




(a) (b)

Figure 5.8. (a) Rabbits reproduce most frequently with fox-only emotion, closely followed by no
emotion. Rabbits reproduce the least when they use emotion, likely due to fear, disgust, and anger
significantly decreasing their probability for reproduction. (b) Foxes reproduce most frequently
when they do not use emotion, most likely due to disgust and anger decreasing their reproduction
probability. The effect is less pronounced than for rabbits as there is no fear level that stops them
from reproducing completely.

population because there is no predator to counteract reproduction, so it is only slowed by lack of

prey. This result is expected in predator-prey dynamics.

5.4.5 Discussion

Our introduction of emotion to a predator-prey model has shown multiple biases in the popu-

lation dynamics: increased food consumption; reduced predation; and increased population sizes.

These biases are not guaranteed by the introduction of emotion as the dynamics of the system links

system attributes, i.e. too many rabbits can lead to overcrowding, decreased growth, and increased

starvation. Nevertheless, the introduction of emotion to a species generally increases its population

size. Additionally, since we see a loss in population size to a species when it does not use emotion

but the other species does use it, it would be generally advantageous for a species to evolve emotions

when it is unclear whether or not the other species is also evolving emotions. This is true despite

the fact that both species using emotion causes an overall decrease in both population sizes.
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(a) (b)

(c)

Figure 5.9. Fox consumption, disease, and starvation are correlated. (a) Foxes eat the most fre-
quently when they use emotion. (b) Foxes are the most diseased when the use emotion, and thus
when they eat the most. Thus, emotions are not improving a fox’s ability to avoid diseased food. (c)
Foxes starve fastest when they do not use emotion, corresponding to when they eat the least and are
the least diseased. Starvation rate does not directly correspond to population size.

5.5 Results - Comparison of Communication Paradigms

5.5.1 Experimental Design

The simulation is run on a grid world of size 50 x 50. Each point on the grid interacts with its

Moore neighborhood of radius 1. Simulations are run for a total of 2000 time steps with an initial

random placement of individuals on the grid. Each of the twenty initial placements are tested on the

four emotion scenarios: no emotions, only foxes using emotions, only rabbits using emotions, and

both species using emotions.

Initial population sizes for foxes, rabbits, and carrots were 240, 500, and 1500. All parameters

settings are the same as in the previous analysis, except for the communication coefficient cc,sp (Ta-

ble 5.2, 5.3). We test three communication coefficients (cc,sp:0.1,0.5,0.9) for each communication
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(a) Rabbit Population Average (b) Fox Population Average

Figure 5.10. Average rabbit (a) and fox (b) populations for each parameter combination. The x-axis
shows the communication coefficients (0.1,0.5,0.9) and decay values for each type of communica-
tion (N: no communication; D: direct; S: stigmergic (L=linear, G=geometric)). Black (darkest)
represents when both species use emotion, Red (second darkest) represents when only foxes use
emotion, and Blue (lightest) represents when only rabbits use emotion.

paradigm. For the stigmergic communication we test two types of decay, each with two emotion de-

cay rates: linear (0.1,0.5) and geometric (0.5,0.9). We compare how the populations and individual

emotions differ in terms of different communication paradigms (direct vs stigmergic), the amount of

information used from the environment versus one’s own information (communication coefficient),

and how long the system and individual’s memory of an emotion remains (decay rate).

5.5.2 Effect on Emotion

All rabbit emotions except for fear increase with an increase in the communication coefficient

(Figure 5.11). Thus, there is enough emotion sharing (except for fear) on the grid that it increases

the emotion when the environment has a strong effect on an individual. However, only a fox’s fear is

significantly increased as the communication increases; all other emotions are essentially constant

(Figure 5.12). This suggests that there are too few foxes for effective communication, which is

supported by the constant level of emotion when foxes use direct communication.

All rabbit emotions except anger and sadness are stronger when both species use emotion instead

of only rabbits using emotion. The increase of fear in rabbits when foxes also use emotion is of

particular interest, as it supports the idea that fox emotion improves their performance. Rabbit anger
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(a) anger (b) fear

(c) sadness (d) disgust

(e) happiness (f) surprise

Figure 5.11. Average individual rabbit emotion for each parameter combination. The x-axis shows
the communication coefficients (0.1,0.5,0.9) and decay values for each type of communication (N:
no communication; D: direct; S: stigmergic (L=linear, G=geometric)). Black (darkest) represents
when both species use emotion, Red (second darkest) represents when only foxes use emotion, and
Blue (lightest) represents when only rabbits use emotion.
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is increased when only rabbits use emotion, but rabbit sadness does not change. All independent fox

emotions except fear are the same when either only foxes use emotion or both species use emotion.

For both species a higher geometric decay rate with stigmergic communication leads to more

emotion than a lower geometric decay rate. A linear decay affects rabbit and fox emotion differently,

however. For rabbits, stigmergic communication with a lower linear decay always leads to higher

emotion than with a higher linear decay. For foxes, both linear decay rates lead to the same level of

anger, disgust, and happiness. However, an increased linear decay rate leads to decreased sadness

and increased fear for foxes.

Stigmergic communication with low linear decay leads to the highest levels of rabbit sadness

and disgust. Rabbit fear is increased the most with either direct communication when both species

use emotion, or with stigmergic low linear decay when only foxes use emotion. Linearly decayed

stigmergic communication tends to lead toward higher fox anger, sadness, and fear than with a

geometric decay; the opposite is true for disgust and happiness.

Direct communication leads to the highest levels of rabbit anger and happiness. Direct commu-

nication leads to lower fox anger and fear but higher sadness, disgust, and happiness than a linearly

decayed stigmergic communication. Since anger and happiness are both related to hunger in in-

verse ways, it is not surprising that the fox emotion trends between the two emotions are essentially

opposing each other.

All fox surprise trends essentially mimic fear. This leads to the suggestion that the primary

factors of surprise, a composite emotion in our model, are fear and anger. As the emotional memory

is inversely related to the amount of surprise experienced, fearful and angry foxes tend to base their

memory and decisions upon more recent events. This is clearly a beneficial behavior that suggests

that foxes will adapt their behavior for the environment when experiencing these negative emotions.

5.5.3 Effect on Population

Population averages are consistently better for each species when they are the only species using

emotion (Figure 5.10). Foxes additionally benefit from emotion when both species use emotion

and either direct communication is used (with less than 90% of communication coming from the

environment) or geometric decay is used with stigmergic communication.
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We expect that high decay rates in stigmergic communication would lead to results that are

almost indistinguishable from the direct communication case, as emotions would not be able to

linger long enough to be significantly different from only counting the previous time step. This

is generally true with respect to the range in which the populations fluctuate while varying the

communication coefficient for both linear and geometric decay in both populations.

The rate of decay for stigmergic communication generally has no effect on the rabbit population,

only causing a significant difference in population when only rabbits use emotion with a high linear

decay. The fox population decreases as decay rate increases when only rabbits use emotion, and

essentially does not change when only foxes use emotion. When both species use emotion, however,

fox population stays relatively constant as linear decay increases but decreases as geometric decay

increases. A potential cause of this can be seen in the surprise and fear of rabbits. The increase

in surprise at a high geometric decay will cause rabbits to focus more on the present than the past,

while a higher level of fear will cause rabbits to flee foxes.

As communication coefficients increase most rabbit emotions also increase. This is to be ex-

pected as the increased coefficients should lead to more emotion present in the system. For this

reason the relatively constant level of emotion for fear in rabbits when both species have emotion

regardless of the communication coefficient is interesting. This suggests that there is an optimal

amount of information for a prey to convey about predators.

Linear decay in rabbits may have an upper limit on the amount of decay, which is not surprising.

Geometric decay may also have an upper limit for rabbits, with respect to the communication coef-

ficients. This could be the point at which there is effectively no more communication in the system,

or perhaps just for some of the emotions.

Geometric decay has more complex effects on the fox population, while linear decay seems to

generally be detrimental. More communication without geometric decay is generally bad for foxes.

5.5.4 Discussion

We have analyzed the use of computational emotions toward increasing collaboration and col-

lective behavior for both predators and prey in a Cellular Automata predator-prey model. Both

species were given emotions inspired by Ekman’s six basic universal emotions and current research
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on how emotions affect animals in predator-prey scenarios. Two methods of communication were

tested: direct communication, and stigmergic communication.

From the results we see that both species are benefited the most if they are the only species using

emotion. However, we also see that the fox population benefits when both populations use emotion

if information is stimergic communication is used with a low geometric decay. Thus, the predator

is able to act collectively with a trail of information when it remains for a longer period of time.

All rabbit emotions except for fear are increased by an increase in the communication coef-

ficient. However, only a fox’s fear is significantly increased as the communication increases; all

other emotions are essentially constant. Thus, rabbit emotions are more strongly affected by older

information, whereas fox emotion is not.

5.6 Conclusions

Predator-prey dynamics are frequently modeled by cellular automata due to the spatial ordering

of entities within the system. This spatial ordering allows each member of the population to exist in a

specific place on the grid and interact with its neighbors, potentially giving a more realistic dynamic

among individuals. As some emotions have been found to evolve for survival in a predator-prey

environment, we enhance the model by adding computational emotions based on Ekmans six basic

emotions to our predator and prey. Conspecific communication of emotion allows individuals to

transmit relevant local information to other members of its species.

Representing a biological system as a model always leaves some features of the environment

unexplained or oversimplified. This has been true ever since the first use of physical laws to describe

the real world. The use of cellular automata to model a biological system is no different. CA ap-

proximate decisions based upon complex state information with simplified rule sets. In studying this

model it is important to consider that the model describes approximations of behaviors for rabbits,

foxes, and carrots. It is also important to consider that the emotions are the authors’ interpretations

of previous studies and observations. Nevertheless, the model is constructed to serve as a useful

tool for exploring the population dynamics and behavioral effects of interacting species.

Our introduction of emotion to a predator-prey model has shown multiple biases in the popu-

lation dynamics: increased food consumption; reduced predation; and increased population sizes.

These biases are not guaranteed by the introduction of emotion as the dynamics of the system links
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system attributes, i.e. too many rabbits can lead to overcrowding, decreased growth, and increased

starvation. Nevertheless, the introduction of emotion to a species generally increases its population

size, and it is to the species advantage to use emotions if it does not know if the competing species

is also going to use emotion. Further work is required to understand the cooperative mode in the

context of conspecific emotional communication; however, in our results we see favor towards nei-

ther species using emotion as the cooperative mode. This suggests that the acquisition of emotion

may be an evolutionary result of competitive species interactions.

Communicated emotion can play a role in collective behavior for both predators and prey. Inter-

estingly, the communication paradigm best for one species may be the worst for the other species.

Rabbit emotions are more strongly affected by older information, whereas fox emotion is not. The

fox population benefits when both populations use emotion if stimergic communication is used with

a low geometric decay. Thus, the predator is able to act collectively with a trail of information when

it remains for a longer period of time. It will be interesting in the future to develop a system in

which each species can evolve its communication strategies to see how the population dynamics

and collective behavior are both affected by this additional dynamic.
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(a) anger (b) fear

(c) sadness (d) disgust

(e) happiness (f) surprise

Figure 5.12. Average individual fox emotion for each parameter combination. The x-axis shows
the communication coefficients (0.1,0.5,0.9) and decay values for each type of communication (N:
no communication; D: direct; S: stigmergic (L=linear, G=geometric)). Black (darkest) represents
when both species use emotion, Red (second darkest) represents when only foxes use emotion, and
Blue (lightest) represents when only rabbits use emotion.
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CHAPTER 6

EMOTIONS FOR AGENT COORDINATION

6.1 Introduction

Real-Time Artificial Intelligence has been investigated for over a decade [100]. A system is

considered to be a Real-time AI system if it is able to make decisions within a guaranteed response

time and thus meet domain deadlines. These systems face many challenges, including working with

partial information, choosing the most crucial action if there are multiple scenarios to react to, and

working continuously for an extended period of time without failure. These systems are usually

created as expert systems, as they are used for a specific domain. However, they should be able to

handle a wide variety of scenarios that may occur, not just specific test scenarios. Results must also

be returned in a timely manner [100].

Real-Time Strategy (RTS) is an offshoot of general purpose real-time AI. RTS refers specifically

to systems where the primary purpose is to create strategy, usually in a competitive atmosphere. For

instance, military training on how to engage the enemy done via simulation is a RTS system. Only

training with a computer strategy aspect is considered RTS, since it is not a RTS system if only the

human controls strategy. Currently the military uses simulations heavily for training, and therefore

it is crucial for them that these systems advance [68].

Although they may at first seem unrelated, emotions can play a large part in strategy especially

when time is limited. Emotions are believed to improve our response time, increase our memory

capacity, and provide quick communication [124]. We are able to notice things that we fear quicker

than things we enjoy or are indifferent about, showing fear to be crucial to our response time.

Remembering an emotion may enable a memory to be more useful for us later, as we can react

to the emotion of the experience without needing to remember all of its details. Emotions help us

convey our experience to another person; for instance, they will realize danger quicker from noticing

our fear than by hearing our explanation. Thus, we propose to include emotion for collaboration

between agents within a real-time strategy game. We provide each agent with simple emotions for
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use in decision making and the ability to communicate them with their neighbors, similar to the

emotions described in the Predator Prey system in Chapter 5.

Our system utilizes a current RTS gaming engine called Globulation that includes computer

players that they call “AIs.” These are not to be confused with any specific algorithms in the field of

AI, or with the field itself; however, we will retain this terminology to be consistent with the system.

These AIs determine where its agents move, what they do, and when to create more of them; the

same actions controlled by a human player. We provide computational emotions for these agents,

and determine how those emotions affect the game play. We anticipate that emotions will enhance

their ability to react to their environment and influence other agents, thus increasing the performance

of the AI. One of our main contributions is the creation of an Emotion Sharing Map (ESM ) that

enables units to communicate their emotions in a way similar to the stigmergic communication

discussed in Chapter 1. This Emotion Sharing Map saves the emotion of units and diffuses it for a

period of time, enabling other units to feel the emotion of their peers. If the emotions are designed

to be reactive to the environment, this map would enable agents to lay a trail for moving to or from

specific types of areas without the need for either detailed or direct communication. This indirect

communication between a single player’s agents allows for emergent behavior, where agents are

able to work together just from following simple rules defining how their movement is modified by

emotion.

In this chapter we will discuss related work in real-time strategy games, describe the system and

the Emotion Sharing Map, show results, and then conclude.

6.2 Related Work

Real-time systems provide many new and difficult challenges for computer science. For exam-

ple, a model of ship damage control has been created that relies on real time decision making [20].

This model determines the best course of action given the state of the ship and its many control

systems. Tested in a simulation environment against actual Navy captains, the model vastly out-

performed the humans. This example shows that Real-Time AI can even be valuable in situations

where humans are already available to perform the task [20].

Also, many popular video games such as Starcraft and Warcraft incorporate Real-Time Strategy

(RTS) if at least one team is computer controlled. These games all simulate war among multiple
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players in which all but at least one player may be computer controlled. Although advances may be

made in the AI of these systems, they do not seem to influence the military training development.

However, many groups are working to combine the two groups so that meaningful work can be done

to advance both fields at once [68, 23]. Ideally, the creation of war-related video games will be able

to influence the military training simulations in years to come [22].

Real-time strategy games can involve many different fundamental AI issues. For instance, game

AI is closely related to adversarial real-time planning, decision making under uncertainty, opponent

modeling, spatial and temporal reasoning, resource management, collaboration, and path finding

[23]. One system that is working to improve gaming in all of these aspects is ORTS [21]. This

system is an open source game that is utilized in a competition each summer to encourage AI

experts to test their skills and create software with a usable combination of solutions. Although we

will use a similar system called “Globulation,” our enhancements could also be applied to ORTS.

Another way to create an RTS game is by controlling characters in games such as Quake. Laird

et al. creates bots that can strategize through first person shooter games to beat human players [81].

They create their bots using real-time AI algorithms, giving them the ability to anticipate another

player’s action, make smart decisions on where to go, and make smart decisions on what actions to

take. This type of strategy is different from the type of strategy we will investigate, as it is only a

single entity moving in a world against other similar entities [81].

Although there are currently no RTS systems that incorporate emotions that we are aware of,

other software systems do exist with them. For instance, the digital life simulation game, the Sims,

includes emotions. These emotions control the behavior of in-game agents; an example being that an

unhappy agent is less likely to obey the commands of the controlling player. Many other examples

of emotions being used in computer systems relate to the fields of human-computer interactions

(HCI). A great amount of work has been done on improving a computer’s ability to detect a user’s

emotions, and then using that information to change its interaction with the user. Much of this work

is in the affective computing field [116, 1], and tends to relate to voice and facial recognition. A

RTS system used for training can benefit from this work, but it is beyond our current scope.
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6.3 The System

We modify the open source RTS platform Globulation (http://www.globulation2.org) by adding

two emotions to the agents, modifying agent behavior based on their emotions, and sharing emo-

tions among agents in a way similar to the communication paradigms already discussed in both the

cancer chapter and the predator prey chapter through an Emotion Sharing Map. First we discuss

the Globulation system, then the agents/units within Globulation, and finally the emotions and how

they are utilized by agents.

6.3.1 Globulation

Globulation is a multi-player strategy war game where players compete for resources and terri-

tory, and the characters can be completely controlled by an AI. A player loses if all of their agents

are destroyed.

Globulation has multiple AIs that can be chosen to act as an independent player in the game.

The AI will control the actions of its assigned player so that no human intervention is needed. An

AI defines a specific strategy, and will not only make overall player choices but will also give each

agent its own set of decision processes. There are many different AIs available for Globulation,

each with a different focus, level of detail, and success rate. The AI we will test against is named

“Nicowar” and had the highest success rate of the AIs in our initial tests.

We define emotions as part of each agent’s individual decisions such that they can be ported to

any of the AIs that already exist for the game. Thus, the decision processes for agents will be a

combination of a previously created AI and our emotion and ESM combination. When defining our

computational emotions we examined the deficiencies of the Nicowar AI. Although it is the most

human-competitive AI in the game, its flaws include bottlenecks with path finding when dealing

with a large numbers of agents, avoiding enemy agents (defensive agents), and finding enemy agents

(offensive agents). We will seek to address all of these flaws with the emotions and ESM.

6.3.1.1 Agent Types

Each player in the game has their own agents that can be controlled by the overarching AI. These

agents include warriors, workers, and explorers. Each agent has a numerical amount of health (HP)

that can decrease if it is injured or increase if it is healed, with zero HP representing death. All
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agents are capable of movement in 2-dimensional space within the map boundaries. They will

make decisions on what actions to perform based on what they encounter as they move through the

map. Our emotions will affect each agent’s own decisions.

Each agent type has its own purpose in the game. The workers exist to gather resources needed

for the player to build buildings, create more agents, and feed the current agents. The workers

must coordinate so that they do not all approach the same resources at the same time. The warriors

defend the player’s buildings, and attack the opponent’s buildings and agents. They must coordinate

for both of these actions. The explorers will wander the map to determine the locations of enemies

and resources, as these are not initially known. Thus, all agents are interdependent on the other

agents for survival and a chance at winning the game. Emotions are given to workers and warriors,

but not to explorers since they work independently and separately.

6.3.2 Emotions

6.3.2.1 Types of Emotions Modeled

We chose to model two different negative emotions which will be the same in each unit type,

although each unit type will be affected differently by their emotions. The first emotion that we

model is Fear, which is designed to keep agents alive and help coordinate warrior defense and

offense. Fear is increased when a unit is attacked by an enemy unit, a unit is very damaged and

close to death, or the player is running low on resources. The second emotions is Frustration, which

is designed to combat path finding problems. Frustration is increased when a unit is unable to

perform the task allotted to it or the unit has been on the same task for a significant amount of time.

Figure 6.1. The plane representing the range of a unit’s emotions and 4 possible emotional stages:
the origin is no fear or frustration, representing contentment; point 1 represents a unit with little frus-
tration but high fear; point 2 is a unit with low fear and medium frustration; and point 3 represents
a unit with high frustration and high fear.
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Figure 6.2. A series of images demonstrating a player’s Emotion Sharing Map changing over time.
Each of the 6 images represents the entire game environment. Images are taken every 4,000 time
steps. Frustration is shown in yellow(middle shade of gray), Fear is shown in red (darker shade),
the overlap of the two emotions is green (lightest shade), and the lack of shared emotion is black.
Images are organized chronologically from left-to-right and top-to-bottom.

Technically the lack of these two emotions also constitutes an emotion: contentment. For in-

stance if there is little or no fear the unit feels content as the world seems safe. Also, if the unit has

little or no frustration then it is content because everything is working well. Although units do not

make decisions based on the combination of their 2 negative emotions, their emotional state at any

time can be represented by a point on a plane with fear as the y-axis and frustration as the x-axis. A

lack of emotion corresponds to contentment, as seen at the origin in Figure 6.1. However, without

the the Emotion Sharing Map explained below, emotions would be entirely internal and not shared.

6.3.2.2 Emotion Sharing Map

For emotions to be most effective there must be a mechanism for agents to infer each other’s

emotions, as was seen in the predator/prey emotion chapter. For humans, emotions are exceptionally

useful as a way to communicate. An agent’s emotion is therefore influenced by the emotions of other

agents under the same player via an Emotion Sharing Map. Agent emotions cannot be interpreted

or felt by an opponent’s units.

Each agent maintains a set of individual emotions that are modified based on the agent’s actions

and its reactions to its experiences. Each emotion is a continuum that we will assume is in some

positive real valued range, with no loss of generality. The baseline for each agent is to have a

value of zero for each emotion. Over time, any emotion increase will subsequently decrease until it

reaches this baseline or a new experience replenishes it.
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We define an Emotion Sharing Map (ESM) such that at each time step, an agent’s internal

emotions will be saved to the map. An example Emotion Sharing Map changing over time can

be seen in Fig. 6.2. Each emotions is stored separately on the ESM. The ESM affects an agent’s

emotions and is updated by every agent’s emotions at every time step. This frequency is to ensure

that an agent has all information that may be vital to its decision making. The agent’s emotion is

added to the emotion on that square, and is immediately diffused out to the adjacent sets of squares

within a specified grid square distance. A diffusion radius of 2 is shown in Fig. 6.3(a), assuming an

agent is reacting to an experience with value 10. Given amax radius defining the furthest distance

an emotion is diffused and a value of the current emotion, the emotion value that will be saved on

the map at a location that is dist away from the original point of the event is seen in Equation 6.1.

Map(dist) =

 value if dist = 0

value− value
max radius
dist otherwise

(6.1)

Both the agent internal emotion values and the emotion values on the map decrease linearly over

time. At each time step, the current emotions will decrease as shown in Fig. 6.3(b), and then any

new emotions will be added. This type of emotional communication is a combination of the wide

diffusion seen in the cancer chapters, and the continuous stigmergic style of communication seen

in the predator-prey chapter. Emotions are diffused in all directions as the PLEASE DIE and I’M DYING

signals were diffused in the cancer and HADES work, but are not reliant on specific events as were

those signals. Instead they are saved at every time step as was seen in the predator-prey scenario.

Each agent can access a gradient of the map, and is affected by this gradient for each decision.

The agent’s own emotions are affected by the map such that a small percentage of each of its

emotions is derived from the emotions on the map from the end of the previous time step, as defined

in the next section. The map therefore allows agents to communicate indirectly, since the emotion

values held on the map are due to another agent’s recent experiences. Therefore, if an agent recently

encountered a problem in a particular location, all close by agents will be aware due to the Emotion

Sharing Map. Also, any other agents that come to the area within a short time span will be aware as

well. The Emotion Sharing Map is therefore providing a mechanism for collaboration.
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(a) Immediate emotion
diffusion

(b) Decay of emotion
after 1 time step

Figure 6.3. Approximate diffusion concept. The map in 6.3(a) depicts the values in the squares
under and surrounding an agent that just experienced an event that resulted in a total emotion value
of 10. If emotions decay linearly by 2, the map in 6.3(b) depicts the values in those same squares
after a single time step before agents send their emotions to the map again.

6.3.2.3 Agents using Emotions

Each emotion affects units in ways related to five of Ekman’s seven characteristics of emotion:

Quick onset, automatic appraisal, commonalities in antecedent events, brief duration, and unbidden

occurrence [44]. Emotions occur based on events in an agent’s neighborhood immediately when that

event occurs. The agent does not have time to decide that its surroundings are a problem, but instead

there is a quick onset due to automatic appraisal of the situation. For all agents of a particular type

the same antecedent event types will cause the same amount of the same emotion. Emotions are

brief unless the same event continues to occur, in which case the emotion will continue to build at a

slow rate. Emotions are not consciously caused, as only outside events or the sharing of emotions

from another unit can cause them. The two characteristics that we do not relate to do not apply to

our situation (presence in other primates, distinctive physiology) [44]. Actions that are taken due to

an emotion are however decided upon only once the emotion reaches a specified threshold. Once

that threshold is reached then the unit acts according to both its current situation and the fact that

the particular emotion is strong.

An emotion’s effect on an agent is homogeneous throughout that agent type, although it differs

between agent types. The effect of emotion is based on the idea of approach vs. withdraw [37].

In this theory, an emotion will elicit one of two responses: approaching toward the stimuli, or

withdrawing from it. Emotion values are only incorporated into deciding an agent’s actions when

the emotion value reaches a specified threshold. Each agent has two sets of controls: the built-in

decision controls, and the emotion-based decision controls. Both sets of controls are potentially
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Figure 6.4. The decision tree for a warrior at each time step.

used at each time step, as can be seen in the warrior decision tree (Fig. 6.4). All updates from the

ESM occur at the beginning of each time tick, and all emotions exist on a scale of 0 to 100.

Fear is affected by two factors: medical condition and surrounding enemy agents. If a worker’s

Fear is higher than 75 it will move in a direction toward less Fear until its Fear falls below that

threshold, in an effort to save its own life. A warrior, however, will advance toward the source of

Fear if their own fear is greater than 55. This reaction will cause a warrior to move toward nearby

enemy agents and attack. However, if a warrior’s Fear level rises higher than 90 it will retreat,

improving on its ability to survive. The value for Fear (Υ) of an agent at time t in location λ if it is

surrounded by φ enemies is shown in Eq. 6.2 where Map(Υ, λ) refers to the value of Fear on the

ESM in location λ and ω is 1 if the agent is damaged and 0 otherwise.

Υ(t) = 0.8 ·Υ(t− 1) + 10φ+ ω + 0.1 ·Map(Υ, λ) (6.2)

The agent reactions are similar for Frustration. If a worker has a Frustration level over 85 it will

look elsewhere for work, which will usually involve looking for resources to gather. If the worker is

already in a location with resources but still has high Frustration, it is likely due to a large number of

workers gathered who are causing a bottleneck for retrieving resources. If a warrior has Frustration

it will explore to look for enemies or will wander around acting as a lookout, as Frustration is

likely a result of no danger in its current location. Frustration directly combats the AI’s problem of
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failed path finding. Thus Frustration can create a more efficient resource gathering mechanism for

workers, and a higher likelihood of encountering enemies for warriors.

Frustration is increased in a particular agent by one tenth of the amount of time spent continu-

ously performing the same task. This increase of Frustration allows agents stuck in a location to free

themselves by moving away from the Frustration gradient. An agent’s value for Frustration (Ω) at

time t can thus be similarly set as seen in Equation 6.3 if χ is a binary number that is 1 if actionTick-

Timer represents the time the agent has been doing the same action, (actionT ickT imer > 50), and

(actionT ickT imer%10 = 0).

Ω(t) = 0.8 · Ω(t− 1) + χ+ 0.1 ·Map(Ω, λ) (6.3)

Although we discuss emotions as causing workers to avoid death and find resources, and war-

riors to find enemies and avoid death, this behavior is not hard-coded into the system. Instead, this

behavior emerges from the agents following the simple rules based on how to react to emotions and

share emotions through the Emotion Sharing Map.

6.4 Experimental Design

Simulations were run with version 0.9.1 of Globulation 2 on the map Muka, which is a one

player versus one player map. Each player has all necessary resources contained within a region

that is connected to the opponent via two land bridges (at the top and bottom). The map wraps

from right to left, creating a land bridge from the left side to the right side of each player’s region.

Both players also have an additional smaller peninsula containing resources. The map is essentially

symmetric, to make each player’s starting situation close to identical.

We test the Nicowar AI against itself both with and without the ESM to determine if the AI was

improved by using emotion. For simplicity of explanation, we will call Nicowar using emotions

“NicowarESM”, and Nicowar without emotions “Nicowar.” NicowarESM will always be player 1

and Nicowar will always be player 2. We test two AIs against each other instead of against humans

to reduce the error that may occur from a human changing their strategy over time.

We test variations on the constant diffusion radius for both Fear and Frustration (Table 6.1) to

determine how far the messages must be communicated to be effective in positively influencing
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Fear 1 2 2 2 3
Frustration 2 1 2 3 2

Table 6.1. Diffusion radii tested for fear and frustration.

agent behavior. Each set of parameters is tested eight times. We compare player 1 to player 2 in

each scenario to ensure that our results are not biased due to starting location on the map, as the

Nicowar vs Nicowar results are also calculated this way.

We use two statistics for analyzing success: percent of games won, and average health (HP)

for each player’s agents and buildings. A high HP per agent ratio can signify that either the player

has a high number of agents in various stages of health, or that all agents have high HP. High HP

can signify more powerful warriors as well. Since all of these scenarios can represent a successful

game, they also imply good performance.

Average health for each player is determined by examining the hit points per agent and per

building for each player over the course of the game. Since each of these games is two AIs playing

against each other, we can take the difference of their HP ratios at each time step and then average

them. This average represents how much better the HP/agent ratio for player 1 is over player 2 for

the duration of the game. A game is won when all of the other player’s buildings and agents are

destroyed.

6.5 Results

Results are presented with varying diffusion radiuses of the form “diffusion radius of Fear,

diffusion radius of Frustration,” for instance ESM(1,2) for diffusion radius of 1 for Fear and 2 for

Frustration. The radius values can be seen in Table 6.1.

As can be seen in Fig. 6.5, the percent of wins generally increases when the ESM is utilized

to facilitate collaboration and communication. For NicowarESM(1,2) and NicowarESM(2,2) the

win percentage is more than double the win percentage of the baseline. The baseline has a win

percentage less than 50% as the map appears slightly biased against Player 1. However, since we

have used Player 1 as the player with the ESM, switching players would not decrease our results.
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Figure 6.5. Percent of the eight games won by NicowarESM (Player 1) against Nicowar (Player
2) with varying diffusion radii (as labeled). The dashed line shows the baseline, i.e. the percent of
wins by Nicowar when playing itself without emotion.

A carefully chosen diffusion radius (the distance away the emotion is shared) can greatly im-

prove the number of wins. From the wins alone, it appears that a diffusion radius of 1 for Fear, and

a diffusion radius of 2 for Frustration is ideal. Since battles may include a large number of agents,

a lower diffusion radius for Fear is probably desired as a way to keep the map from becoming too

overrun with emotions. Since Frustration is generally only caused by agents from the same player,

a higher diffusion radius allows trapped agents to keep others from further causing problems by

blocking them, thus freeing themselves sooner.

All combinations tested except diffusion radius for Fear of 3 with a diffusion radius for Frus-

tration of 2 improve on the baseline. Once the diffusion radius increases too high the ESM most

likely becomes harder to use for navigation due to a high number of emotions mingling such that it

is difficult to determine which direction is the correct way to turn.

The difference of average HP for agents and buildings between players at least doubles over

the Nicowar baseline for all NicowarESM results (Fig. 6.6(a)). Although NicowarESM(3,2) does

not increase in percentage of wins, it does increase significantly in the average HP of agents and

buildings. This may be caused by NicowarESM keeping its agents to safe and healthy that it in turn

prevents its agents from adequately attacking the enemy, causing them to eventually be destroyed.

NicowarESM(2,2) has a similar situation in that although it is the second best by number of wins it

has the highest overall HP of any scenarios tested.

115



(a) For all experiments (b) For all experiments where Player 1 won

Figure 6.6. Difference of average hp per agents and buildings from Nicowar (player 2) versus
NicowarESM (player 1) with varying diffusion radii (as labeled). (a) When examining all experi-
ments, we see that the most significant increase in HP is with diffusion radius of (2,2). (b) If we
only examine cases where player 1 won the game, not only do most average HPs increase, but also
the diffusion radius of (3,2) increases higher above Nicowar’s HP.

Either when these AIs win they have a much higher HP at the end, or they maintain a higher

HP throughout most games until they lose. In Figure 6.6(b) we examine the average HP only in

the cases where player 1 won the game. NicowarESM(3,2) has the highest average HP in this case,

so much of its variation in Figure 6.6(a) is probably due to high average HP when it wins, but not

particulary high HP during games it loses. NicowarESM(2,2)’s average HP does not increase as

much when only considering games it wins, so it is likely that this set of diffusion radii gives an

advantage in HP both when it wins and loses.

If we consider all cases instead of only when the AI wins the game, then from the average health

per agent and building statistics the best results are a diffusion radius for Fear and Frustration of 2,

although a Fear radius of 3 with a Frustration radius of 2 is a close second. Taking percent of wins

into account as well shows an overall winner when Fear is 1 and Frustration is 2, since the number

of wins is increased more and the agents still maintain higher health and total numbers.

We thus show evidence toward the ESM enhancing the coordination of agents in Globulation.

Different diffusion radii can be used to either significantly increase the number or wins, or to signif-

icantly increase the health of the player’s agents and buildings. The use of computational emotion

increases the survivability of the player, at least when that player is the only one using emotions.

This result mimics what was seen in the Predator Prey modeling, where a similar emotion com-

munication increased the survivability of both predator and prey when they were the only species

using emotion. Since these real-time strategy games mimic population dynamics in many ways,
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this result should be expected. However, it is interesting to note that just a sharing of emotion

with neighbors on a short time scale can cause a global effect of increased self-organization and

coordination in a group of agents that is generally not collaborating in any real sense.

6.6 Conclusions

In this chapter we have developed computational emotions for real-time strategic games, and

tested these emotions in a game called Globulation. Globulation has autonomous computer players

they call “AI”s, which control a player’s agents. We provide two emotions that influence an agent’s

movement in the game: Fear and Frustration. We provide an Emotion Sharing Map that agents

use to communication simple information about their recent experiences. This information remains

on the ESM until it decays to zero, influencing the internal emotions of nearby agents. Through

communication on the Emotion Sharing Map, agents are able to collaborate such that Frustration

improves path finding issues, and Fear helps agents survive longer and helps warriors find battles.

We show improvement to Globulation’s top AI “Nicowar” by adding emotions and the ESM.

Our results show that the ESM is an effective way to allow agents to communicate their emotions

with neighbors to aid in collaboration. It does not require direct communication but is more remi-

niscent of swarm communication. Emotions are diffused immediately within a specific radius, and

at each time step an agent’s internal emotions will be affected by the ESM emotions at their current

location. This use of emotions is very similar to what was discussed in the previous predator prey

chapter, however emotions are diffused further and faster in Globulation. This modification on the

predator prey emotions increases the speed and accuracy of information, and since this is an en-

tirely computational system there are no odd effects as may occur if using a similar communication

scheme in a biological model.

Nicowar AI wins twice as many games when it uses emotions, and retains more agents of

better health overall. In all but one set of diffusion radii tested Nicowar wins more games when it

uses emotion, and with all sets of diffusion radii its average HP increases when it uses emotions.

There are a variety of diffusion radii that may be chosen for this system, all of which will improve

performance by some degree. This emotion technique is thus potentially applicable to other real-

time strategy games, or real-time collaboration systems. Both emotions were designed specifically

to counteract problems in the Nicowar AI, which may imply that emotions designed for a specific
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system will improve that system’s functionality. It may be possible to create computational emotions

that will work in general for all strategies, but further investigation is necessary.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

In this dissertation I presented two approaches to uniting biological complex systems with com-

puter science: through modeling, and through inspiration. I showed new approaches to modeling

cancer and predator prey systems, as well as using computational models of emotion to improve

agent communication and predator-prey decision making. Additionally, I examined how the com-

munication model from cancer can be re-applied to multi-agent fault tolerance. Overall, this disser-

tation supports six claims:

Claim 1 Varying spatial regulations within a cellular system leads to significantly different

number of predicted cells in a model of cancer cell growth.

Claim 2 Intercellular messaging among cells based on neighbor death and spatial impinge-

ment can be used to encourage death of surrounding cells such that primarily can-

cer cells are killed and healthy tissue cells survive.

Claim 3 The intercellular messaging investigated for cancer removal can improve multi-

agent system fault tolerance by allowing agents to use only local information and

collaboration to remove faulty agents.

Claim 4 Computational emotions provide a framework for modeling predator-prey dynam-

ics that will provide different modeling behavior than a traditional cellular au-

tomata model.

Claim 5 Computational emotions can be used to improve the performance of a computer

player in a real-time strategy game.

Claim 6 Stigmergic communication can be utilized to improve collaboration in both model-

ing interdisciplinary problems and when designing computational systems.
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In all of these situations there is some form of emergent behavior, as simple rules cause complex

behavior. Often this is accomplished by communication of information about the world to neigh-

bors. This form of communication is a modification of Stigmergy. In both the cancer agent-based

model and the multi-agent fault tolerance system HADES, death request signals are sent in response

to specific local events related to pushing either a cell or agent out of its current location. These

signals diffuse in all directions for a specific radius, and are felt strongest by the closest neighbors

of the sender. Eventually, these signals are able to induce death/removal of the recipients and can

rid the system of cancer cells or irregular agents, respectively. We show that for cancer this type

of communication mimics existing mechanisms, and may explain the body’s ability to fight cancer

naturally. For multi-agent systems we show that this type of communication may be used to provide

fault tolerance, by combining two fault tolerance techniques: Survivalist and Citizen. Anonymous

agent communication enables removal of malfunctioning agents, requiring only knowledge of local

phenomena.

Two variations on this type of communication are used to develop a new approach to modeling

predator-prey dynamics in cellular automata. The internal emotional state of each entity within the

system is shared with neighbors. That shared information is then incorporated into the neighbor’s

own internal emotional state to influence its future decisions. We test two approaches to commu-

nication between conspecifics: stigmergic communication in which a decaying trail is left as the

entity moves, and direct communication in which only current neighbors are told about an entity’s

emotion and thus there is no diffusion. We find that both predator and prey benefit from the use of

emotions in their decision making, and that the form of communication significantly affects both

populations.

A similar form of computational emotions is then applied to agents in a real-time strategic

game. These emotions influence an agent’s behavior to combat issues in the controller related

to pathfinding and fighting enemies. In this case we use communication that is a combination

of the approaches in the other systems. Messages are diffused in all directions as in the cancer

approach, but linger and decay over time as in the predator-prey approach. We find that the use of

communicated emotions increases collaboration among agents, and enables the computer controlled

player to win the game almost twice as frequently as it did without the use of emotions.

120



7.2 Future Directions

This dissertation provides many future directions for each of the systems tested, as well as for

stigmergic communication.

7.2.1 Cancer

Cancer is a very complicated disease that we do not yet completely understand. There are many

modeling opportunities, both building upon the models presented here as well as developing new

models with similar approaches. One possibility is to examine how different therapies work against

cancer. There are already models specifically for therapies such as radiation therapy and chemother-

apy. It would be useful to compare how these models work with and without the communication

protocols presented in this dissertation. If these communication protocols are indeed describing

mechanisms that occur in nature, they may also influence how well these therapies work. Thus, a

future possibility is to modify the model to incorporate these therapies and determine what version

of the model gives the most accurate results. This would also provide another way to analyze the

realism of the communication protocols.

Another question in cancer that could be examined using a similar type of agent-based model

is the role of cancer stem cells. It is generally agreed upon that at least some cancer cells act like

stem cells in their ability to proliferate frequently. However, there is a debate on whether stem cells

become cancer cells or if cancer cells de-differentiate into stem cells. Using a similar agent-based

model approach, we can examine which scenario leads to the correct rate of cancer formation, time

to cancer, and cancer growth shape.

These are only two potential directions for working on cancer, but there are many other ques-

tions, and doubtless new questions will be generated from biological studies that could also benefit

from a computational approach.

7.2.2 Multi-agent Fault Tolerance

We present a set of communication protocols to remove malfunctioning agents in a generic

multi-agent system. We treat this system as an abstraction to other systems, in which our defined

properties could be slightly re-interpreted to apply the communication protocols to a specific sys-

tem. The primary next step is to take standard systems such as sensor networks, distributed software
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systems, or others, and more fully develop those analogies to test the communication protocols on

specific failures in these systems. This work will involve testing variations on the communication

protocol, as well as testing it on variations of the network and system structure. The system pre-

sented in this dissertation shows promise, and thus is likely to work in these other systems as well.

This future work may also result in additional versions of the protocol that can then be applied to

specific classes of problems as well.

7.2.3 Computational Emotions for Predator Prey Modeling

The main direction for this work is examining it for modeling of specific biological predator-

prey systems. It is not expected that an emotional cellular automata approach would encompass

the dynamics of all predator-prey systems, and thus the first problem is to determine exactly which

systems could benefit from this modeling technique. The next problem would be determining if this

technique can better predict changes in that biological system by testing it on population variance

data.

There are also many modeling approaches that could be further tested in this type of system

as well. The way that rabbits and foxes made decisions using their emotions was fixed throughout

experiments, but may show interesting changes if modified. There was also no variation on how

emotions were affected by the environment, which may change rabbit and fox behavior significantly.

7.2.4 Computational Emotions for Real-time Games

The emotions worked well in solving the problems in the computer controlled player. These

emotions could be developed into an overall architecture that could be applied to many different

players (using different strategies) in both this real-time strategy game as well as other similar

games. This would involve trying different versions of computational emotions and determining

when they do and do not work well. Other types of communication could also be tested to determine

if this approach is the only approach that works, or if there are other possibilities. We could also

enable learning in the agents, where a constantly high emotion in one region is remembered and

over time they learn to avoid (or approach) that region.
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