wavenumber from simulation.

5.5 Computational complexity

A full atom NMA requires a far more computatiorddort than a conventional
Ca coarse grained model. These simulations have sobégn computationally
prohibitive due to the high number of degrees-ekffom required to capture motions of
large structures. Understandably, the primary thfiee between the two methods is the
linking matrix. While in a @ NMA, the linking matrix only represents a binaghsme
of assignment, 1’s indicating the presence of adlbaomd O’s representing the absence of
the same, the linking matrix in an all atom NMA wesquired to store specific
information of force constants between all intaragpairs of atoms. Hence, this directly
prompted the identification of intramolecular irgetions within a residue and also the
peptide bond between carboxyl and the amide grotipgeracting amino acid residues.
While employing this assignment scheme into usdaiteaberrations were observed,
due to absence of positional co-ordinates of @latoms of Lactoferrin in the PDB file,
possibly due to a poor resolution. As a direct eguence of this, a given residue was
found to consist of different number of atoms. Egwample, Arganine was found to have
5 as well as 11 atoms. Initially, this caused inpgeroassignment of force constants and

rendered the entire linking matrix wrong. Hence, oercome this, in addition to
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identifying the amino acid, a distinction of numlsératoms in the same was introduced.
Apart from the challenge of assigning appropriated constant, determination of the
same was also an involving task. As explained ie fitevious chapters, NMA
simulations were performed on simple linear molesub determine the force constants
between numerous acting pairs of atoms. Once alpdssible types of bonds present in
Lactoferrin were identified, these simple linearlecoles were selected depending on
the presence of the required bond.

So far we have discussed the ground work thatreqired in computing the
inputs. In addition to this, understandably, fulorma NMA required much more
computational effort. Significantly large dimenssoaf input matrices; mass (3n x 3n),
linking (n x n) and stiffness (3n x 3n) were obs&tvAs opposed to conventional NMA,
which required only 691 & atoms, one from each amino acid, full atom reauire
handling of approximately 5300 atoms. The dimeraites of the matrices were
significantly affected by this. Performing invensiand other matrix operations on such
huge matrices required special inclusions in thaecdn order to give an estimation of
run times for various simulations as a functionthed number of atoms of the system,
simulations for different proteins were run, in erdo generate their linking matrices
and also the NMA simulations. The run time for takkse simulations was recorded in
MATLAB, and using regression, a polynomial expreaswas determined to compute
the computational time for both, the linking matai well as the NMA simulations. This
was done so, since these two codes of simulatiegsine the most of computational

effort that goes into such an analysis. By runrdifterent simulations, these runtimes
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were recorded and plots have been generated tarstadé the relationship between
number of atoms of a system and the proportiomad tior performing its simulations.
This would enable user to predetermine the comjouiat effort and time that would go

into such an analysis.

Plot of run times for Linking matrix

900
800 —
700

/

600
500 //
400

300 == LM-run time
200
100
o Lo’

3341 4384 5000 5341 6000 7671

Run time in seconds

Number of atoms

Figure5.9: Represents a plot of run time for generatingditileng matrix
in all atom NMA simulation, showing the varat in the same as a
function of the number of atoms of the protein
The Figure 5.9 shows the values of runtimes obslewtsle generating linking
matrices for different Proteins with disparate nemlof atoms. As mentioned, in
MATLAB, using regression a polynomial expressionsvadbtained to compute the time
required for generating the linking matrix of agivprotein with ‘N’ atoms, such that;
L (t) =0.0000009603711 xM0.17050365 x N — 564.5358 (5.1)
Where,

L (t): Time to generate the linking matrix

N: No. of atoms in the given protein.
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Principally, though conventional NMA is analogowsall atom NMA but the
run times of the simulations are significantly di#nt. This is due to the fact that matrix
operations like the computation of stiffness mafrixm linking matrix requires more
time in its computation. Also, the equation 2.9dlwes multiplication of stiffness matrix
and mass matrices of the orders of 15300x15300sabdequent computation of the
eigenvector and eigenvalue sets from the ‘S’ matiilke Figure 5.9, runtimes of NMA
simulations were also recorded to express themmdymomial in ‘N’, and a plot was
generated as illustrated in the Figure 5.10.

P (t) = 0.0017685 x R 1.951 x N + 746.48 (5.2)

Where,

P (t): Time to run all atom NMA simulation

N: Number of atoms in the given protein.

Plot of run times for all atom NMA
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Figure 5.10: Represents a plot of run time for running theatdim NMA
simulation, showing the variation in the saasea function of the number of
atoms of the protein.
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The eigenvector set in particular, computed frobmdm NMA was also over
2GB of memory. Hence, while these simulations cdo#d performed on a personal
computer with 6GB of ram, MATLAB version 7.8 wagjuired so that the huge input

and output matrices could be dealt with.

5.6 Conclusions

Through the output computed from our analysisait be deciphered that an all
atom model based NMA indeed provides much largésrimation pertaining to the
biologically relevant and important low frequencgntain. With the incorporation of
atomistic details, the modeling scheme tested etéer representation of the actual
Lactoferrin’s behavior. While in the scope of therrent study, results have been
established for Lactoferrin alone, with information the structural details of other
biomolecules available on various databases likeRtotein Data Bank, the modeling
scheme is sufficiently flexible to incorporate aolserved aberrations by assigning
specific values for force constants in the linkimgtrix, if any. Further insight into the
complex field involving the determination of prezidorce fields would result in
enabling the undertaken modeling scheme to havetterbinput, thereby enabling its
users to determine even more precise wavenumbebe afbserved modeshapes. It can
thereby be proposed that by comparing this dath vesults from other experimental
and computational approaches like spectroscopyifignt information that would help
in elucidating the biological function of a macrdewule can be explained using

chemical information based NMA.
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CHAPTER 6
HYBRID NORMAL MODE ANALYSISUSING CHEMICAL INFORMATION

BASED ELASTIC NETWORK MODEL.

6.1 Introduction

In large macromolecules, slower more global motiamesobserved to consist of
collective motions of the constituent atoms. Ineothvords, the globally collective
motions of the system are dominantly ruled by a téwhe slowest modes. Statistical
mechanics also predicts that the contribution ® ¢brresponding eigenvalue occurs
naturally favorable in the low-frequency modes. sThieans that the low frequency
modes are naturally favorable to occur. Informafimm such unison motion of a large
set of atoms can be used to identify certain rapahains and flexible loops within a
conformation. This implies that certain residuesiprotein act as hinges about which
the collective motions of atoms take place. Knogkdf such dynamic behavior of the
system can be incorporated in the way that a prasemodeled. This understanding has
lead to the development of a Hybrid Normal Mode lksia (HNMA). In this
methodology, broadly, the constituent atoms ofaigin are classified to be either a part
of a cluster or independent point masses in théiadpdomain. Hence, clusters are
defined, consisting of certain fixed number of asorand these clusters are modeled to
be connected to neighboring clusters by certainnddf point masses. A pictorial

depiction of such a methodology is given in Figare.
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Figure 6.1: Schematic of the hybrid elastic network model fag tomplex structure
which contains both rigid domains and flexible laegions.

6.2 Methodology

In accordance with the concept of HNMA and to innpé@t a modeling technique that
affirms the stated concept, the one essential guésite is to identify rigid clusters and
point masses in a protein. This is done by studiegwo conformations of Lactoferrin.
Since the PDB provides the Cartesian co-ordinaftéiseoconformations, a technique of
Windowed Root Mean Square Distance (WMRSD) is useatlassify the atoms as either
point masses or a part of a cluster defined. Algmomany rigidity algorithms and
theories have been introduced so far, there isnstilinique way to define rigid clusters
and point masses with given structures. In thigeodnfirst, rigid-clustering starts with
the static comparison between two end structures.céh also count on the structural
information defined by previous literature or expentally observed rigid cluster
domains. Next, the WRMSD is measured to definedriguster set. As expected, a

certain window size is defined; such that, at aegiwnstance, a set of residues are
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compared in both the conformations are compared.ekample, a window size of 10
would imply that the positional co-ordinates of t@nstituent atoms within the same
residues in both the conformations would be contpafes the name suggests, it is a
square root of the mean of the squares of therdiffee between the co-ordinates of the
same atoms from both the conformations. This esaldeto identify flexible and rigid
parts. The residues that experience greater valudsplacement have a high value of
WMRSD. Similarly, certain residues that undergo kwaues of displacements can be
considered as hinges, about which the hinging matikes place. Hence, the size of
windows should be small enough not to lose locakifflility of structures. For
Lactoferrin, Windowed RMSD results suggested thatould be broadly classified to
consist of three rigid domains:

Head, Right lobe, and Left lobe.

[L1I 11 I |

Windowed BMSC[Arsirom]

0 100 200 300 400 600 600 700
Residue number

Figure 6.2: A rigid-cluster model of the Lactoferrin struotui(a) Lactoferrin is assumed
to have three rigid clusters: head (green), ledtl¢yv), and right (red) lobes. Two lobes
are opened and closed by the hinge motion aroum@OTénd Val250. RMSD between
corresponding clusters in each conformation isldisa in (b)
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The Figure 6.2a shows the schematic of a hybridehéat Lactoferrin with
three clusters. The Figure 6.2b on the other havesghe WMRSD values that were
used to define these clusters. These rigid domaiasconnected to peripheral point
masses, which in turn are connected to other poiases in the neighboring rigid
domains. The Tables 6.1 and 6.2 discuss the wasich the clusters have been defined.
In accordance with the underlying principle, thestérs are connected to each other by
point masses, it was essential to define theset poasses. Hence, to represent the
connection between two clusters, certain atombeainterface of any two given clusters
were considered as individual atoms based on aicertitoff distance. In order to do so,
for a given cluster, the distances between its atfsom all the atoms of the interfacing
cluster were computed. A certain predeterminedftdistance was then used. For a pair
of atoms, i.e. an atom from one cluster and therst@tom from another cluster, any
distance less than this cutoff distance’s valueh libe atoms were classified as point
masses. In the case with three clusters, the atittince used wasié while in the case
of five clusters the & was the value of cutoff distance used. Based erctitoff scheme,
the number of point masses in the cases with taneefive clusters was determined to
be 560 and 1255, respectively. Use of such a distatoff scheme and from the
knowledge of flexible domain from WMRSD calculatiorenabled the modeling of
Lactoferrin to be composed of both rigid clustepsrmected by point masses. Once, the
point masses and clusters were identified, theesponding linking and the mass

matrices were adjusted to accurately represenetheced DOF model.

65



Table 6.1: Represents one of the two clustering schemestoseth HNMA simulations
on Lactoferrin. Specific clusters with their cohstint amino acids and corresponding
atoms numbers are listed.

Cluster Residue # Atom # #Atoms in a cluster  #Point
masses
Right lobe 1-90 1-710 1115 560
251-320 1950 - 2497
Left lobe 91-250 711 - 1949 1054
Head 321-691 2498 - 5341 2615

In order to perform HNMA simulations, the stiffnessid the inertia matrix were
generated and subsequently, the equation of metasidetermined [18]. The primary
efforts in determining key input parameters wereseafially concentrated on
determining force constants as explained in Chahtand also in generating the linking
matrix. Moreover, once the atoms were classifiedit®r point masses or to be a part of
a cluster, a sequential rearrangement was reqamddall the input parameters like the
mass and the linking matrices had to be reordeveshdtch the new sequence of the
assorted set of atoms. Subsequently, the inerdatanstiffness matrices of the reduced
DOF system had to be generated in order to perfdNiA simulations. The results for
the modeshapes from such a clustering have beensg8isd in the next section. In
addition to the tested clustering scheme, anotbkerse with five clusters was also
carried out. This is represented in the Table Bsing the clustering scheme mentioned

in the Table 6.2, HNMA was performed again to obse¢he outputs of modeshapes.
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Table 6.2: Represents the other clustering scheme usedntédiNMA simulations on
Lactoferrin. Specific clusters with their constithbeamino acids and corresponding
atoms numbers are listed.

Cluster Residue # Atom # # Atoms in a cluster #Poin
masses

Right lobe 1 1-90 1-710 532 1255

Right lobe 2 251-320 1950 — 2497 1180

Left lobe 91-250 711 - 1949 364

Head 1 321-520 2498 — 3966 1035

Head 2 521-691 3967-5341 975

6.3 Results and discussions
Once the HNMA simulations with the initial clustegi scheme were run,

animations of first few lowest modes were generaibgse have been represented in the
Figure 6.3 below. On comparing these results vhighresults from that obtained from all
atom NMA and coarse grained model, it was estabtistmat these modeshapes were
rendered incorrect. While the real values of eigdues suggested that the code used for
HNMA simulations was correct, it directly impliedat the outputs were sensitive to the
input parameters. It could be observed that the wayhich the clusters are defined

governs the dynamics.
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Figure 6.3: Represents animations of the first three moddaiméd by running the
68
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1st Mode
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3rd Mode

Figure 6.4: Represents the animations of the first three maafelLFH by running
HNMA simulations on a model defined to have fivaesters.

In order to substantiate this hypothesis, a newsteting scheme as that

elucidated in Table 6.2 was undertaken to obsehee variation in the output of
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modeshapes. The results obtained from HNMA simaatiwith such a clustering are
represented in the Figure 6.4. So, while the maajesh were indeed different from that
obtained with a scheme of using three clustersih@t do not match with the results
obtained from all atom or coarse grained modelctviiave been verified to give results
that match with those obtained from existing mougland analysis schemes. This is
understandable because, based on a clustering sctiben inertia and the stiffness
matrices are altered. Hence, while the code ddasresal and positive eigenvalues and
eigenvectors, it can be observed that the way iitiwthe clusters are defined in this
study do not replicate the flexibility of the resfstem and so significantly affect the

dynamics of the system.

6.4 Conclusions

In this part of the research, the possibility ahgsa Hybrid Elastic Network
Model, which is mathematically more rigorous anchpatationally much more efficient
method of modeling than the all atom ENM. SubsetiyeNMA simulations have been
performed. This is done so, as the results fromieadon of a hybrid model to coarse
grained models have yielded useful results perigito the low frequency domain and
have been successfully implemented to animate théeshapes. A general code that
incorporates atomistic details has been succeggjalherated as a part of this research,
and the observed real and positive eigenvaluesestighgat with a better clustering, a
better replication of the real physical system barput in place to further exploit if the

HNMA can give comprehensive results for modeshagseshat achieved by all atom
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NMA. As a part of this study, the clustering und&gn was based on results from
WMRSD calculations as explained in the previoudises. As the results summarized
in this chapter can be utilized to establish theetielency of the outcome on the way in
which these rigid clusters are defined such thealldlexibility is not lost, more study
would be required to be carried out in this domi@nbe able to further exploit the
clustering schemes and ultimately the way in whighnumber and size of each cluster

is defined.

71



CHAPTER 7

CONCLUSIONSAND FUTUREWORK

7.1 Conclusions

The step by step approach of application of chenidarmation based NMA
suggests that an all atom based ENM modeling schengefeasible option for the
analysis of large macromolecules and to study tbgiramics pertaining to the low
frequency domain. While the results from the analyd simple linear molecules
suggest that with appropriate representation aefdields, modeshapes can be identified
along with the corresponding vibrational frequesci® more complex structures, like
amino acids and proteins, due to the effect of Immmed chemical interactions between
various molecules, the current methodology doesigeoaccurate identification of
modeshapes, and the distribution of the correspgndliequencies which has been
explained by the concept of normalized wavenumbeéesice, in simple molecules, this
approach can be used as a vibration spectrum assignscheme, and in large
macromolecules, this enables us to generate anreordget of modeshapes, with
animations that provide insight into their globadtions which is of great significance in
the study of their dynamics to decipher any possiliological function or
conformational changes associated with the saméh Wie unique ability of this
technique to generate results pertaining to thguigacy domain renders it as a good
approach to be coupled along with results from mooe experimental approaches,

thereby enabling us to exploit greater informatmut of the existing data at hand.
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Moreover, the entire set of simulations that weamguired during this research has been
generated on personal computers. This impliesahabmpared to some more expensive
methods like Molecular Dynamics, chemical informmatbased NMA is computationally
less expensive, also, by incorporating more ateenttails than a Ccoarse grained
model, an all-atom modeling scheme is much moreeieit to the actual physical
system. As a result, this methodology has beerbledtad as a good intermediate
approach that presents a fine balance of accurfatye @utcome while also providing its

users with the relative ease of computational e#iad time.

7.2 Future Work

While the current methodology has shown much begtgults than the existing
methodologies, there are broadly two domains wherehis work can be further
improved upon. Firstly, with a more precise foredd parameterization, more accurate
results for wavenumbers can be expected. But thiddvprimarily alter the analysis of
small molecules. In macromolecules, the sensitiaiglysis suggests invariance to these
input parameters as illustrated by the normalizademumbers. Secondly, more rigorous
mathematical modeling can be employed to furtheluce down the computational
effort required for these calculations. As mentehnthe major inputs in an-all atom
modeling scheme are values of masses and repriésenté force fields. Hence, the
force constants used for this study were develdpeperforming NMA simulations on
linear molecules. While comparisons with literatw@ggest that these values are in

reasonable agreement with the reported valuesthgetesults for absolute values of
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wavenumbers obtained at the amino acids’ or ateprst level indicate that by
incorporating more precise force fields, accuratpturing the chemical interactions
among all the atoms in a given macromolecule woeddllt in even better results. With
regards to the computational effort, as it has beleserved and discussed, the low
frequency modes are more global in nature. Heegjmplies that these modes involve
a large number of atoms to move together in syrscaAesult, like a Hybrid Normal
Mode Analysis has been applied tq €oarse grained models, a similar successful
application of defining these rigid domains in dhatom modeling scenario would
greatly reduce the time involved in performing #hesnulations. By defining such rigid
clusters, some flexibility of the system is lostdaso, identification of such rigid
domains is a crucial parameter that can affecotltieome. Hence, further work utilizing
certain existing techniques like Windowed Root M&juare Distance (WRMSD) will
assist in obtaining this objective. As a resultitfar work on these two described factors

is essential if not imperative to enhance the frtpplicability of such a methodology.
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APPENDIX A

THE LINKING MATRIX,ALL-ATOM NMA

clear all

clc

format long

load resity

load atomno

load ca % Ca position
load n % N position
load a

i=1;

%bonded interaction coefficient
NC=7e5;% dynes/cm
N2C=7e5;

NH=7e5;

CH=7e5;

CC=7e5;

C2C=7e5; % double bond
CO=7e5; % single bond
C20=7e5; % double bond
CS=7e5;

%non-bonded interaction coefficient
nb=6e3;

cutoff=2; % lower cutoff
lim=15; % upper cutoff
least=1e-12;

%based on LFH%
m=size(a,l1);
rn=size(atomno,1);

%sparse linking matrix
k=sparse(zeros(m));

% for i=1:m

% i

% k_initial(i,i+1:m)=1e-12;
% end

% save k_initial k_initial

% checkl=k_initial+k_initial;
% load k_initial

% k=k+k_initial;

%non-bonded interactions
for g=1.m-1
g
for h=g+1:m
dis=norm(a(g,:)-a(h,:));
if dis<=cutoff
k(g,h)=nb;
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elseif dis<=lim
k(g,h)=nb*exp(-(dis-2));
end
end
end
% k_non_bond=k;
k_non_bond=k+k';
save k_non_bond k_non_bond
%peptide bond
for I=1:rn-1
k(ca(l)+1,n(I+1))=NC;
end

stack=[1];
i=1;

for t=1:rn
t
if resity(t,:))=="GLY' & atomno(t,1)==
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
i=i+4;
stack=[stack;i];
% break;
else if resity(t,:)=="ARG' & atomno(t,1)==11
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=NC;
k(i+7,i+8)=NC;
k(i+8,i+9)=NC;
k(i+8,i+10)=N2C;
i=i+11;
stack=[stack;i];
% break;
else if resity(t,;)=="ARG' & atomno(t,1)==5
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
i=i+5;
stack=[stack;i];
% break;
else if resity(t,:)=="SER' & atomno(t,1)==6
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
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%

%

%

%

%

k(i+4,i+5)=CO;
i=i+6;
stack=[stack;];
break;
else if resity(t,:)=="VAL' & atomno(§2=7
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+4,i+6)=CC;
i=i+7;
stack=[stack;i];
break;
else if resity(t,:)=="GLN' & atom(id)==9
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=C20;
k(i+6,i+8)=NC;
i=i+9;
stack=[stack;i];
break;
else if resity(t,:)=="CYS' &aahno(t,1)==6
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CS;
i=i+6;
stack=[stack;i];
break;
else if resity(t,:)=="AL& atomno(t,1)==5
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
i=i+5;
stack=[stack;i];
break;
else if resity(t,:)==8N' & atomno(t,1)==8
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C20;
k(i+5,i+7)=NC;
i=i+8;
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stack=[stack;i]
% break;
else if resity=PRO" & atomno(t,1)==7
k(i,i+1)=NC
k(i+1,i+3€;
k(i+2,i+3320;
k(i+1,i+43€;
k(i+4,i+53€;
k(i+5,i+63€;
k(i,i+6)=NC
i=i+7;
stack=[#7k
% break;
else if restiye="GLU" & atomno(t,1)==9
k(i,=INC;
k(i+2)=CC;
k(i+23)=C20;
k(i+t4)=CC;
k(i+45)=CC;
k(i+56)=CC;
k(i+67)=CO;
k(i+68)=C20;
i=i+9;
stacgtack;i];
else ifitgd,:)=="GLU' & atomno(t,1)==5
KIL)=NC;
«{i,i+2)=CC;
+2ii+3)=C20;
«{ii+4)=CC;
+5i;
cka[stack;i];
% break
else ifitgd,:)=="THR' & atomno(t,1)==7
KIL)=NC;
«i,i+2)=CC;
+2ii+3)=C20;
«{i,i+4)=CC;
+4,i+5)=CO;
+4ii+6)=CC;
1,
cka[stack;i];
% rebk;
elseasity(t,:)=="LYS' & atomno(t,1)==9
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=CC;
k(i+7,i+8)=NC;
i=i+9;
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%

%

%

%

%

stack=[stack;i];

break;

el§resity(t,:)=='"PHE' & atomno(t,1)==11

k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C2C;
k(i+5,i+7)=CC;
k(i+6,i+8)=CC;
k(i+8,i+10)=C2C;
k(i+7,i+9)=C2C;
k(i+9,i+10)=CC;
i=i+11;
stack=[stack;i];
break;

else if resity(t,;)=='"MET' & atomno(t,1)==8

k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CS;
k(i+6,i+7)=CS;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="ILE' & atomno(t,1)==8
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+4,i+6)=CC;
k(i+5,i+7)=CC;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="ASP' & atomno(t,1)&=
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CO;
k(i+5,i+7)=C20;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="LEU' & atomno(t738
k(i,i+1)=NC;



k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+5,i+7)=CC;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:))=="TYR' & atomno(t,1)==12
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C2C;
k(i+5,i+7)=CC;
k(i+6,i+8)=CC;
k(i+7,i+9)=C2C;
k(i+8,i+10)=C2C,;
k(i+9,i+10)=CC;
k(i+10,i+11)=CO;
i=i+12;
stack=[stack;i];
break;
else if resity(t,:)=="HIS' & atomno(t,1)==10
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=NC;
k(i+5,i+7)=C2C;
k(i+7,i+9)=NC;
k(i+6,i+8)=N2C;
k(i+8,i+9)=NC;
i=i+10;
stack=[stack;i];
break;
else % TRP
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+5,i+7)=CC;
k(i+6,i+8)=N2C;
k(i+8,i+9)=NC;
k(i+7,i+9)=C2C;
k(i+7,i+10)=CC;
k(i+9,i+11)=CC;



k(i+11,i+13)=C2C;
k(i+10,i+12)=C2C;
k(i+12,i+13)=CC;

i=i+14;
stack=[stack;i];
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
% end
save stack stack
k=k+k";
k1=k;
save k1 k1
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APPENDIX B
ALL-ATOM NMA CODE

clear all

clc

format long

load k1 %Linking Matrix
load M

load a

data=a;

m=size(data,1);

GP=sparse(zeros(3*m));
fori=1:m-1
[
for j=i+1:m
if k1(i,j)>0
dx=data(i,:)'-data(,:)";
GP(3*(i-1)+1:3*,3*(j-1)+1:3*))=k1(i,j)*dx*dx'/norm(dx)"2;
end
end
end
GP=GP+GP’;
save GP GP
K_R=-GP;
disp('GP saved’)

fori=1:m
i
temp=zeros(3);
for I=1:m
temp=temp+GP(3*(i-1)+1:3*i,3*(I-1)+1:3*);
end
K_R(3*(i-1)+1:3%i,3*(i-1)+1:3*)=temp;
end

save K_ R K_R
S_R=M*K_R*M;

save S RS R
disp(K_ R M S_R saved)

clear all
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clc

format long
disp(‘computing eigenvalues and the eigenvectors')
load S R

load a

load M

n=3*size(a,l);
KK=full(S_R);

1

[v,d]=eig(full(KK));
disp('stepl done’)
d=diag(d);
[d,index]=sort(d);
fori=1:n
new_v(:,i)=v(;,index(i));
end

Vx=M*new v,

save Vx Vx -V6

save d d

disp('step2 done’)

for i=1:n

wn_Ifhr_gen(i,1)=sqrt(d(i))/2/pi/3e10; %#ok<AGROW>
end

save wn_Ifhr_gen wn_lIfhr_gen
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APPENDIX C
HYBRID NMA CODE

clear all

clc

load an

load k1n

load nc

load mn

% load mass1

load ctofmassl1
data=an;
k1=k1n;
m=size(data,1);

num_of_pm=560; %adjustment
num_of cluster=5; %adjustment

offset=3*num_of_pm;
offsetl=6*num_of cluster,;
offset2=offset+offsetl;

for i=1:num_of_cluster
eval(['load c',num2str(i)])
end

KT=zeros(offset2);
MT=zeros(offset2);

count=0;

%%%%%%%%%% Point Mass NMA %%%%%%%%%%%%%%%%
GP=sparse(zeros(offset));
for i=1:num_of pm-1
for j=i+1:num_of_pm
if k1(i,))>0
dx=data(i,:)'-data(j,:)";
GP(3*(i-1)+1:3*i,3*(j-1)+1:3*))=k1(i,j) *dx*dx'/norm(dx)"2;
count=count+1;
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end
end
end
GP=GP+GP'
save GP GP
disp('GP saved')
KP=-GP;

for i=1:num_of pm
temp=zeros(3);
for I=1:num_of _pm
temp=temp+GP(3*(i-1)+1:3*,3*(I-1)+1:3*]);
end
KP(3*(i-1)+1:3*i,3*(i-1)+1:3*)=temp;
end

for r=1:1028

for c=r+1:1029
KP(c,r)=KP(r,c);

end

end

save KP KP

disp('KP saved)

%break

KT(1:offset,1.0ffset)=KP;

h=1;

for i=1:num_of pm
MT(3*i-2:3*1,3*i-2:3*1))=mn(i,1)*eye(3);

end

%%%%%%%% % %% %%%%ENd of Point mass %%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%Rigid cluster nma %%%%%%%%%%%%%%%%%
KC=zeros(offsetl);
MC=zeros(offsetl);

for i=1:num_of cluster-1 % first summation symbol

eval(['num_samplel=size(c',num2str(i),",1);1)
eval(['ca=c',num2str(i),";']) % the first cluster
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for j=i+1:num_of_cluster % second summation kgin
eval(['num_sample2=size(c',num2str(j),]1);'
eval(['cb=c’,num2str(j),";']) % the secondstar

for v=1:.num_samplel %third summation symbol
alpha=ca(v,1); % residue number of the piEnt
for w=1:num_sample2 % fourth summation symbol
beta=cb(w,1); % actual residue numbethef second
point
if k1(alpha,beta)>0
gap=data(alpha,:)-data(beta,:);
Y=gap™gap/(norm(gap)"2);
Q=Q4(i,v,j,w); %%check here
S=kl(alpha,beta)*Q*Y*Q;

Ma=S(1:6,1:6);
Mb=S(1:6,7:12);
Mbt=S(7:12,1:6);
Mc=S(7:12,7:12);

KC(6*(i-1)+1:6*,6*(i-1)+1:6*)=KC(6*(i-1)+1:6*i,6*(i-1)+1:6*i)+Ma;
KC(6*(j-1)+1:6%},6*(j-1)+1:6*))=KC(6*(j-1)+1:6*},6*(j-1)+1:6*))+Mc;
KC(6*(i-1)+1:6*,6*(j-1)+1:6*))=KC(6*(i-1)+1:6*i,6*(j-1)+1:6*))+Mb;
KC(6*(j-1)+1:6%},6*(i-1)+1:6*)=KC(6*(j-1)+1:6*},6*(i-1)+1:6*i)+Mbt;
end
end
end
end
end

%%% compute M matrix
mi=zeros(6);
mm=zeros(3);
for i=1:num_of_cluster
eval(['num_sample=size(c',num2str(i),’,1);1)
eval(['ca=c',num2str(i),";']) % the first cluster
for v=1:num_sample
alpha=ca(v,1);
rhat=(data(alpha,:)-ctofmassl(i,:))*1e-8jexgth scale conversion
mm=(rhat*rhat*eye(3)-rhat*rhat)*mn(alpi,

% mm=mm-+a,
mi=[eye(3)*mn(alpha,1) zeros(3);zeros(3) %% %%
% mi=mi+Db;

MC(6*(i-1)+1:6%,6*(i-1)+1:6*))=MC(6*(i-1)+1:6*i,6*(i-1)+1:6*)+mi:
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end
end

KT(offset+1:0ffset2,offset+1.0ffset2)=KC,;
MT (offset+1:0ffset2,offset+1:0ffset2)=MC;

save KC KC
save MC MC
save MT MT
disp(KC MC MT saved’)

%%%% %% %% % %% % %% %% %%Hybrid NMA %%%%%%%%%%%
KH=zeros(offset2);
MH=zeros(offset2);

for i=1:num_of _pm % first summation symbol - pomass
for j=1:num_of_cluster % second summation syimbigid cluster
eval(['num_sample=size(c',num2str(j),TL);’
eval(['cb=c',num2str(j),";'])
for w=1:num_sample % thrid summation symbmsidues in cluster
beta=cb(w,1); % actual residue numlb¢h® second point
if k1(i,beta) >0
gap=data(i,:)-data(beta,:);
Y=gap"gap/(norm(gap)"2);
Q=Q4N(,w); %%check here
S=k1(i,beta)*Q™*Y*Q;

Ma=S(1:3,1:3);
Mb=S(1:3,4:9);
Mbt=S(4:9,1:3);
Mc=S(4:9,4:9);

KH(3*(i-1)+1:3*,3*(i-1)+1:3*)=KH(3*(i-1)+1:3*,3* (i-1)+1:3*)+Ma,;
KH(3*(i-1)+1:3*,6*(j-1)+1+offset:6*j+offset)=KH(3*(i-1)+1:3*,6*(j-
1)+1+offset:6*j+offset)+Mb;
KH(6*(j-1)+1+offset:6*j+offset,3*(i-1)+1:3*)=KH(6*(j-1)+1+offset:6*j+offset,3*(i-
1)+1:3*)+Mbt;
KH(6*(j-1)+1+offset:6*j+offset,6*(j-1)+1+offset:6*foffset)=KH(6*(j-
1)+1+offset:6*j+offset,6*(j-1)+1+offset:6*j+offsetMc;
end
end
end

end
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KT=KT+KH,;
%%%%% Eliminate Truncation Error to Make The Matsiymmetric %%%%%%%%

for r=1:1046
for c=r+1:1047
KT(c,r)=KT(r,c);
end
end

save KT KT

%break

x1=MT"(-1/2);

for r=1:1046
for c=r+1:1047

x1(c,r)=x1(r,c);

end

end

save x1 x1

clear all

load KT

load x1

ST=x1*KT*x1;
for r=1:1046
for c=r+1:1047
ST(c,r)=ST(r,c);
end
end

save ST ST
disp('KT MT ST saved)

%%%%%%%%%%%%End of hybrid NMA %%%%%%

clear all

clc

load an

load k1n

load nc

load mn

% load massl
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load ctofmassl
data=an;
kl=kl1n;
m=size(data,1);

num_of pm=560; %adjustment
num_of cluster=5;  %adjustment

offset=3*num_of pm;
offsetl=6*num_of_cluster;
offset2=offset+offsetl;

load ST

load x1
[v1,d]=eig(full(ST));
save vlivl

save d d

[Y,l]=sort(diag(d));

v_sort=[];

for i=1:0offset2
v_sort=[v_sort;v1(;I(i)1;

end

V_sort=v_sort

d=Y;

v=x1*v_sort;

save v_sort v_sort

save vV

savedd

for i=1:0offset2
wn_Ifh(i,1)=sqrt(d(i))/2/pi/3e10;

end
save wn_Ifh wn_Ifh

%%%%%%%%%%%%% converting into Cartesian coordint@s)0%%%%%%%
for w=1:0offset2
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for i=1:num_of_cluster
eval(['load c',num2str(i)])
eval(['c=c',num2str(i),";])
k=size(c,1);
cdelta=v(6*(i-1)+1+offset:6*i+offset,w);
trans=cdelta(1:3,1);
orient=cdelta(4:6,1);
R=expm(Jmat(orient));
for j=1:k
data_new(c(j),:)=(data(c(j),:)-ctofmass1(i,R)*ctofmassl(i,:)+trans’
end

end

% %

for i=1:num_of_pm

data_new(i,:)=data(i,:)+v(3*(i-1)+1:3*i,w)";

end

% %

fori=1:m
deltal(3*(i-1)+1:3*,w)=(data_new(i,:)-dataj,;

end

%

end

% % Grandschmidt and convert to original orderdamparison %%
save deltal deltal

delta2=gramschmidt(deltal);

save delta2 delta2

eig_converter('delta2’)
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