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Figure 5.9: Graphical representation of the percentage of parameter signatures that
remain present for each measurement across 25 different nominal parameter values
using the dominance factors of 2, 2.5 and 3.

5.6 Validation by Parameter Estimation

The criterion for output selection is the ability to estimate all of the parameters

by the output suite. It is, therefore, befitting to test the validity of the selected

output suite in parameter estimation. We can, of course, use PARSIM for parameter

estimation which relies on the parameter signatures for this purpose. However, in

order to provide a level of independence between the output selection approach and

the parameter estimation method, the selected output suite was tested by nonlinear

least-squares (NLS) [70]. This test was performed in separate stages. First, the

critical suite of four outputs consisting of outputs N2, N1, T30, and P30 was used for

estimation of all ten parameters. The parameter estimates are shown in Figure 5.10.

They indicate that the parameter estimates indeed converge to their true values,
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Table 5.2: The percentage of parameter signatures extracted for 25 different nominal
parameter values.

HPCNc HPCeff HPTNc HPTeff LPCNc LPCeff LPTNc LPTeff fanNc faneff

N2 96 0 100 0 88 100 44 72 88 28
N1 8 4 96 76 64 72 56 36 60 28
T25 96 0 100 0 84 72 40 28 72 12
T50 12 0 100 32 64 80 80 20 84 28
P25 88 0 100 0 40 84 36 36 80 16
T30 36 96 96 32 44 64 68 52 60 36
P30 0 4 96 32 80 16 96 16 100 80

shown by the dashed line, thus confirming the adequate observability these outputs

provide for all the parameters.

Next, the selected outputs were tested by performing parameter estimation with

smaller suites of three outputs, each missing one of the allegedly critical outputs. For

this test, five sets of initial parameter values within ±4% of the true parameter values

were used for the estimation runs. Parameter estimation runs were then performed

by NLS with each of the 3-output suites and all five initial parameter values. Of the

twenty estimation runs performed in total, most failed after the first iteration due

to unacceptable parameter estimates. The parameter estimates from the estimation

runs that lasted more than one adaptation iteration are shown in Figure 5.11, with

the ‘x’ indicating simulation failure due to drastically erroneous parameter estimates

outside the maps of the simulation model. The results indicate that all parameter

estimation tests failed, except for one, thus further confirming the necessity of the

four outputs: N2, N1, T30, and P30 for complete parameter identifiability. The one

successful estimation run is consistent with the percentages shown in Table 5.2.

In the last stage, the robustness of the estimation solution with the suite of 4 crit-

ical outputs was tested with the same initial parameter values as in Figure 5.11. The

parameter estimates from these estimation runs, shown in Figure 5.12, again confirm

the earlier results in Figure 5.10 that the 4-output suite identified by the parameter

signatures is indeed sufficient for parameter estimation of all ten parameters in the
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Figure 5.10: Paramter estimation results by NLS using the four outputs N2, N1, T30,
and P30. For reference, the true parameter values are shown by the dashed line.

engine model. It should be noted that the small error in the estimates of HPTeff and

LPTNc at the end of one of the estimation runs is likely due to inadequate adaptation,

which should be corrected with further iterations.

5.7 Discussion

The results obtained from the application of the proposed sensor/measurement

selection method to the engine model demonstrate the advantage of the proposed

method over the traditional time-based measures. Although no limitations are fore-

seen for practical application of this method, it behooves us to consider some of the

issues that may arise in practice.

• Accuracy of the Model. The method of measurement selection introduced in this

paper, such as like any other counterpart method, is model-based. As such, the
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Figure 5.11: Parameter estimation results by NLS using output suites of three out-
puts, each missing one of the outputs N2, N1, T30 and P30 that were deemed neces-
sary for parameter estimation. The ‘x’ at the end of runs denotes a failed simulation
due to a drastically erroneous parameter estimate.

accuracy of the model is of concern, as is the fidelity of its first order approxi-

mation by (5.9). In order to account for some of this uncertainty, we adopted

an averaging strategy of considering the parameter signatures at a multitude of

model parameters. However, this strategy does not compensate for modeling

error and the question remains as to what extent the inevitable inaccuracies of

the model would influence the output selection results. Although the answer to

this question is not trivial and remains to be investigated, our expectation is

that modeling inaccuracies should not be detrimental to the analysis so long as

the model correctly represents the qualitative sensitivity of the outputs relative

to the model parameters. Related to modeling inaccuracy, is the completeness
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Figure 5.12: Several sets of parameter estimation results by NLS using the suite of
4 outputs: N2, N1, T30, and P30 with the starting parameter values that already
failed in Figure 5.11. The true parameter values as before are shown by the dashed
line.

of the model in representing the various dynamics, such as actuator and sensor

dynamics. Again, in advance of a methodical study to address this issue, it can

be speculated that these dynamics should not affect the output sensitivities, so

long as they are known and that no model parameters are associated with these

dynamics.

• Noise. A common concern in practical applications is measurement noise. To

the extent that the proposed method, such as its counterparts is model-based,

measurement noise does not factor into the analysis, even though it is of concern

in reality. As a recourse, one could consider evaluating the effect of noise on the

parameter signatures by adding noise to the simulated outputs. Although not
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investigated yet, it can be speculated that the addition of noise will likely reduce

the robustness of parameter signatures beyond those observed in its absence.

• Computation time. The proposed method requires transformation to the time-

scale domain via continuous wavelet transforms. It also relies on averaging the

parameter signatures at different model parameters to account for nonlinearity.

These steps would add to the computation effort, but in the present study

the computation time associated with parameter signature extraction/output

selection constitutes only a small fraction of the time of engine simulation.

Given the batch nature of output selection and its inevitable reliance on engine

simulation, regardless of the method used, it is doubtful that the added cost

of computation associated with the proposed method will be a deterrent in its

application.

• Input conditions. The method of output/measurement selection introduced here

is a posterior identifiability method [74] so far as it relies on the simulated out-

puts of the model. As such, this method also depends on the input conditions

that generate the transients and produce the output sensitivities. In this chap-

ter, we assume the input conditions to be dictated by the test procedure. As

such, we do not consider the input as a control variable, despite its influence on

the parameter signatures. In practice, however, the inputs used to generate the

engine output transients can be designed (‘optimized’), within the engine con-

straints, so as to maximize the identifiability of the parameters by the output

transients [28, 54, 23].

• Selection of Dominance Factor As is clear from the results; e.g., Fig. 5.8, a cru-

cial factor in the proposed method is the dominance factor ηd in (1.16). For the

results in this chapter, we arbitrarily chose ηd = 2 as being adequate. However,

it is possible to adopt a selection strategy whereby the appropriate dominance
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factor is determined according to the quality of the parameter signatures. As

discussed already and shown in Fig. 5.4, the quality of parameter signatures can

be defined by the consistency of the parameter error estimates, as formulated

in (3.6).
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CHAPTER 6

CONCLUSIONS

The contribution of this work is to capitalize on the representation of shape at-

tributes of time series by continuous wavelet transforms as well as their capacity to

delineate minute differences between time series. We have taken advantage of the

enhanced delineation of the surfaces created by wavelet transforms to identify regions

in the time-scale domain wherein the wavelet coefficients of one time series dominates

the others. These regions which are called parameter signatures in this work have

been instrumental in a variety of system identification scenarios.

In model validation, we have demonstrated the utility of continuous wavelet trans-

forms in representing the shape attributes of time series. The availability of the sig-

nal’s slopes and/or its rate of slope changes at different locations of the time-scale

plane provides the framework for comparing the shapes of model outputs with their

measured counterparts at different times and frequencies. This approach also allows

for the capacity to consider different measures of comparison. The benefit of com-

paring the slopes of outputs via Gauss WT by three different measures of closeness

based on image distances was demonstrated and the results illustrate the promise of

this approach to model validation.

In parameter estimation, the availability of parameter signatures allows decoupling

of the first-order prediction error equation into multiple single-parameter equations.

Our research demonstrates that this expansion into the time-scale domain of the

prediction error can be a viable alternative to the traditionally exercised compaction

of the prediction error as a scalar. Our anecdotal observations indicate that for convex
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error surfaces, PARSIM’s results are comparable to those by NLS, though PARSIM

is not as agile with low-quality parameter signatures extracted from gradually sloped

error surfaces. On the other hand, PARSIM has been observed to evade local minima

entrapments on non-convex surfaces as discussed in Section 3.4. The results presented

in this section for the Van der Pol oscillator indicate that PARSIM, because of its

independence from the gradient of the contour, can lead the estimates to their correct

values (the bottom of the bowl) whereas the GN method misses them due to the

unfavorable location of the starting points.

PARSIM also provides the capacity to perform direct noise compensation in the

time-scale domain. The common approach for improving the precision of parameter

estimates with noisy measurements is to filter the measurements, and among such

filters particularly noteworthy is one which transforms the signal to the time-scale

domain, reduces the high-frequency noise by thresholding the wavelet coefficients in

the lower scales (higher frequencies), and then reconstructs the wavelet coefficients

back in the time domain. PARSIM, due to its capacity to perform parameter esti-

mation in the time-scale domain, obviates this need to reconstruct the signal in the

time domain. This utility of PARSIM has been demonstrated by incorporating con-

fidence factors to account for the distortion of the prediction error when estimating

the parameter errors. Such confidence factors, which represent the estimates of noise

distortion at different pixels of the time-scale plane, are then incorporated as weights

to yield the biased parameter estimates. The results from this approach were shown

to significantly improve the precision of the parameters estimates.

Parameter signatures have also been shown to be applicable to measurement selec-

tion. Traditionally, the concept of measurement selection is directly linked to param-

eter identifiability analysis which has been investigated extensively by the research

community. The key to identifiability analysis is the uniqueness of the corresponding

output sensitivities; i.e., the columns of the Jacobian matrix. Since the existence of
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parameter signatures is also contingent upon the uniqueness of output sensitivities,

the parameter signatures can be readily used as a comprehensive measure of iden-

tifiability analysis in order to select outputs and/or input profiles. In this research,

the mere existence of parameter signatures has been used as evidence of parameter

identifiability by the output, but the robustness of measurement selection and its

methodical formulation can be significantly improved by using a uniform index of pa-

rameter signature quality. We have demonstrated the utility of this method in output

selection of aircraft engines and expect it to be widely applicable to other systems

such as civil structures and chemical plants.

This work describes the creation of a new approach to system identification and

the several methods that have so far resulted from it, but much more can be done

towards the development of this approach. As is expected of any new approach, there

are many unanswered questions ranging from theoretical to practical that need to be

addressed. The theoretical questions stem from the uniqueness of the time-scale do-

main, in providing added transparency to parameter estimation, to the uniqueness of

the Newton-type method as the platform to implement the parameter error estimates

for parameter estimation. Some of these questions are discussed in the following

sections.

6.1 Model Validation

The distance measures considered in this research for model validation are only

three of the similarity measures that can be implemented in the time-scale domain.

Other potential measures include the time warping distance [7] that can characterize

time delays between the measured and model outputs. But there can also be image

distances that would represent the other image aspects considered by human experts

in visual inspection. A reliable validation metric for dynamic models would be ideally

based on more than just the similarity of output pairs as well. Toward this end, one
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could consider combining various image distances and time-based measures into a

composite validation index to provide a comprehensive measure of model closeness

across different operating conditions. This study only points to the potential of

distances as model validation metrics and leaves the development of more customized

distance measures to future studies.

6.2 Parameter Estimation

PARSIM was developed primarily as a method of parameter estimation for simu-

lation model tuning. Although this was extensively analyzed, various topics remain

for the subject of future studies.

6.2.1 Convergence

By comparing PARSIM’s single-parameter estimation of the model parameters

with a single-parameter Newton-Raphson method, it becomes clear that PARSIM

implements this method for individual parameters at the individual pixels of the cor-

responding parameter signatures. PARSIM’s convergence behavior, therefore, paral-

lels Newton-Raphson’s except for the nuances of operation in the time-scale domain

pertaining to: (i) the shape attribute(s) of the output sensitivities represented by the

wavelet transform(s), (ii) the uniqueness of output sensitivities which correspond to

the existence and quality of the parameter signatures, and (iii) the contour of the

error surface. Among the above factors, the uniqueness of the parameter signatures

is synonymous with the Jacobian being full-ranked, which is also important to NLS,

as is the fidelity of the first-order approximation of the prediction error. As such, the

conditions for PARSIM’s convergence relate to those that influence (i) the existence

and quality of parameter signatures, (ii) the consistency of the parameter error esti-

mates obtained from the parameter signatures, and (iii) convergence characteristics

of these single-parameter estimates to their true values. In order to determine the
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strengths as well as the limitations of PARSIM, the convergence characteristics of the

estimation strategy need to be studied, ranging from the mechanism for error min-

imization to the interaction between the estimated parameters. These convergence

characteristics remain an integral topic for future studies.

6.2.2 Multi-output Parameter Estimation

Another point of interest is the utility of PARSIM in multi-output cases. Tradi-

tionally in multi-objective optimization, the various outputs are weighted and incor-

porated into a cost function, similar to the single-output case. Although not discusses

in this thesis, a preliminary investigation into parameter estimation of multi-output

simulation models was conducted with mixed results. In this investigation each of

the simulation outputs were given equal weight in the objective cost function and,

although in most cases the parameters were effectively estimated, conflicting esti-

mates for the model parameters by various outputs made the estimation laborious

and unstable. We believe the transparency available in the time-scale plane ought to

provide more sophisticated ways of integrating the outputs. Toward this objective,

issues associated with identifiability of parameters via individual outputs will need to

be considered as well.

6.2.3 Parameter Signature Quality

One of the unique aspects of PARSIM is the transparency it offers to parameter

estimation through the quality of parameter signatures. One benefit of being able

to assess the quality of parameter signatures will be to evaluate the reliability of

the parameter error estimate. In this research, the parameter estimates produced by

PARSIM were improved through quantifying the quality of the parameter signatures

for adaptation step size selection. For this, the quality of the parameter signatures

was ascertained though the variance of the estimates among all pixels of a parameter

signature. Although this approach effectively improved convergence, it is thought
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that through developing a comprehensive quantification of the quality of a parameter

signatures, a more detailed picture of a simulation model can be developed and can

further improve the method. It is also expected that through quantifying the quality

of parameter signatures weights could be assigned to individual parameter error esti-

mates obtained from individual outputs, in multi-output cases, and/or from individual

wavelet transforms of the same output (when multiple wavelet transforms are used

to represent different shape attributes). It is also expected that the development of a

comprehensive parameter signature quality measure will have significant implications

to measurement and input selection for evaluating parameter identifiability.

6.2.4 Noise Compensation

In the approach taken in this thesis for noise compensation, the approximation of

noise was shown to be less accurate in the higher scale regions. This is predominantly

due to the higher frequency content of noise. Although it can be seen that noise affects

the higher scales, the approximation technique developed in this research does not

effectively approximate the noise in this region. Various approaches were investigated

to improve the approximation in these regions, however the results were mixed and the

most stable approach was the one presented in this thesis. We believe that through an

investigation into the affects of noise on the higher scales, we may be able to improve

on an already effective approach to parameter estimation of noisy systems.

6.3 Filter Design

Selection of the wavelet transform is a key component to the application of PAR-

SIM to any system. In this thesis, the wavelet was selected according to its effective-

ness in parameter estimation and did not utilize a priori knowledge of the system. We

are attracted to continuous wavelet transforms because of their differential capacity,

however we feel that this effect is not unique and can be replicated by customized fil-
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ters [45]. Developing wavelets and/or filters that represent specific aspects of the time

signal’s shape, beyond those provided by its derivatives, is another exciting aspect of

this research. To this end, one can consider designing customized filters that would

also provide filtering capacity for noise suppression. Although, there has not been an

extensive investigation into the feasibility of designing model or noise-specific filters,

the prospect of designing such filters remains an intriguing topic for future studies.
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