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Figure 3.7 A graph of the hydrodynamic radius, Rh, versus the temperature of 0.2 

mg/mL ECE at pH 8 deionized water.  The transition temperature is marked with a 
dashed line at 25oC. 

 

Above the transition temperature of 25oC, one hydrodynamic radius size-scale was 

preferred, 122.0 nm.  The change in hydrodynamic radius of the micelle is likely due to 

trapped water being expelled from the interior as the temperature is increased, until a 

critical value is reached where there is no longer any water in the interior.[61] 

 

A comparison of the average data and all of the data collected for Γ versus q2 plots at 

5oC, 25oC and 40oC provides insight into the accuracy of the hydrodynamic radius values 

reported.   
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At 5oC both a fast and slow mode existed.  The fast mode displayed two good fit values 

corresponding to the two different methods of plotting the Γ versus q2 data.  The high fit 

values indicated that the data was repeatable. 

 

 
Figure 3.8 The average Γ  versus q2 plot of the fast mode of 0.2 mg/mL ECE in pH 8 

water at 5oC. 
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Figure 3.9 All of the data collected for a Γ  versus q2 plot of the fast mode of 0.2 

mg/mL ECE in pH 8 water at 5oC. 

 

The slow mode produced very good fit values in both methods of data analysis, however 

the fit was noticeably higher in the average method.  The discrepancy in fit values is due 

to the wider distribution at higher angles, which is common for aggregates.  Both the fast 

and the slow modes at 5oC had a relatively good degree of accuracy as evidenced by the 

high R2 values. 
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Figure 3.10 The average Γ  versus q2 plot of the slow mode of 0.2 mg/mL ECE in pH 

8 water at 5oC. 

 

 
Figure 3.11 All of the data collected for a Γ  versus q2 plot of the slow mode of 0.2 

mg/mL ECE in pH 8 water at 5oC. 

 

At 25oC only one size-scale was present.  Both methods of analysis using the Γ versus q2 

plot produced high fit values, indicative of reliable data.  The fit values were higher than 
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those at lower temperatures, indicating a smaller size distribution range.  The 

hydrodynamic radius that corresponded to the graphs was 111 nm. 

 

 
Figure 3.12 The average Γ  versus q2 plot of 0.2 mg/mL ECE in pH 8 water at 25oC. 

 

 

Figure 3.13 All of the data collected for a Γ  versus q2 plot of 0.2 mg/mL ECE in pH8 
water at 25oC. 
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The Γ versus q2 plots comparing the average and all of the data collected at 40oC reveal 

very accurate and repeatable data.  The hydrodynamic radius of 102 nm is very reliable.  

It is interesting to note that the R2 value is even higher than at 25oC.   

 

 
Figure 3.14 The average Γ  versus q2 plot of 0.2 mg/mL ECE in pH 8 water at 40oC. 

 

 
Figure 3.15 All of the data collected for a Γ  versus q2 plot of 0.2 mg/mL ECE in pH 

8 water at 40oC. 
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The R2 values of the Γ versus q2 plots, for both methods, increase at and above the 

transition temperature.  Above the transition temperature a specific size-scale is 

preferentially selected for by nature.    

 

3.4.2 Analysis of EC Diblock 

EC exhibited similar behavior to ECE, despite the fact that one was a diblock and the 

other a triblock.  The similarity between the two copolymers was visible in the presence 

of two size-scales below the transition temperature and one size-scale above.  However, 

the structural difference did have an impact on the behavior of EC.  The single size-scale 

visible above the transition temperature increased in size as time passed.  EC exhibited 

spinodal decomposition. 

 

The normalized intensity correlation function of EC below and above the transition 

temperature provides insight into the sample.  The normalized intensity correlation 

function at 5oC was very smooth, representative of dust-free samples.  There were no 

irregular shifts in the curve as the experimental capture time passed.  This indicated that 

no kinetic changes were taking place on the time-scale of the experiment.  The 35o 

measurement was made first and the 90o last.  If any kinetic changes had taken place the 

90o curve would have been significantly different in shape and/or position on the y-scale 

than the 30o curve.  
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Figure 3.16 The normalized intensity correlation function of 0.2 mg/mL EC in pH 8 

water at 5oC. 

 

At the transition temperature the normalized intensity correlation function was extremely 

smooth.  Based on the regularity of the curves, there were not any kinetic changes taking 

place on the time-scale of the experiment at the transition temperature. 

 

 
Figure 3.17 The normalized intensity correlation function of 0.2 mg/mL EC in pH 8 

water at 25oC. 
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The normalized intensity correlation function above the transition temperature became 

increasing unstable as temperature and time increased.  This instability was visible by the 

presence of irregular step-function-like dips in the curves.  Above the transition 

temperature the data was difficult to analyze.  The normalized intensity correlation 

function at 30oC had dips and shifts in the y-axis, indicative of kinetic changes in the 

aggregate on the time-scale of the experiment. 

 
Figure 3.18 The normalized intensity correlation function of 0.2 mg/mL EC in pH 8 

water at 5oC. 

 

The probability distribution function, derived from the normalized intensity correlation 

function, shows the change in preference from two size-scales below the transition 

temperature to one size-scale at the transition temperature. 
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Figure 3.19 A comparison of the probability distribution functions below and at the 
transition temperature of 0.2 mg/mL EC in pH 8 water.  The measurements were 

taken with the goniometer set at 55o. 

 

The Γ versus q2 plot below and at the transition temperature was analyzed in the two 

different methods described previously.  Below the transition temperature the first mean 

peak had a discrepancy in the R2 values produced by the two different analysis methods.  

The discrepancy indicated that the size-scale reported, 4 nm, had a high degree of error 

associated with it.   
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Figure 3.20 The average Γ  versus q2 plot of the first mean peak of 0.2 mg/mL EC in 

pH 8 water at 5oC. 

 

 
Figure 3.21 All of the data collected in a Γ  versus q2 plot of the first mean peak of 

0.2 mg/mL EC in pH 8 water at 5oC. 
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The second mean peak was considerably more accurate.  The R2 values associated with 

both methods were above 0.9.  The good fit on the aggregate and the poor fit on the 

smaller size-scale could be attributed to the smaller size-scale supplying the aggregate 

with more polymer.  For this to be a possibility the process would have to be happening 

on a time and size-scale that would not significantly affect the data collection. 

 

 
Figure 3.22 The average Γ  versus q2 plot of the second mean peak of 0.2 mg/mL EC 

in pH 8 water at 5oC. 
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Figure 3.23 All of the data collected in a Γ  versus q2 plot of the second mean peak of 

0.2 mg/mL EC in pH 8 water at 5oC. 

 

At the transition temperature of 25oC the R2 values derived from both methods of 

analysis were above 0.98, indicating a high degree of accuracy associated with the 

reported size-scale.  The hydrodynamic radius was 78 nm. 
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Figure 3.24 The average Γ  versus q2 plot of 0.2 mg/mL EC in pH 8 water at 25oC. 

 

 
Figure 3.25 All of the data collected in a Γ  versus q2 plot of 0.2 mg/mL EC in pH 8 

water at 25oC. 
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Below the transition temperature the micelle hydrodynamic radius of EC changed from 

83.0 nm to 61.0 nm at 5oC and 20oC, respectively.  The fast mode had a hydrodynamic 

radius of 4.0 nm at all temperatures studied below the transition temperature. 

 

 
Figure 3.26 A graph of the hydrodynamic radius, Rh, versus the temperature of 0.2 
mg/mL EC at pH 8 deionized water.  The transition temperature is marked with a 

dashed line at 25oC. 

 

One significant difference between ECE and EC is that EC exhibited spinodal 

decomposition above the transition temperature.  Spinodal decomposition occurs when a 

system is brought into a thermodynamically unstable state.  In this case that would be 

defined as having the system above the LCST binodal curve.  The thermodynamic 

instability in the system results in concentration fluctuations that grow in amplitude and 

wavelength.  The occurrence of spinodal decomposition was confirmed by SALS data 

that demonstrated an increase in an intensity peak with time.  Spinodal decomposition 

indicated that the micelles were aggregating.[5] 
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Figure 3.27 EC demonstrated evidence of spinodal decomposition, which can be 
seen from this SALS data taken from a sample of 0.2 mg/mL EC in pH8 water at 

25oC.  Spinodal decomposition is suggested by the increase in the intensity peak with 
time. 

 

3.4.3 Analysis of CE Diblock 

The behavior of CE was significantly different than both ECE and EC.  CE was found to 

have a transition temperature of 15oC, which is lower than the transition temperatures of 

ECE and EC.  According to the DLS data, three dominant size-scales were present in CE 

solutions below the transition temperature and four were found to exist above the 

transition temperature.  One similarity that CE had to EC was the occurrence of spinodal 

decomposition. 

 

A comparison of the normalized intensity correlation function below, at and above the 

transition temperature aids in understanding the data collected.  Below the transition 
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value close to one.  The goal in data collection is to achieve smoothness at a y-axis value 

of zero.   

 

 
Figure 3.28 A typical normalized intensity correlation function below the transition 

temperature of 0.2 mg/mL CE in pH 8 water. 

 

At the transition temperature the normalized intensity correlation function was also 

rough.  There appears to be some irregularities in the pattern of how the curves shift with 

respect to angle.  However, the irregularities are subtle and data analysis is still possible. 
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Figure 3.29 A normalized intensity correlation function at the transition 

temperature of 0.2 mg/mL CE in pH 8 water. 

 

The normalized intensity correlation functions above the transition temperature were 

considerably more erratic than below the transition temperature.  The irregular curves 

were most likely due to spinodal decomposition.  The aggregates changed in size on the 

time-scale of the experiment resulting in shifted curves. 

 

 

Figure 3.30 A typical normalized intensity correlation function above the transition 
temperature of 0.2 mg/mL CE in pH 8 water. 
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The probability distribution functions below and at the transition temperature differ in the 

number of modes present.  There were three modes below the transition temperature and 

four modes above.  Due to the presence of so many size scales the peaks often 

overlapped.  When the modes overlapped it became difficult to determine the x-axis 

value corresponding to the peak.  Origin’s Laurentzian fit program was used to calculate 

the most probable peak positions.  On a few occasions the modes lined up such that they 

were separately defined, that is how the conclusion was drawn that there were four peaks 

below and three peaks above the transition temperature.  

 

 
Figure 3.31 A comparison of the probability distribution functions below and at the 
transition temperature of 0.2 mg/mL CE in pH 8 water.  The goniometer was set at 

40o for both measurements. 

 

Most of the modes represented size-scales beyond the range of DLS and therefore could 

not be analyzed.  The reliable hydrodynamic radius values that were determined did not 

follow a trend below or above the transition temperature.   
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Figure 3.32 A graph showing the two analyzable size-scales produced by 0.2 mg/mL 

CE in pH8 water using DLS. 

 

The Γ versus q2 data below and at the transition temperature was analyzed with the two 

methods described in previous sections.  Below the transition temperature only two size-

scales resulted in reportable data within the range of DLS.  The first mean peak at 5oC 

corresponded to a value of 34 nm.  Both the average and all of the data have reasonable 

R2 distribution fits indicating that the size reported is reliable. 
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Figure 3.33 The average Γ  versus q2 data of the first mean peak of 0.2 mg/mL CE in 

pH 8 water at 5oC. 

 

 
Figure 3.34 All of the Γ  versus q2 data of the first mean peak of 0.2 mg/mL CE in 

pH 8 water at 5oC. 
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The second mean peak produced at 5oC had a lower fit than the first mean peak.  Part of 

the reason for the lower fit is the overlapping of the peaks in the probability distribution 

function.  The fit values for the average and all of the data methods were 0.68 and 0.40, 

respectively.  These low fit values associate a high degree of error to the reported size-

scale of 180 nm. 

   

 
Figure 3.35 The average Γ  versus q2 data of the second mean peak of 0.2 mg/mL CE 

in pH 8 water at 5oC. 
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Figure 3.36 All of the Γ  versus q2 data of the second mean peak of 0.2 mg/mL CE in 

pH 8 water at 5oC. 

 

At the transition temperature there were two mean peaks that were analyzable with DLS.  

The first mean peak corresponded to a hydrodynamic radius of 28 nm.  Both methods of 

analyzing the Γ versus q2 data produced high fits indicating that the reported size-scale is 

reliable. 
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Figure 3.37 The average Γ  versus q2 data of the first mean peak of 0.2 mg/mL CE in 

pH 8 water at 15oC. 

 

 
Figure 3.38 All of the Γ  versus q2 data of the first mean peak of 0.2 mg/mL CE in 

pH 8 water at 15oC. 
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The second mean peak had a high R2 value for the average method, however when all of 

the data was plotted the R2 value was significantly lower.  This discrepancy is due to an 

erratic distribution at higher angles.  At lower angles the data was repeatable.   

 

 
Figure 3.39 The average Γ  versus q2 data of the second mean peak of 0.2 mg/mL CE 

in pH 8 water at 15oC. 
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Figure 3.40 All of the Γ  versus q2 data of the second mean peak of 0.2 mg/mL CE in 

pH 8 water at 15oC. 

 

CE, like EC, also exhibited spinodal decomposition above the transition temperature. 

SALS data confirmed that spinodal decomposition occurred.  The change in peak 

intensity was very drastic with time, when compared to EC.  

 

 
Figure 3.41 SALS data of 0.2 mg/mL CE in pH 8 water indicating spinodal 

decomposition. 
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The data produced by CE was, generally speaking, much more erratic than the data 

produced by EC and ECE.  Both EC and ECE exhibited predictable trends, however CE 

did not.  The only similarity CE shared was spinodal decomposition.  Although CE and 

EC appear to be identical in sequence, the linkers used were different.  The difference in 

linker groups is most likely part of the reason for the different behaviors exhibited by the 

different copolymers.      

 

3.5 Conclusions 

The significant difference in data trends between CE and the other two samples led to an 

investigation into the sequence and linkers used for each sample. The β-spiral elastin and 

COMPcc were bound together by linkers, therefore analysis was required not only of the 

proteins but the linkers.  Highlighting the positively charged, negatively charged and 

hydrophobic amino acids aided in understanding the aggregation patterns. β-spiral elastin 

proved to be predominantly hydrophobic.  

 

VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP 
Figure 3.42 A sequence analysis of β-spiral elastin where the hydrophobic regions 

are highlighted in green. 

 

The sequence of COMPcc was also studied.  However, unlike β-spiral elastin, COMPcc 

exhibited a distribution of charges and hydrophobic groups. β-spiral elastin was 

predominantly hydrophobic, however COMPcc was hydrophilic.  The proteins are 
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discussed in simplified terms in order to be able to loosely apply copolymer theory.  By 

imagining β-spiral elastin as a hydrophobic block and COMPcc as a hydrophilic block 

the aggregation assembly can be visualized to assemble into micellar-like structures. 

 

DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG 
Figure 3.43 A sequence analysis of COMPcc where the hydrophobic regions are 

highlighted in green, the positively charged amino acids are red, and the negatively 
charged amino acids are blue. 

 

To explain the differences in aggregation between CE and the other two protein 

copolymers, the linkers were analyzed.  In both ECE and EC the hydrophobic block was 

placed next to a highly positively charged linker.  Conversely, CE had the hydrophilic 

block placed next to the positively charged linker.  This difference is responsible for the 

aggregation assembly.   Both EC and ECE had at least three separate regions with 

alternating phobicity due to the linker.  Three is an important number because it allows 

for the proteins to bend into hairpins and form micelles.  CE only had two regions of 

alternating phobicity, therefore it did not form a micelle. 
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Positively Charged Side Chain: R H K 
Negatively Charged Side Chain: D E 

Hydrophobic Side Chain: A I L M F W Y V 
 

ECE: 
MRGSHHHHHHGSKPIAASA-

VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP-LEGSELAATATATATATATAACG-
DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG-

LQAATATATATATATAVDKPIAASA-
VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP-LEGSGTGAKLN 
 

EC: 
MRGSHHHHHHGSKPIAASA-

VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP-LEGSELAATATATATATATAACG- 
DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG-

LQAATATATATATATAVDLQPS 
 

CE: 
MRGSHHHHHHGSACELAATATATATATATAACG-

DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG-
LQAATATATATATATAVDKPIAASA-

VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP-LEGSGTGAKLN 
Figure 3.44 A sequence analysis of ECE, EC and CE where alternating regions of 

phobicity are highlighted in yellow. 

 

Three different arrangements of β-spiral elastin and COMPcc were studied with DLS and 

SALS.  By analyzing the temperature-dependent behavior of these samples it was 

determined that the macroscopic assembly could be manipulated by changing the number 

and arrangement of the proteins.  The goal of this project was to control the assembly of 
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the aggregate structure so that in the future the copolymers can be used as drug delivery 

systems. 

 

3.6 Future Work 

Jin Montclare’s research group is in the process of synthesizing CEC.  A clear next step 

would be to analyze that triblock with DLS.   It would be interesting to see if CEC 

mimics the results of CE or ECE and EC.  In other words, the question to answer is 

whether or not CEC demonstrate two modes below the transition temperature and one 

mode above. CEC has three regions of alternating phobicity, therefore I predict that CEC 

will form micelles and mimic the behavior of EC and ECE. 

 

CEC: 
MRGSHHHHHHGSACELAATATATATATATAACG-

DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG-
LQAATATATATATATAVDKPIAASA-

VPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVP
GVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGV

GVPGVGVPGFGVPGVGVPGVGVP-LEGSGTG- 
DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG-LQASLIS 
Figure 3.45 A sequence analysis of CEC where alternating regions of phobicity are 

highlighted in yellow. 

 

One aspect of this project that could use further analysis is the inconsistency of end-

groups and linkers on the proteins.  Because the length of the end-groups and linkers 

between the proteins are on the order of one-half to one-third the length of the proteins 

themselves, they could impact the properties significantly. 
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CHAPTER 4 

POLYELECTROLYTE COMPLEXATION 

4.1 Introduction 

The final project is in the inception phase and it will investigate the role of electrostatics 

in the aggregations mechanics of a polymer system containing a charged polymer.  The 

two polymers are sodium polystyrene sulfonate (NaPSS) and the triblock polyethylene 

oxide - polypropylene oxide - polyethylene oxide (PEO-PPO-PEO).  This project is of 

interest due to the tunability of the polymers through the molecular weight and 

polydispersity index, which is in contrast to the proteins studied in the other projects. 

 

Block copolymers that form micelles are known to follow the model of closed 

association.[62-64] This model asserts that there is a concentration region at which 

isolated chains and micelles exist in equilibrium.  Below that concentration only isolated 

chains exist and above that concentration only micelles exist.[64]  

 
Figure 4.1 The theoretical graph for a micellar system that follows closed 

association. 
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In order for the data acquisition to be successful the transition from isolated chains to 

micelle must occur at a concentration range that is analyzable with light scattering.  This 

means that the critical micelle concentration (CMC) must be less than the overlap 

concentration (c*). 

 

Preliminary experiments are being performed on PEO-PPO-PEO and sodium polystyrene 

sulfonate to characterize their individual properties.  Dilute solutions of PEO-PPO-PEO 

in water have been shown to form micelles.[65-68] Using DLS analysis, the individual 

polymers and micelles comprise a fast and slow mode, respectively.[13] NaPSS also 

forms a fast and slow mode.[5] However, NaPSS is a polyelectrolyte, whereas PEO-PPO-

PEO is not. 

 

It has been established in literature that the addition of an electrolyte to a system that 

forms micelles shifts the critical micelle temperature (CMT) to a lower value.[69, 70] In 

order to ensure that the transition from isolated chains to micelles can be captured using 

DLS, precautions will have to be taken to maximize the CMT and CMC. 

 

By tuning concentration, pH, salt, and hydrophobic block length of two individually self-

assembling polymers, (one of which is a polyelectrolyte,) the macrostructure, CMC and 

CMT can be controlled.[60, 71] This project is the natural next step after the previous 

two projects due to the tunability of the polymers being used.  These polymers can be 

controlled by altering the polydispersity index, molecular weight and concentration.  



115	  

Further, the placement and concentration of functional groups along these polymers will 

be well established unlike the proteins used in the first two studies. 

 

4.2 Materials and Methods 

Both sodium polystyrene sulfonate (NaPSS) and PEO-PPO-PEO can form fast and slow 

modes in water when individually solvated as homopolymers.  Therefore, the goal of the 

first set of experiments will be to characterize each polymer in solution by itself.   

 

(a) (b)   
Figure 4.2 An illustration of the structure of (a) NaPSS and (b) PEO-PPO-PEO in 

micelle form and the chemical structure. 

 

A paper by Brown et al. published in 1991 described a DLS analysis of PEO-PPO-PEO 

in water at a range of temperatures.  The paper indicated that below the CMC, rather than 

getting one peak representing the individual polymer in solution, they saw multiple peaks 

due to impurities in the sample.  The paper then asserted that above the CMC they saw 

two peaks, one represented the individual polymer in solution and the second peak 

represented the micelle.  The disappearance of the other erratic peaks was attributed to 

the diblock impurities and other size-scales being contained within the micelles.[13] 
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In an effort to get one size-scale below the CMC, PEO-PPO-PEO with a polydispersity 

index (PDI) of 1.07 was ordered from Polymer Source (P6002-EOPOEO).  This was the 

lowest PDI available, while still maintaining a polymer with a molecular weight 

comparable to the one used in the Brown paper.[13] The experiments in the Brown paper 

used a polymer of molecular weight ratio of 1.1-b-2.3-b-1.1, whereas 1.6-b-0.5-b-1.6 was 

purchased for the following experiments.  The choice of a smaller hydrophobic block 

region was made in an effort to shift the CMC and CMT to higher values.[71] 

 

Based on literature, it is important to consider three possible complex structures.  A pearl 

necklace structure, where pluronic micelles decorate the NaPSS, is one potential 

configuration.[71] A different paper suggests the possibility of a hydrated PEO shell with 

NaPSS shielded at the interior.[72] A third complex structure to consider is a PEO shell, 

PPO core and NaPSS associates with the PEO through hydrogen bonding.[73] 

 

 
Figure 4.3 Proposed pearl necklace structure between PAA and pluronic.[71] 
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4.3 Preliminary Results 

The general progression of this project will involve first characterizing NaPSS and PEO-

PPO-PEO by themselves and then characterizing the complex.  Because NaPSS is 

already well characterized in literature, and specifically by past group members of the 

Muthukumar Research Group, the logical place to start was in characterizing PEO-PPO-

PEO. 

 

The first set of experiments involved collecting DLS and SLS data at 10oC and 25oC with 

solution concentrations of 0.05 mg/mL, 0.1 mg/mL, 0.2 mg/mL, and 0.4 mg/mL.  The 

choice of concentrations was to ensure that data acquisition occurred within the unimer 

region of the closed association model.  All of these experiments were performed once 

with a filter and once without a filter.  It is important to note the use of a filter in 

aggregation studies due to the possible interference with the achievement of equilibrium 

structures. 

 

The Brown et al. paper also characterized PEO-PPO-PEO with DLS, however the lowest 

concentration studied was 1 wt%, which corresponds to 10 mg/mL of pluronic in 

water.[13] This value is significantly higher than all concentrations tested in the 

previously outlined experiments. 
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Figure 4.4 Probability distribution function DLS data collected by Brown et al.[13] 

 
Data from the Brown paper is included above for comparison with data to be presented.  

Although the Brown paper asserts the formation of only unimers in solution at low 

concentrations, analysis of the probability distribution function indicates that is not true.  

The 0.99 wt% line is marked with red arrows where peaks occur to the right of the peak 

attributed to the micelle.  For peaks to be occurring at larger lag times, size-scales larger 

than the micelle must be occurring.  This data indicates that pluronic does not follow the 

model of closed association at low concentrations and my data supports this conclusion. 

 

 
Figure 4.5 A probability distribution function of pluronic showing a peak 

representative of a small and large size-scale. 
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When analyzed, all of the filtered sample DLS data showed a second peak indicative of a 

large size-scale.  Neither of the size-scales was reportable, which is most likely due to the 

low molecular weight analyzed.  The correlation functions of the samples were very 

weak, and it is therefore likely that the low concentration combined with the low 

molecular weight made the data unreliable. 

 

Figure 4.6 The correlation functions of 0.05 mg/mL pluronic in water at 10oC. 

 

The correlation functions at a higher concentration of 0.1 mg/mL were even less 

pronounced, thus indicating that better preparation methods and/or a higher molecular 

weight sample needs to be used.  The current light scattering apparatus is not in a clean 

room setting.  Nor are the samples prepared in a clean room or sealed hood.  Making 

changes to improve the sample quality will allow for lower concentration regimes to be 

explored accurately.   
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Figure 4.7 A correlation function 0.1 mg/mL pluronic in water at 10oC. 

 

4.4 Future Work 

The next series of experiments will need to investigate pluronic at a higher molecular 

weight.  It would also be valuable to perform these experiments in a more secure clean 

room setting, due to the low concentrations being analyzed. 

 

Future experiments for this project include studying the aggregation mechanics of PEO-

PPO-PEO and other polyelectrolytes.  Different polyelectrolytes can be selected 

dependent upon the pKa of their functional groups.  By choosing a polyelectrolyte with a 

functional group that becomes charged only beyond an experimentally achievable pH, the 

importance of electrostatics versus charge neutral interactions can be explored. 
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