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ABSTRACT 

TRANSPOSED LETTER EFFECTS IN PREFIXED WORDS: IMPLICATIONS FOR 

MORPHOLOGICAL DECOMPOSITION  

 

MAY 2010 

KATHLEEN M MASSERANG, B.A. UNIVERSITY OF DETROIT MERCY 

M.A. UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Alexander Pollatsek 

 The nature of morphological decomposition in visual word recognition remains 

unclear regarding morphemically complex words such as prefixed words. To investigate 

the decomposition process, the current study examined the extent to which effects 

involving transposed letters are modulated when the transposed letters cross a morpheme 

boundary. Previous studies using masked priming have demonstrated that transposed 

letter effects (i.e. superior priming when the prime contains transposed letters than when 

it contains replacement letters) disappear or markedly decrease when the transposition 

occurs across a morpheme boundary. The current experiments further investigated 

transposed letter effects in prefixed words using both parafoveal previews in natural 

reading and masked priming. There were significant differences between both the correct 

and transposed letter conditions and the replacement letter condition, but no interaction 

between the preview effects and type of target word in both the natural reading and 

masked priming tasks. Thus, unattenuated transposed letter effects can be elicited when 

the transposition occurs across the morpheme boundary between prefix and root 

morpheme, indicating that morphemic decomposition is not involved in the early 

processes of word recognition reflected in parafoveal previews and masked primes. 
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CHAPTER I 

 

INTRODUCTION  

 Morphological decomposition has been identified as an important component of 

the visual word recognition process. Over the last 10-20 years, there has been a large 

amount of empirical work on the role of morphological decomposition process; it has 

been guided by various theory-specific assumptions about fundamental word recognition 

processes.  However, there is still considerable disagreement about when and how the 

decomposition of a polymorphemic word occurs. Consider the word misuse. There are 

undoubtedly two meaningful units, mis-, and use, but what is not so obvious, is how these 

constituents are recognized. Does the reader first recognize the prefix, then the stem, and 

finally the whole word unit? Alternatively, does the reader first recognize the stem, then 

the prefix, and finally the whole word unit? A third possibility is that the reader has a 

separate lexical entry for the whole world unit, and decomposition is unnecessary. 

Perhaps it is not only one of these possibilities that accomplish recognition, but some 

combination.   

 A separate, but complementary, line of research in visual word recognition has 

investigated transposed letter effects. The transposed letter effect is the robust finding 

that prime or preview of a target word in which two adjacent letters are transposed (e.g., 

jugde as a prime for judge) is significantly less disruptive as a than a prime in which the 

same two letters are replaced by similar letters (e.g., jukpe) (Andrews, 1996; Bruner & 

O’Dowd, 1958; Chambers, 1979; Christianson, Johnson, & Rayner, 2005; Perea & 

Carreiras, 2006a, 2006b; Perea & Lupker, 2003a, 2003b, 2004; Schoonbaert & Grainger, 

2004; Taft & van Graan, 1998). This line of work has resulted in a wealth of critiques of 
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and improvements on visual word recognition models. For example, earlier models of 

word recognition (e.g. McClelland & Rumelhart, 1981; Coltheart, Rastle, Perry, Ziegler, 

& Langdon, 2001; Paap, Newsome, McDonald, & Schvaneveldt, 1982) assumed letters 

were processed in parallel across the entire word in channel-specific slots, which the 

transposed letter research clearly contradicts. Additionally, transposed letter effects have 

recently been used to investigate the morphological decomposition process.  This recent 

empirical research has suggested that models assuming slot based coding and parallel 

processing of letters across words may be incorrectly generalizing the processing of short 

monomorphemic words to morphemically complex words.  That is, recent findings 

suggest that constituents of morphemically complex words may not be encoded in 

parallel across the entire word. Furthermore, the transposed letter effect provides 

evidence that coding of letter position is not a strictly channel-specific process and word 

encoding can be facilitated if the letters are in the wrong order, as long as the correct 

letters are present.   

 My research focused on how these phenomena interact, specifically, whether 

having the correct letters in the wrong order is still facilitative if the morpheme boundary 

is disrupted.  First, I will discuss the earlier models of visual word recognition that were 

developed to explain how short monomorphemic words are encoded.  Next, I will discuss 

the evidence that morphemes are involved in early stages of visual word recognition and 

the consequences of this evidence for the earlier models. Then, I will discuss the evidence 

that letter position encoding is not channel specific and the right letters in the wrong 

position can facilitate word recognition.  Finally, I will present the experiments, which 

investigated how morphemic decomposition relates to letter position encoding.   
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Early Word Recognition Models 

 The interactive activation model (McClelland & Rumelhart, 1981) is a model 

based on the assumption that perceptual processing occurs within a system consisting of 

several levels, each concerned with forming a representation of the input at a different 

level of abstraction.   In the model, word perception is the result of inhibitory and 

excitatory interactions of detectors at the feature, letter and word levels, as well as other 

higher level processing levels.  The model assumes that visual perception is spatially 

parallel and that visual processing occurs at several levels at the same time. The 

interactive nature of the model is in the assumption that knowledge about the words of 

the language interacts with incoming featural information in codetermining the course of 

perception of the letters and words (McClelland & Rumelhart, 1981). This model can 

account for the word and pseudoword superiority effect (i.e., the finding that a letter is 

better recognized as part of a word or pseudoword than in isolation), and various 

associated findings (see Rayner & Pollatsek 1989 for a review).  The activation-

verification model (Paap et al. 1982) shares many of the same basic assumptions as the 

interactive activation model and can account for the same word and pseudoword 

superiority findings.  

The dual route cascaded (DRC) model (Coltheart et al. 2001) is a computational 

model of visual word recognition and is a generalization of the interactive activation 

model. The DRC can handle words up to eight letters long, while the others can only 

account for words up to four letters long. The DRC has a lexical route, which utilizes 

word-specific knowledge, a lexical nonsemantic route, and a non-lexical Grapheme-to-

Phoneme Conversion (GPC) route, which utilizes a sublexical spelling-sound 
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correspondence rule system.  The essentials of the feature and letter level processing 

modules from the interactive activation model are maintained. Processing occurs in 

parallel in all modules except the GPC where processing is serial.  

 The slot-based or channel-specific coding in these models assumes that there are 

units that code letter identity and position together, such that a given letter is tagged to a 

specified location in the string. This method of letter encoding is highly efficient in 

computational models. For example, in the interactive activation model, letter strings are 

processed in parallel by position-specific length-dependent letter detectors. This implies 

there is a detector for the letter K in the first position of a three-letter word, a separate 

detector for the letter K in the second position of a three-letter word, and a separate 

detector for the letter K in the first position of a four-letter word. While efficient, this 

coding scheme implies an enormous amount of detectors necessary to code all possible 

positions of letters in the alphabet.   The DRC version of slot-based coding includes the 

addition of anchor points, introducing a relative position-coding scheme. In this version, 

left-to-right length-independent letter detectors process letter strings. This implies a 

position detector for a letter in the third position in a three-letter word is the same as the 

third letter of a seven-letter string.  

 In summary, early word recognition research and identification models were 

based on phenomena associated with short monomorphemic words. These models can 

accurately account for short, monomorphemic words, but fail to account for longer, 

polymorphemic words. The slot-based coding inherent in all of these models, regardless 

of the specifics, is problematic for the ability of the models to account for certain 

phenomena, namely the effects of transposed letters.   
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Transposed-Letter Effect 

 Research across a number of tasks and paradigms (Andrews, 1996; Bruner & 

O’Dowd, 1958; Chambers, 1979; Christianson et al, 2005; Perea & Carreiras, 2006a, 

2006b; Perea & Lupker, 2003a, 2003b, 2004; Schoobaert & Grainger, 2004; Taft & van 

Graan, 1998) has shown that transposed letter (TL) nonwords are easier to recognize than 

substitute letter (SL) nonwords. For example, the TL nonword jugde facilitates judge 

better than the SL nonword jukpe. This implies that the identities of letters must be 

computed during visual word recognition at least somewhat independently of letter 

position.  

 Perea and Lupker (2003a) conducted a series of lexical decision experiments 

using masked priming investigating TL priming effects and, specifically, whether the 

position of the transposition (internal versus final) matters. They examined differences 

between TL-internal (uhser) and TL-final (ushre) nonwords in priming base words 

(usher) in comparison with control SL primes in which the two TLs were substituted with 

replacement letters (ufner and ushno) and identical primes (usher primes usher). 

Compared to SL primes, they found a strong 30 ms effect for TL-internal primes and a 

rather weak 13 ms effect for TL-final primes. In another set of experiments, they 

examined differences between TL-internal (jugde) nonwords, TL-final (judeg) and SL 

(jukpe) as primes for COURT. Compared to an unrelated condition, masked TL-internal 

primes produced a significant semantic/associative priming effect. The priming effect 

was was only slightly less than the effect for the identical (judge) condition, indicating 

that the transposed letter primes were nearly as facilitative as an identical prime. No 

effect was observed for the SL nonword primes or for the TL-final nonword primes. 
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Perea and Lupker concluded that the orthographic representations of TL-internal words 

must be far more similar to their base words than the orthographic representations of TL-

final or SL nonwords are to their base words. 

 The TL effect has also been observed in experiments using an eye-contingent 

display change technique, called the boundary paradigm (Rayner, 1975). In these 

experiments, readers’ eye movements are sampled every millisecond by a high-speed 

computer during normal silent reading. The display is then changed contingent upon the 

readers’ location.  As the eyes move over the invisible boundary, the display is changed. 

In the TL experiments, the changing display is a target word that is altered from the target 

word itself; typically, two adjacent letters are transposed.  During a saccade, when visual 

input is suppressed, the change will occur and the target word will replace the altered 

version of itself, which readers will not notice. 

  In boundary change experiments, TL effects are investigated when the relevant 

information is in the parafovea. Many eye movement studies have shown that 

information is acquired at the parafoveal level (see Rayner, 1998 for a review).  If 

preview information presented in the parafovea affects processing when the target is 

fixated, the effect is attributed to the parafoveal preview.  When the word to the right of 

fixation (the preview) is altered during reading, reading rates are markedly increased. 

Furthermore, when a full preview is available, processing time on that word, when it is 

fixated, is facilitated, compared to when there is no preview or the when the preview is 

altered. (see Rayner, 1998 for a review). Johnson, Perea, and Rayner (2007) used target 

words from a Perea and Lupker (2003b) masked priming study and embedded them in 

neutral sentence frames.  They had five preview conditions, TL-internal (celrk as the 
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preview for clerk); SL-internal (cohrk); TL-final (clekr); SL-final (clefn); identity (clerk). 

The results showed a TL effect in normal silent reading; parafoveal previews that 

contained transposed letters provided greater facilitation than the previews that had 

substituted letters. These results indicated that TL effects found in naming and lexical 

decision tasks also exist in normal silent reading.  

 The reliable existence of transposed letter effects across tasks and paradigms pose 

a challenge to word recognition models that assume slot-based coding. Thus, the dual-

route cascaded model (Coltheart et al., 2001), the interactive activation model 

(McClelland & Rumelhart, 1981), and the activation-verification model (Paap et al., 

1982) are inadequate models of visual word processing. A way to account for the TL 

effect and consequently the processing of morphemically complex words would be to 

implement a different letter-coding scheme. Some models have incorporated the idea of 

spatial letter-coding. These include the SERIOL model (Whitney, 2001), the open-bigram 

model (Grainger & van Heuven, 2003; Grainger, Granier, Farioli, Van Assche, & van 

Heuven, 2006) and the SOLAR model (Davis, 1999). These models correctly predict that 

TL nonwords are more similar to their base words than SL nonwords and that the identity 

condition provides the greatest facilitation.  

Letter Position Encoding Models 

 The letter position encoding SERIOL model (Whitney, 2001) consists of five 

layers: the retinal level, the feature level, the letter level, the bigram level and the word 

level. The layers are all comprised of nodes, which are responsible for recognizing the 

occurrence of a symbol. At the retinal level, the nodes represent pixels and perceptual 

acuity decreases as distance from fixation increases creating an acuity gradient. The 
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nodes in the feature level are tuned to the retinal node locations and recognize 

suborthographic letter features, i.e. curves and lines of the letters. These nodes are 

assumedly tuned to respond most strongly to an occurrence of a stimulus in a specific 

location in the retina and less strongly to a less precise location thus creating a locational 

gradient. This locational gradient of the feature level creates a temporal firing pattern 

across the letter nodes, in which position in represented by the timing of the firing 

relative to other letter nodes.  This coding scheme does not imply slot-based letter 

detectors; all feature nodes are connected to all letter detectors, thus allowing any letter 

node to represent any position.  

 Underlying the firing pattern are subthreshold oscillations, interacting with the 

locational gradient, which causes the letter node representing the letter in the first 

position to receive the most excitatory input; the second receives the next highest amount 

and so on. Lateral inhibition prevents multiple letter nodes from firing at the same time. 

The level of input affects the activation of the receiving letter node, where more input 

creates higher levels of activation. The locational gradient consequently creates a 

positional gradient across the letter nodes. The positional gradient is a product of the 

locational gradient interacting with internal letter node states and lateral inhibition 

between letter nodes, which results in a pattern of activation at the letter level that is not 

monotonically decreasing. These letter node dynamics activate the bigram units, which 

recognize ordered pairs of letters, converting the temporal representation of the letter 

level into a contextual representation. Bigram nodes become active if they receive 

enough input during an oscillatory cycle, which means bigram nodes can be activated by 

non-sequential or transposed letters in the input string.  Bigram nodes subsequently 
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activate word detectors. Thus, SERIOL has implemented a letter position encoding 

system that can account for transposed letter effects.  

 The SOLAR model (Davis, 1999) has a similar letter-position encoding scheme. 

The starting point for processing in the SOLAR model is a set of letter identities that 

provide serial, left-to-right input to the orthographic processing system, one letter at a 

time. There is only one node for each letter in the letter identification system. A latch-

field mediates between letter input and nodes in the orthographic processing module. 

This latch-field controls the transfer of information from the sequential letter input to the 

spatial orthographic code. Activity in orthographic input nodes is then fed onto a layer 

representing sequences of letters, which may correspond to whole words or to affixes and 

bound stems. Like SERIOL, SOLAR can handle the transposed letter effect because of 

the activation gradient implemented in the model.   

 The open-bigram model is largely based on findings from relative-position 

priming experiments (see Grainger et al. 2006 for a review). Relative-position priming is 

a form of orthographic priming where priming effects depend on shared letters being 

presented in the same relative position in prime and in target (apct primes apricot). There 

are three levels in the functional architecture of the open-bigram model: the alphabetic 

array, the relative position map, and whole-word orthographic representations. The 

alphabetic array is a bank of detectors that simultaneously process all characters in a 

string of limited length. Retinal activity is lined up with the detectors in the array and the 

specific input to any one slot will result in activation of the corresponding character 

representation for that slot. The alphabetic array supplies a retinotopic map of all 

characters in a given string and each character detector gives information about the 
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identity of a given character at a specified retinal location. This information is projected 

on to the relative order map that combines the information from the different retinal 

positions in order to process character positional information. The relative position map 

contains stimulus-centered representations that code the relative position of letters using 

open-bigram units. In other words, the open-bigram units receive activation from the 

alphabetic array such that a given letter order activates the open-bigram for that sequence, 

which is realized at any of the possible combinations of location in the array. Activated 

units then send information to the compatible whole-word orthographic representation. 

The open-bigram model considers orthographic processing to be a visual process that 

strongly adheres to the fundamental principles of the human visual system, which is 

hierarchically structured with massively parallel processing (Grainger & van Hueven, 

2003).  

 In summary, all the previously mentioned models assume spatial coding of letter 

position. In this scheme, the relative position of spatially distributed items is coded in 

terms of their relative activation level, which is best achieved when the items in the list 

form a monotonically increasing or decreasing set of activation values, known as an 

activation gradient (Grainger & van Hueven, 2003).  The models vary slightly on the 

nature of the activation gradient, but otherwise are very similar in their assumptions. 

These models can all account for TL effects, thus providing a better explanation for 

visual word perception. These models can also handle longer words, up to nine 

characters. However, it is unclear what these models predict about polymorphemic 

words. How is position encoding affected by morphemes? In the processing of longer, 

polymorphemic words, morphemic decomposition must be considered. For example, the 
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word unlikely is composed of the base word like, the adverbial suffix –ly, and the 

negative prefix un-. How is a word of this type represented in the lexicon and 

consequently accessed and processed? 

Morphemic Decomposition 

  Morphemic decomposition research has been primarily concerned with how 

polymorphemic words are represented in the mental lexicon. Morphologically complex 

words must be accessed one of three ways: (a) as a whole word representation, unlikely is 

its own entry, (b) by constituents, un-, like, and -ly, are each separate entries, or (c) the 

whole word and the constituents are all separate entries.  

 Taft and Forster (1975) conducted a series of experiments investigating lexical 

decision times for the stems of prefixed words and pseudoprefixed words.  They 

compared nonword stems of prefixed words (e.g. juvenate) to nonword stems of 

pseudoprefixed words (e.g. pertoire) and found that it took longer to classify nonword 

prefixed stems as nonwords than the pseudoprefixed nonword stems. Adding an illegal 

prefix to the items (dejuvenate/depertoire) did not change the pattern of results.  They 

further compared words that can occur both as a free and bound morpheme where the 

bound form is more frequent than the free form (e.g. tribute/contribute) and vice versa 

(e.g. pending/impending) to items having only a free form (e.g. card/discard). Reaction 

times were longer for the words where the bound form is more frequent compared to the 

words with only a free form. There were no differences between words where the free 

form is more frequent than the bound form compared to the words with only free forms. 

Because participants spent more time on the roots of the prefixed words, these findings 

suggest that prefixed words are processed differently than non-prefixed words.  
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 Dunabeitia, Perea, and Carreiras (2007) conducted a lexical decision task 

comparing Spanish and Basque polymorphemic and monomorphemic words. Using TL 

and SL nonwords as primes, they positioned transpositions or substitutions to occur 

within (e.g., polymorphemic word ESCOMBRO could be primed by TL escobmro or SL 

escohcro) or across (e.g., the prefixed word BIZNIETO could be primed by TL binzieto 

or SL bicsieto) a morpheme boundary. They observed a significant transposed-letter 

effect for non-affixed words, whereas there were no signs of a transposed-letter effect 

across morpheme boundaries for affixed words for either prefixed words or suffixed 

words. Transposed-letter effects did occur for polymorphemic words for within-

morpheme transpositions. Christianson, Johnson, and Rayner (2005) also found 

interference between the transposed letter effect and decomposition. Using masked 

priming with naming, Christianson et al. (2005) compared targets containing the 

derivational suffix –er (e.g. baker) to targets containing the pseudo suffix –er (e.g. 

bluster). The derivational items contain an English word plus a suffix whereas the 

pseudo-suffixed items do not contain an English word if –er is removed, i.e. baker is 

someone who bakes, but bluster is not someone who blusts. The authors compared 

identical, transposed letter and substitute letter primes and found a significant transposed 

letter effect for pseudo-suffixed items (55 ms difference between substitute letter prime 

and transposed letter conditions), but a rather weak transposed letter effect for 

derivational items (12 ms difference between substitute letter prime and transposed letter 

conditions).  However, the interaction was not significant.  It should also be noted that 

Christianson et al. (2005) only had 12 items in their sample, in addition to testing only 

one suffix, -er. Collectively, the results from these experiments suggest that morphemic 



13 

 

decomposition occurs early in processing, as disruption of the morpheme boundary 

resulted in the loss or weakening of the TL effect for affixed words.   

 Another line of experiments has compared word identification times for affixed 

and non-affixed words.  Manelis and Tharp (1977) conducted a lexical decision 

experiment and found no significant differences between affixed and nonaffixed words. 

From their manipulations, they concluded that words are accessed in a direct and 

continuous manner without any prior decomposition. Rubin, Becker and Freeman (1979) 

conducted a lexical decision experiment based on the Taft and Forster (1975) findings 

and did not replicate them (i.e., they did not find any differences between prefixed and 

non-prefixed words). They suggested that morphological decomposition might be a 

special strategy induced by the overrepresentation of polymorphemic stimuli. The 

findings from these experiments suggest that morphemically complex words are not 

processed differently, as participants did not spend any more time on the prefixed items 

compared to the pseudoprefixed items.  

 Caramazza et al. (1988) conducted a lexical decision experiment, using Italian 

stimuli, and found a gradation of processing difficulty with polymorphemic words: 

morphologically non-decomposable nonwords were easiest to process; nonwords with 

partial morphological structure were processed with greater difficulty; and nonwords that 

are exhaustively decomposable into morphemes were processed with the greatest 

difficulty. Marlsen-Wilson et al. (1994) conducted a set of experiments using cross-

modal immediate repetition priming. This is a task in which the participant hears a 

spoken prime (e.g., loveliness) and immediately at the offset of this word sees a visual 

probe (e.g., lovely) that is related in some way to the prime. The participant then makes a 
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lexical decision response to this probe. They found evidence for morphological 

decomposition of semantically transparent forms. Semantically opaque forms, in contrast, 

behaved like monomorphemic words.  Rastle, Davis and New (2004) compared the stem 

priming of words composed of stem and suffix (e.g., cleaner) to words composed of 

pseudostem and pseudosuffix (e.g., corner) to words composed of pseudostem and 

nonsuffix (e.g., brothel). The first two conditions, in which prime and target had the 

appearance of a morphological relationship elicited significant and equal priming effects, 

and priming in both of these conditions were significantly different from the third 

condition.  The findings of these experiments suggest that there are different processes 

for different types of morphemically complex words.  

 The interpretation of the findings from these studies led to distinct theories of 

morphemic decomposition. These theories can be divided into three positions, (a) whole-

word access first, (b) access by components first and (c) both whole-word and 

decomposition routes working in parallel.   

Models of Morphemic Decomposition 

 The findings from the outlined morphemic decomposition research resulted in 

three major theories as to how morphemically complex words are processed. The first 

type of model is based on the assumption that identification of component morphemes 

occurs before whole word access. The second type of model is based on the assumption 

that morphological decomposition occurs only after a word has initially been accessed by 

the whole word process that would occur for monomorphemic words. The third type of 

model is a sort of hybrid of the first two, where there are two routes, a decomposition 

route and a whole word route, that operate in parallel.  
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 Based on their findings, Taft and Forster (1975) developed a word recognition 

model incorporating morphological analysis. The morphological analysis is attempted 

prior to lexical search. Processing a polymorphemic word begins with identifying the 

prefix and subsequently “stripping off” the prefix. After the prefix is removed, the search 

for the stem begins. When it is found, the contents of the entry are examined to determine 

if the prefix is appropriate. If the prefix is appropriate, then the word is processed. If the 

prefix is not appropriate, then a search must be performed for the whole word.  

Proponents of this prelexical position (Dunabeitia et al. 2007) generally posit that 

polymorphemic words are first parsed into their constituents, which are identified 

individually, and then put back together for identification of an overall meaning.  

 In contrast, the full-listing or supralexical (Giraudo & Grainger, 2001) model of 

morphological decomposition posits that words are represented and retrieved as their full 

forms, so that unlikely, likely, likable, and like would all have their own lexical 

representation and would be accessed separately in the lexicon (Butterworth, 1983; 

Manelis & Tharp, 1977; Rubin, Becker & Freeman, 1979). After accessing the whole 

word, units corresponding to the root and the affix or suffix will receive activation from 

the whole-word representation and send back activation to all whole-word representations 

that are compatible with either the root or the affix. Thus, root representations impose an 

organization on the lower level form representations in terms of “morphological families” 

(Giraudo & Grainger, 2001). 

 The third type of model incorporates both whole-word and compositional 

representations of polymorphemic words in the lexicon (Caramazza, Laudanna, & 

Romani, 1988; Marslen-Wilson, Tyler, Waksler, & Older, 1994; Rastle, Davis, & New, 
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2004). The simplest form of these models posit a “horse race” model, where the two 

processes are independently operating in parallel, and whichever process is fastest 

determines how the morphologically complex word is processed.  

Specific Aims and Hypotheses of the Study 

 As described, there are current letter position encoding models that can account 

for transposed letter effects. There are also models of morphemic decomposition that 

posit different processing approaches for affixed and non-affixed words. The current 

study aims to investigate the effect of morphemic decomposition on the transposed letter 

effect. To accomplish this, transpositions will occur across morpheme boundaries, 

disrupting the prime or preview of the affixes.  Previous research using this technique, 

(e.g. Dunabeitia et al. 2007; Christianson et al. 2005) has thus far shown a weakened, or 

disappearing transposed letter effect in affixed words, suggesting that decomposition is 

interfering with letter position encoding. The current study examined the transposed letter 

effect in polymorphemic words in an attempt to order decomposition and letter position 

encoding in the visual word recognition timeline.  

 Experiments 1 and 2 used natural silent reading with the boundary technique and 

Experiment 3 used masked priming with lexical decision. The use of these paradigms 

allowed for investigation of the transposed letter effect in both the parafovea and the 

fovea. All three experiments investigated transposed letter effects in prefixed words.  

Experiments 1 & 2 were designed to examine the transposed letter effect in prefixed 

words in the parafovea. According to early decomposition models, the transposed letter 

effect should not be elicited as the prefix boundary was disrupted by the transposition, 

and decomposition occurs prior to, or during, letter position encoding. According to late 
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decomposition models, the transposed letter effect should be elicited as decomposition 

occurs after letter position encoding is accomplished. Experiments 1 & 2 were conducted 

to test these hypotheses. Experiment 3 was designed to examine the transposed letter 

effect in prefixed words in the fovea. It also was an attempt to replicate the findings of 

Dunabeitia et al. (2007). Dunabeitia et al. (2007) tested the transposed letter effect in 

affixed Spanish and Basque words; Experiment 3 used English prefixed words. 

Dunabeitia et al. (2007) obtained results supporting the early decomposition model; when 

the transposition occurred across a morpheme boundary, the transposed letter effect 

disappeared. Experiment 3 used English words to test the reliability of these effects 

across languages. Taken collectively, it was expected that these experiments would reveal 

new information about the transposed letter effect in English prefixed words, both in the 

parafovea and the fovea.  



18 

 

CHAPTER II 

EXPERIMENTS  

Experiment 1 

 In Experiment 1, the effects of a parafoveal preview manipulation were examined 

for (a) novel prefixed words (e.g. miscentered), (b) lexical prefixed words (e.g. 

misapplied) or (c) monomorphemic words (e.g. modified) during the reading of single 

sentences. To test whether preserving morpheme boundaries modulates the effects of 

parafoveal preview, I compared identical (e.g., miscentered/misapplied/modified), 

transposed letter (e.g., micsentered/miaspplied,moidfied) and substitute letter (e.g., 

mizventered/mizepplied/molufied) as previews for miscentered, misapplied and modified, 

respectively.  

Method 

Participants 

 Forty-two undergraduate students from the University of Massachusetts of 

Amherst participated in the study for extra credit in their psychology courses. All had 

normal or corrected-to-normal vision. They were all naïve to the purpose of the 

experiment.  

Apparatus 

 Participants were seated 60 cm from a color monitor displaying three characters 

subtending one degree of visual angle. Eye movements were recorded with a SR 

Research Ltd. EyeLink 1000 eye tracking system that has high spatial resolution and a 

sampling rate of 1000 Hz (1 ms sampling resolution). Viewing was binocular but only the 

right eye was tracked. Sentences were presented on a single line in black letters against a 
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white background in Courier New font so that all the characters had the same width. The 

letters were presented as in normal text, with lowercase and uppercase letters appearing 

where appropriate. Custom-built software controlled the presentation of the sentences and 

accomplished the display changes. The monitor refresh rate was set at 150 Hz to ensure 

the display changes were not detectable.  

Procedure 

 When participants arrived for the experiment, they were given a written 

description of the experimental situation and procedure followed by verbal instruction 

about the task. The participants were told they would be expected to read a series of 

sentences on a computer screen while their eye movements were being monitored. They 

were told to read the sentences normally, for comprehension. Each participant read 10 

practice trials, 36 experimental trials, and 70 filler trials. Approximately 20% of the 

sentences were followed by a comprehension question requiring a yes/no response made 

by pressing a button on a response box. After instruction and informed consent, an initial 

calibration lasting about 5 minutes was performed. After getting a good calibration, the 

participant was instructed to fixate on the leftmost calibration box, and the experimenter 

initiated the trial. When a sentence was initially presented on the monitor, the participant 

was fixating on the first letter of the first word in the sentence and the target word was 

replaced with one of the preview conditions. Once the participant’s eyes crossed an 

invisible boundary between the last two characters of the word immediately preceding the 

target word, the preview changed to the target word (see Figure 1). The target word then 

remained present until the participant indicated that he or she was finished reading the 

sentence. Participants were told to read each sentence silently and to press a button on a 
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response box when they finished reading the sentence. Upon finishing the sentence, either 

a yes/no comprehension question appeared or the calibration screen reappeared. Under 

certain conditions, the display change can occur during fixation and thus be visible to the 

participant. During debriefing, participants were asked to report what they noticed about 

the display changes. Data from participants who reported being aware of the display 

change on majority of the trials were discarded from the experiment. 

Materials 

 Target words included prefixed and non-prefixed words of mean length 9.18 

characters. There were 108 target words, with one word from each of the three target 

word conditions embedded in each of the 36 sentence frames.  The three target word 

conditions were: (1) novel prefixed (e.g., miscentered), (2) lexical prefixed (e.g., 

misapplied), and (3) lexical non-prefixed (e.g., modified) words. Target words were never 

either the first or last word in the sentence. The Francis and Kucera (1982) frequency 

count was used to estimate root frequencies of the target words. Root frequencies ranged 

from 1 per million written words to 715 per million (M = 77).  

 Each target word was placed in a neutral sentence context, preceded by at least 

two words. For each target word type, there were three preview conditions: (1) identical 

(e.g., miscentered/modified), in which the parafoveal preview was the same as the target 

word; (2) transposed letter (e.g., micsentered/moidfied), in which the parafoveal preview 

transposed the last letter of the prefix and the first letter of the stem; and (3) replacement 

letter (e.g., mivzentered/molufied), in which the parafoveal preview replaced the last letter 

of the prefix and the first letter of the stem. The replacement letters were chosen so that 

the overall letter shape was consistent with the original target word letters (i.e., ascending 
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letters were replaced with ascending letters, descending letters with descending letters 

and neither ascending or descending letters with visually similar letters). 

 

Results & Discussion 

 Participants were excluded from the analyses if they were not native speakers of 

English or if they reported seeing the display change on majority of the trials. These 

criteria excluded 10 participants. Data from the remaining participants were excluded for 

any of the following reasons: (1) A track loss occurred; (2) the eyes triggered the 

boundary change but actually landed on the word prior to the target word; (3) the first 

fixation of the target word was less than 120 ms, or a first-pass fixation was greater than 

600 ms; and (4) the participant blinked on the pretarget word, target word or posttarget 

word. Trials in which there were two fixations on adjacent letters and one of the fixations 

was short (less than 120 ms) were pooled. After data were excluded from the analysis 

according to the criteria above, 70% of the data were left. The average correct response 

rate to the yes/no comprehension questions was 82%. Because novel stimuli were used, 

this correct response rate is not surprising as the meaning of novel stimuli is left open to 

the interpretation of the participant. The correct response rate is taken to mean that the 

participants understood the sentences.  

 Standard eye movement measures were computed to examine the manipulation of 

preview and word types in reading. These duration measures were first fixation duration, 

gaze duration, go-past time and total time. First fixation duration is the mean duration of 

the initial fixation on a word, conditional on the word being fixated on the first pass 

through the text (i.e., not being skipped over initially). Gaze duration is the average of 
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the sum of all fixation durations on a word on the first pass, conditional on the word 

being fixated on the first pass.  Go-past time is the time between when a word is first 

fixated on the first pass and when it is exited to the right (i.e., it includes regressions back 

from the word).  Total time is the mean of the sum of all fixations on a word (including 

regressions back to the word).   

 For the purpose of my research questions, the primary comparisons of the data 

analysis were the difference between the transposed letter (TL) and substitute letter (SL) 

conditions which will be called the transposed letter effect, and the difference between 

the identical preview and SL conditions which will be called the preview effect.  The 

former difference assesses whether there is any benefit from the preview having the right 

letters even when the order is not correct and the latter difference assesses the total 

benefit of the preview having the correct two letters in the correct position.  

 Analyses on first fixation duration (see Table 1) revealed a 17 ms overall preview 

effect (averages over the three target word conditions), t1(31) = 2.54, p < .05, t2(28) = 

2.38, p < .05, and a 22 ms overall transposed letter effect, t1(30) = 2.54, p < .01, t2(20) = 

1.94, p = .07 (t1 and F1 indicate participant data; t2 and F2 indicate item data).  Obviously, 

the 4 ms difference between the identical and TL conditions was not close to significant, 

t1, t2 < 1. The differences between the TL and SL conditions were 14, 30, and 21 ms for 

the novel prefixed word, lexicalized prefixed word, and non-prefixed word conditions, 

respectively.  The interaction of this effect with target word condition was far from 

significant, F1, F2 < 1. 

 For gaze duration, the pattern of data was the same. There was a 34 ms overall 

preview effect, t1(31) = 2.70, p < .05, t2(27) = 2.99, p < .01  and a 37 ms overall 
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transposed letter effect, t1(31) = 2.67, p< .05, t2(20) = 2.88, p < .01. Obviously, the 3 ms 

difference between the identical and TL conditions was not close to significant, t1, t2 < 1.  

The differences between the TL and SL conditions were 51, 16, and 43 ms for the novel 

prefixed word, lexicalized prefixed word, and non-prefixed word conditions, 

respectively.  However, the interaction of this effect with target word condition was far 

from significant, F1, F2 = < 1. 

 The sizes of the effects were more or less the same for the later measures, but 

were less reliable because there was more variability in these measures.  Go-past 

measures revealed a significant 46 ms overall preview effect, t1(31) = 2.39, p < .05, t2(20) 

= 2.45, p < .05  but a nonsignificant 26 ms overall transposed letter effect, t1(31) = 1.33, p 

= .19, t2(28) = 2.99, p < .01. Total time measures revealed a nonsignificant 10 ms overall 

preview effect t1, t2 < 1, and a nonsignificant 31 ms overall transposed letter effect for 

participants, t1(30) = 1.4, p = .17 and marginally significant effect across items, t2(21) = 

1.91, p = .07.  

 Another interesting comparison was the lexicality effect, the difference between 

novel prefixed words and lexical prefixed words. For first fixation duration, there was a 

17 ms effect of lexicality, t1(30) = 2.13, p < .05, which was not significant across items, t2 

< 1. For gaze duration, there was a 72 ms effect of lexicality, t1(30) = 4.39, p < .001, 

t2(26) = 2.28, p < .05. The effect increased throughout the later measures.   For example, 

for total time there was a 151 ms effect, t1(30) = 4.64, p<.001, t2(26) = 3.58, p< .01. 

These results replicate the findings of Pollatsek, Slattery, and Juhasz (2008) who found a 

21 ms effect on first fixation, a 104 ms effect on gaze duration and a 156 ms effect on 

total time measures when comparing novel and lexical prefixed words in reading.   
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 As expected, there was a preview effect in Experiment 1 – having an identical 

preview was more facilitative than a preview with substituted letters. Unexpectedly, and 

contrary to the findings of Dunabeitia et al. (2007), these data indicated that there was a 

significant transposed letter effect that was not smaller when the transposition disrupted 

the morpheme boundary.  That is, the transposed letters were more facilitative than the 

substituted letters when presented parafoveally whether or not the transposed letters were 

in the prefixed conditions or the non-prefixed condition. The effect was significant in 

early measures of word processing, and although insignificant, it is consistent throughout 

the later measures as is evident in Table 1. These findings contradict the predictions of 

models that assume early morphemic decomposition, as the TL effect is elicited 

regardless of word type and morpheme boundary disruption.  

 Experiment 1 had considerable data loss, due both to excluded trials and 

participants. Using standard analysis of variance, empty cells result in the dropping of all 

of that particular participant’s data, thus causing a loss of power. To ensure that the 

effects were robust, the data were examined using linear mixed models (LMM). 

Simulations were run in R (version 2.9.0) (R development core team, 2007) using the 

lme4 package of Bates and Sarkar (2007). With LMM, missing cells do not result in the 

loss of an entire participant. The LMM takes into account the unbalanced design and 

using participant, item and effect means estimates the missing cell values. The model 

uses individual data points as opposed to averages; thus missing cells are less damaging.  

In the analysis above, the data were first grouped into participants or items, whereas in 

the LMM analysis, all the individual data points are considered and contribute to a 

participant x item mean. Thus, this analysis will produce slightly different means and 
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effect sizes. LMM was used to examine the specific contrasts of greatest interest, the 

transposed letter effect and the preview effect. For the transposed letter effect, I 

compared the substitute letter condition to the transposed letter condition using model 

contrasts, collapsing across word types, i.e. removing word type from the model. The 

same method was used for the preview effect, comparing the identical condition to the 

substitute letter condition. The interactions were examined via the full model. LMM 

computes the interactions differently than standard analysis of variance, by specifying 

cross-level interaction effects between variables located at different levels. Using the full 

model, with both word type (novel prefixed, lexical prefixed, lexical non-prefixed) and 

preview type (identical, transposed letter, substitute letter), LMM provides t-values for 

the cross-level interaction effects.  

 All effects were computed for the first fixation duration, gaze duration, go-past 

and total time measures. Using the LMM analysis in R, t-values are reported. 

Significance is calculated using a separate analysis (command “p-vals”). P-values are 

based on Markov chain Monte Carlo sampling. This calculation performs 10,000 

simulations of the model to generate samples from the posterior distribution and returns a 

p-like value, pMCMC, which is very close to the p-value for the t statistic (Baayen, 

Davidson & Bates, 2008).  

 The means, as computed by the LMM analysis, are in Table 2. For first fixation 

duration, there was a 20 ms overall preview effect (averaged over the three target word 

conditions), t = 2.93, pMCMC < .001, and a 24 ms overall transposed letter effect, t = 

2.54, pMCMC < .001.  The 7 ms difference between the identical and TL conditions was 

not close to significant, t < 1. The differences between the TL and SL conditions were 22, 
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34, and 16 ms for the novel prefixed word, lexicalized prefixed word, and non-prefixed 

word conditions.  The interaction of this effect with target word condition was far from 

significant, t < 1. 

 For gaze duration, there was a 35 ms overall preview effect, t = 2.82, pMCMC 

<.01, and a 41 ms overall transposed letter effect, t = 3.30, pMCMC< .001. The 6 ms 

difference between the identical and TL conditions was not significant, t < 1.  The 

differences between the TL and SL conditions were 52, 21, and 49 ms for the novel 

prefixed word, lexicalized prefixed word, and non-prefixed word conditions.  The 

interaction of this effect with target word condition was again far from significant, t < 1. 

 Analyses on go past revealed a 42 ms overall preview effect t = 2.58, pMCMC 

<.001, and a marginally significant 33 ms overall transposed letter effect, t = 1.78, 

pMCMC = .08. The 8 ms difference between the identical and TL conditions was not 

significant, t < 1.  The differences between the TL and SL conditions were 57, 20, and 23 

ms for the novel prefixed word, lexicalized prefixed word, and non-prefixed word 

conditions.  The interaction of this effect with target word condition was far from 

significant, t < 1. Analyses on total time revealed a 32 ms overall transposed letter effect, 

t = 2.02, pMCMC < .05, although there was no significant preview effect. As previously 

mentioned, there was increased variability in the later measures so they are expectedly 

less reliable.   

 Experiment 1 effectively showed transposed letter effects for both prefixed and 

non-prefixed words. For first fixation duration, there was a 34 ms transposed letter effect 

for the lexical prefixed items and a 16 ms transposed letter effect for the non-prefixed 

items. In contrast, the size of the TL effect was larger for non-prefixed items for gaze 



27 

 

duration; there was a 21 ms TL effect for lexical prefixed words and a 49 ms TL effect 

for non-prefixed items.  For go past, the effects were about equal: there was 20 ms TL 

effect for lexical prefixed items and a 23 ms TL effect for non-prefixed items. (These 

effects were calculated from the LMM analysis.)  

 Because the transposed letter effect seemed to fluctuate in both size and direction, 

an analysis of the transposed letter effect with only the lexical prefixed words and non-

prefixed words was conducted. For first fixation duration, after removing the novel 

prefixed words from the model, the overall 26 ms transposed letter effect was significant, 

t = 3.01,  pMCMC < .001, and the interactions were not, t < 1. For gaze duration, the 

overall 35 ms TL effect was significant, t = 2.81, pMCMC < .05, and the interactions 

were not, pMCMC > .05.  The transposed letter effect was not significant in the later 

measures, pMCMC > .05, but was in the right direction.  Thus, both the size and the 

direction of the difference in TL effect varied across the measures, but not significantly 

so as demonstrated by the nonsignificant interactions.   

 The results of Experiment 1 do not support early decomposition theories. Early 

decomposition theories posit an equally costly effect for transposed letters and substituted 

letters compared to an unaltered preview. According to this view, morphological 

decomposition is occurring prior to letter position encoding, thus the disruption of the 

morpheme boundary is costly regardless of the type of disruption. These data are clearly 

contradictory to this view. There was a clear transposed letter effect for all word types. 

The transposed letter effect was demonstrated regardless of word type, with two analyses, 

participant and item t-tests and linear mixed modeling.   
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 Participants consistently experienced a greater cost when parafoveally previewing 

substituted letters compared to transposed letters. Importantly, for first fixation and gaze 

duration, the identical and transposed letter condition means were nearly the same for all 

three word types. According to the analysis of variance means, for the novel prefixed 

words, there was no difference between the identical and transposed letter condition 

means for first fixation and a nonsignificant 8 ms difference for gaze, t < 1. In the lexical 

prefixed word condition, there was a nonsignificant 9 ms difference between the identical 

and transposed letter means for first fixation, t <1, and no difference between the two for 

gaze duration. This same pattern is observed in the non-prefixed words, with a 

nonsignificant 2 ms difference for first fixation and no difference for gaze. This effect 

was consistent for the LMM means, although there were greater, but insignificant, 

differences between the identical and transposed letter condition means for the lexical 

prefixed words. This demonstrates that the transposition of two adjacent letters, even 

across morphemes, does not cost the reader much, especially compared to substituted 

letters. This further suggests that readers are not doing any sort of decomposition in the 

parafovea, at least not before letter position encoding.  

 Experiment 1 had considerable data loss, due both to excluded trials and 

participants. Although the effects were robust, as demonstrated by the LMM analysis, a 

replication was conducted to examine the reliability of the effects.  

 

Experiment 2 

 Experiment 2 was conducted to replicate Experiment 1 – but with less data loss. 

In Experiment 1, the boundary was placed in between the last and second-to-last 
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character of the word right before the target word. This boundary location was 

unorthodox as most studies employing the boundary technique place the boundary just 

before the space before the target word (Johnson, Perea & Rayner, 2007; Kambe, 2004). 

The placement in Experiment 1 resulted in a large number of excluded trials and 

participants, as participants often fixated the boundary location, thus making the display 

change visible. For Experiment 2, the boundary was moved to just before the space 

before the target word (see Figure 2). 

Method 

Participants 

 Fifty-eight undergraduate students from the University of Massachusetts of 

Amherst participated in the study for extra credit in their psychology courses. All were 

native speakers of English and had normal or corrected-to-normal vision. They were all 

naïve to the purpose of the experiment. 

Apparatus 

 The same as in Experiment 1.  

Procedure 

 In Experiment 1, the boundary was placed between the last and second-to-last 

character of the word just before the target. Because nearly 80% of the target words were 

preceded by a 2-3 character function word, the boundary was often fixated resulting in 

visible display changes. For Experiment 2, the procedure was the same as in Experiment 

1, except that the boundary location was moved to directly after the last character in the 

word just before the target word (see Figure 2.) This boundary location ensures that the 

display change will occur during a saccade, when visual input is suppressed. None of the 
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participants reported seeing more than one display change, which was described as a 

“flicker.”  

Materials 

The same as in Experiment 1. 

 

Results and Discussion 

 Data and participants were excluded according to the same criteria as in 

Experiment 1, after this, 100% of the participants and 71% of the data were left. The 

average correct response rate to the yes/no comprehension questions was 85%. 

 As in Experiment 1, standard eye movement measures were computed to examine 

the manipulation of preview and word types in reading. These duration measures were 

first fixation duration, gaze duration, go-past time and total time.  

 As in Experiment 1, the primary comparisons of the data analysis were the 

transposed letter effect, which was considered the difference between the transposed 

letter (TL) and substitute letter (SL) conditions; and the preview effect, which was 

considered the difference between the identical conditions and the SL conditions.  

 Using the standard analyses examining reliability over participants and items, 

there was a 13 ms overall preview effect on first fixation duration (averaged over the 

three target word conditions), t1(57) = 2.45, p < .05, t2(35) = 2.27, p < .05 and a 

marginally significant 10 ms overall transposed letter effect for participants, t1(57) = 

1.69, p = .09 and a significant effect for items, t2(35) = 2.71, p < .01 (see Table 2). 

Obviously, the 1 ms difference between the identical and TL conditions was not close to 

significant, t1, t2 < 1.  The difference between the TL and SL conditions was 3, 11, and 14 
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ms for the novel prefixed word, lexicalized prefixed word, and non-prefixed word 

conditions.  The interaction of this effect with target word condition was far from 

significant, F1, F2 < 1. 

 For gaze duration, there was a 41 ms overall preview effect, t1(57) = 3.00, p < .01, 

t2(35) = 4.58, p< .001 and a 45 ms overall transposed letter effect, t1(57) = 3.81, p< .01, 

t2(35) = 3.29, p< .01. Obviously, the 3 ms difference between the identical and TL 

conditions was not close to significant, t1, t2 < 1.  The differences between the TL and SL 

conditions were 59, 40, and 32 ms for the novel prefixed word, lexicalized prefixed word, 

and non-prefixed word conditions.  The interaction of this effect with target word 

condition was far from significant, F1, F2 < 1.  This time the transposed letter effect was 

actually bigger for the lexicalized prefixed words than for the non-prefixed words. 

 As in Experiment 1, the sizes of the effects were more or less the same for the 

later measures, but were less reliable because there was more variability in these 

measures.  Go-past measures revealed a nonsignificant 21 ms overall preview effect for 

participants, t1(51) = 1.31, p = .19, a marginally significant effect for items, t2(34) = 1.86, 

p =.07, but a significant 30 ms overall transposed letter effect, t(51) = 2.24, p < .05, t2(34) 

= 2.43, p < .05.  Total time measures reveal a nonsignificant 15 ms overall preview effect 

t1 < 1, t2(34) = 1.09, p = .29, and a nonsignificant 24 ms overall transposed letter effect, 

t1(51) = 1.56, p = .12 for participants, and a significant effect for items, t2(34) = 2.25, 

p<.05. 

 The lexicality analyses also yielded results similar to those in Experiment 1. For 

first fixation duration, there was a nonsignificant 10 ms effect of lexicality, t1(50) = 1.5, p 

= .13, t2(34) = 1.10, p = .27. For gaze duration, there was a 70 ms effect of lexicality, 
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t1(50) = 5.09, p < .001, t2(34) = 5.15, p < .001. The effect increased throughout the later 

measures e.g., for total time there was a 138 ms effect, t1(50) = 8.05, p<.001, t2(34) = 

7.47, p< .001. 

 Consistent with Experiment 1, there was a preview effect: having an identical 

preview was more facilitative than a preview with substituted letters. These data also 

replicated the significant transposed letter effect across word types, again suggesting that 

despite the disruption of the morpheme boundary, the transposed letters were more 

facilitative than the substituted letters when presented parafoveally. These results further 

suggest that, in parafoveal preview, prefixed and non-prefixed words are not processed 

differently, which is contradictory to the early decomposition models.  

 Experiment 2 was conducted with a different boundary location than in 

Experiment 1, in an attempt to reduce loss. While no participants were excluded from this 

analysis based on awareness of the display change, the data loss for the remaining 

participants was not improved, with 30% and 29% data loss in Experiments 1 & 2 

respectively.  In a set of similar display change experiments, Johnson et al. (2007) 

reported data loss for three experiments as 31%, 16% and 18%. Thus, data loss may be 

unavoidable in experiments using display changes. Because data loss remained high, the 

data from Experiment 2 were also examined using LMM.  

 The means, as computed by the LMM analysis are in Table 4. For first fixation 

duration, there was a 15 ms overall preview effect (averages over the three target word 

conditions), t = 2.61, pMCMC < .01, and a 15 ms overall transposed letter effect, t = 

3.12, pMCMC < .001.  The 1 ms difference between the identical and TL conditions was 

not close to significant, t < 1. The differences between the TL and SL conditions were 17, 
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13, and 16 ms for the novel prefixed word, lexicalized prefixed word, and non-prefixed 

word conditions.  The interaction of this effect with target word condition was not 

significant, t < 1. 

 For gaze duration, there was a 47 ms overall preview effect t = 4.20, pMCMC 

<.001, and a 49 ms overall transposed letter effect, t = 4.41, pMCMC< .001. The 2 ms 

difference between the identical and TL conditions was not significant, t < 1.  The 

difference between the TL and SL conditions was 75, 42, and 30 ms for the novel 

prefixed word, lexicalized prefixed word, and non-prefixed word conditions.  The 

interaction of this effect with target word condition was not significant, t < 1. 

The sizes of the effects were more or less the same for the later measures, but 

again were less reliable because there was more variability in these measures.  Go-past 

measures revealed a marginally significant 26 ms overall preview effect t = 1.73, 

pMCMC = .08, and a significant 37 ms overall transposed letter effect, t = 2.47, 

pMCMC< .05. Total time measures revealed a nonsignificant 20 ms overall preview 

effect, pMCMC >. 05, and a marginally significant 29 ms overall transposed letter effect, 

t = 1.87, pMCMC = .06. 

 Experiment 2 effectively showed transposed letter effects for both prefixed and 

non-prefixed words. For first fixation duration, there was a 13 ms transposed letter effect 

for the lexical prefixed items and a 16 ms transposed letter effect for the non-prefixed 

items. Unlike in Experiment 1, there was a larger TL effect for prefixed words for gaze 

duration; there was a 42 ms TL effect for lexical prefixed words and a 36 ms TL effect 

for non-prefixed items. Clearly, the nonsignificant interaction from Experiment 1 was not 

reliable as the TL effect is in the opposite direction in Experiment 2. The effect is 
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relatively consistent for first fixation, larger for prefixed items for gaze duration and for 

go past; there was 39 ms TL effect for lexical prefixed items and a 17 ms TL effect for 

non-prefixed items. The direction and size of these effects are strong evidence for a real 

transposed letter effect in prefixed words. These effects were calculated from the LMM 

analysis.  

 As in Experiment 1, an analysis of the transposed letter effect with only the 

lexical prefixed words and non-prefixed words was conducted. For first fixation duration, 

after removing the novel prefixed words from the model, the overall 18 ms transposed 

letter effect was significant, t = 2.34,  pMCMC < .05, and the interactions were not, t < 1. 

For gaze duration, the overall 35 ms TL effect was significant, t = 3.35, pMCMC < .01, 

and the interactions were not, pMCMC > .05.  The effect was not significant in the later 

measures, pMCMC > .05, but was in the right direction. In go-past and total time, the size 

of the transposed letter effect was actually larger for prefixed words (38 ms for go-past, 

47 ms for total time) than for non-prefixed words (17 ms for go-past, 11 ms for total 

time). This analysis replicates the comparison of lexical items in Experiment 1; the TL 

effect is significant regardless of lexical word type, with no significant interactions.  

 The LMM analyses confirmed the robustness of the transposed letter effect across 

all three word types. As in Experiment 1, there were no significant differences between 

the transposed letter and identical condition means, suggesting that the transposed letter 

preview was not costly, especially compared to the substitute letter preview. Experiment 

2 effectively replicated Experiment 1, lending strong evidence for later decomposition.  

 There was virtually no difference between Experiment 1 and Experiment 2, 

except for a minor methodological change, the boundary location, which saved some data 
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points in Experiment 2, but did not appear to affect the results significantly. 

Consequently, an analysis of the pooled data of the experiments was conducted, using 

LMM.  The means, as computed by the LMM analysis are in Table 5. For first fixation 

duration, there was a 16 ms overall preview effect, t = 4.03, pMCMC < .001, and an 18 

ms overall transposed letter effect, t = 4.15, pMCMC < .001.  The 2 ms difference 

between the identical and TL conditions was not close to significant, t < 1. The 

differences between the TL and SL conditions were 18, 21, and 15 ms for the novel 

prefixed word, lexicalized prefixed word, and non-prefixed word conditions.  The 

interaction of this effect with target word condition was not significant, t < 1.  For gaze 

duration, there was a 43 ms overall preview effect t = 4.95, pMCMC <.001, and a 45 ms 

overall transposed letter effect, t = 5.27, pMCMC< .001. The 3 ms difference between the 

identical and TL conditions was not significant, t < 1.  The difference between the TL and 

SL conditions was 66, 33, and 37 ms for the novel prefixed word, lexicalized prefixed 

word, and non-prefixed word conditions.  The interaction of this effect with target word 

condition was not significant, t < 1. 

With the increased power, most of the effects were significant in the later 

measures as well.  Go-past measures revealed a significant 13 ms overall preview effect, t 

= 2.71, pMCMC < .01, and a significant 31 ms overall transposed letter effect, t = 3.02, 

pMCMC< .01. Total time measures revealed a nonsignificant 12 ms overall preview 

effect, pMCMC >. 05, and a significant 30 ms overall transposed letter effect, t = 2.47, 

pMCMC < .01. 

With the pooled data, the preview and transposed letter effects were more reliable, 

with much larger t-values. For first fixation, the preview effect (16 ms) and the TL effect 
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(18 ms) were nearly the same, suggesting that the transposed letter preview is as 

facilitative as an unaltered preview, regardless of word type. This was true for gaze as 

well (43 ms preview effect, 45 ms TL effect). There was no evidence of a weakened or 

diminishing transposed letter effect as all of the interactions were nonsignificant.  

The size and direction of the transposed letter effect were more or less consistent 

for both word types in the early measures. For first fixation, there was a 21 ms TL effect 

for lexical prefixed items and a 15 ms TL effect for non-prefixed items. For gaze 

duration, there was a 33 ms TL effect for lexical prefixed items and a 37 ms TL for non-

prefixed items. For the later measures, the prefixed items showed a larger transposed 

letter effect. For go-past, there was 32 ms TL effect for lexical prefixed items and a 20 

ms TL effect for non-prefixed items. The effect was much larger for prefixed items in 

total time; there was a 47 ms TL effect for lexical prefixed items and a 10 ms TL effect 

for non-prefixed items.  

 Taken collectively, the two experiments demonstrate that in the timeline of visual 

word processing, letter position encoding likely occurs prior to any morphemic 

decomposition, in the parafovea. This is contradictory to the results reported in the 

Dunabeitia et al. (2007) and Christianson et al. (2004) studies, where the transposed letter 

effect either diminished or disappeared when the letters crossed a morpheme boundary. 

Both of these studies used foveal measures to examine the transposed letter effect in 

polymorphemic words, whereas Experiments 1 & 2 used parafoveal measures.  

Experiment 3 seeks to examine the timeline of visual word identification processes in the 

fovea.  
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Experiment 3 

 The conflict between the results of Dunabeitia et al. (2007) and those of 

Experiments 1 & 2 motivated Experiment 3.  Dunabeitia et al. (2007), using lexical 

decision with masked priming, found that the transposed letter effect virtually 

disappeared when the transposition occurred across a morpheme boundary. The analyses 

in Experiments 1 & 2 suggest that the right letters in the wrong position are facilitative 

regardless of whether a morpheme boundary is removed.  Indeed, in both experiments 

they were as facilitative as the right letters in the right position. Experiment 3 was 

designed to determine the factors responsible for the conflicting results.  

 Dunabeitia et al. (2007) used masked priming with lexical decision, a foveal 

paradigm. Experiments 1 & 2 used the boundary change technique, a parafoveal 

technique. Letter position encoding is not performed equally well in the parafovea and 

the fovea, and is probably done weakly outside of the first few letters in the parafovea. 

This fuzzy encoding in the parafovea could possibly be responsible for the facilitative 

nature of transposed letters across prefix boundaries. Perhaps in the fovea, the 

transposition across prefix boundaries is more disruptive as letter position encoding is 

straightforward.  

 In addition to the paradigm differences between Experiments 1 and 2 and 

Dunabeitia et al. (2007), there were also different languages: Dunabeitia et al. (2007) 

used Spanish and Basque. Basque is a unique, pre-Indo-European, ergative-absolute 

language. Romance language Spanish has a very different phonological system than West 

Germanic English, although the languages share a Latin influence and have many 
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cognates. It is plausible that these, and possibly other linguistic properties of a language, 

modulate the transposed letter effect. 

 To investigate both hypotheses, Experiment 3 used the same procedure as 

Dunabeitia et al. (2007) but with the English words from Experiments 1 & 2. 

 

Method 

Participants 

 Fifty-four undergraduate students from the University of Massachusetts of 

Amherst participated in the study for extra credit in their psychology courses. They were 

all native speakers of English and had normal or corrected-to-normal vision. They were 

all naïve to the purpose of the experiment. 

Apparatus 

 Stimulus presentation and data recording was controlled by E-Prime (Version 2.0; 

Psychology Software Tools, 2008) software on a PC compatible computer with a CRT 

monitor. Participants indicated their responses using the keyboard. 

Procedure 

 When participants arrived for the experiment, they were given a written 

description of the experimental situation and procedure, followed by verbal instruction 

about the task. They were told that they would be seeing a series of letter strings 

presented one at a time and that they would be required to decide as quickly and 

accurately as possible whether or not each string was a word. The participants were not 

told of the existence of the prime stimulus. Participants viewed a centered forward mask 

of pound signs (#s) for 500 milliseconds, followed by the prime presentation for 66 
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milliseconds, and the immediate appearance of the uppercased centered target word (see 

Figure 3). Participants then indicated their lexicality judgment via the keyboard. 

Participants performed 20 practice trials before beginning the experiment.   

Materials 

 The prime conditions were (1) identical (e.g., miscounted/modified), in which the 

prime was the same as the target word; (2) transposed letter (e.g., micsounted/moidfied), 

in which the prime transposed the last letter of the prefix and the first letter of the stem; 

and (3) replacement letter (e.g., mizrounted/molufied) in which the prime replaced the last 

letter of the prefix and the first letter of the stem. Dunabeitia et al. (2007) did not use 

identical primes, which were used in Experiment 3 to compare TL vs. SL priming and 

identical vs. SL priming similar to the TL and preview effects computed in Experiments 

1 & 2.  

 There were a total of 72 words and 72 nonwords. Target words were taken from 

the 36 lexical prefixed and 36 lexical non-prefixed conditions in Experiments 1 & 2. For 

the nonwords, 36 prefixed nonword stimuli and 36 non-prefixed nonword stimuli were 

created. For both nonword lists, root frequency was matched to the lexical items, and 

then a consonant was substituted for an internal vowel to create a nonword (e.g., support 

becomes pmpular, as support and popular are matched). The consonant change was done 

to ensure that the lexical decision task was not too difficult, and the root frequency 

matching was done to ensure that the task was not too easy. Because the goal was for 

participants to take this task seriously, but not spend too long deciding if the word was 

lexical and just infrequent, I excluded the novel prefixed items from Experiments 1 & 2.  

These items would have been very difficult for participants to judge, as they are 
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interpretable and consist of lexical constituents. For pseudo-prefixed nonwords, the prefix 

was matched to the lexical targets to ensure that participants do not use prefixes as a cue 

for lexical legality (e.g, misapplied becomes misspklled, as spell and apply are matched 

in frequency and length). The words and nonwords were presented in uppercase and were 

preceded by primes of the previously outlined conditions in lowercase.  This helps to 

minimize priming due to mere physical overlap between prime and target. 

 Three lists of materials were used so that each target appears once in each list, but 

each time in a different priming condition (identical, transposed-letter or substitute-

letter). Different groups of participants were used for each list. 

 

Results and Discussion 

 Data from incorrect responses (4.6% of word trials) as well as the percentage of 

trials beyond the 250-1500 ms cutoff (10% of the data) were excluded from the response 

time analysis. Items that were represented by fewer than nine (out of a possible eighteen) 

observations were also excluded from the analysis (4% of the data).  The mean response 

latencies and percentages of error are presented in Table 5. Word type (prefixed vs. non-

prefixed) was a within-subject variable for the participant analysis, and a between-item 

variable in the item analysis, as the prefixed and non-prefixed items were not matched.  

Word Data 

 For the word data, the transposed letter effect was calculated as described in 

Experiments 1 & 2: the difference between the substitute letter and transposed letter 

conditions. For Experiment 3, there is a priming effect as opposed to the preview effect 
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measured in Experiments 1 & 2. This is the difference between the substitute letter and 

identical conditions.  

 The latency analysis revealed a 27 ms overall (averaged across word types) 

transposed letter effect, t1(53) = 2.91, p < .01, t2(57) = 2.06, p < .05, and a 41 ms overall 

priming effect, t1(53) = 3.64, p < .001, t2(57) = 3.18, p < .01.  The 12 ms difference 

between the identical and transposed letter conditions was not significant, t1 = 1.15, p > 

.20, t2 = 1.12, p >.20. The differences between the SL and TL conditions were 38 ms and 

17 ms for prefixed and non-prefixed words, respectively.  The interaction of these effects 

was not significant, t1(53) = 1.09, p > .20, t2(57) = 1.45, p > .10.  

 The error data for the non-prefixed words showed better performance for targets 

preceded by identical (4.1%) and transposed letter (4.0%) primes than for substitute letter 

primes (4.6%), though not significantly so, t < 1. The error data was mildly suggestive of 

a speed-accuracy tradeoff for the transposed letter effect in prefixed words as participants 

made more errors in the transposed letter condition (5.2%) than in the identical (3.7%) 

and substitute letter (4.3%) conditions, but the differences were not significant, t < 1.  

This difference in pattern in the errors might explain, in part, why the transposed letter 

effect was bigger for the prefixed words.   

Nonword Data 

 Usually, the pattern of data for nonwords in masked priming data is not 

particularly informative.  That is because a prime that facilitates perception may also 

make the stimulus feel more “wordlike” and, as a result, slow the correct nonword 

response.  The latency analyses showed only an advantage of targets preceded by an 

identical prime relative to a substitute letter prime, significant by participants, t1(53) = 
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2.37, p < .05, but not by items, t2 < 1. For the nonprefixed nonwords, a 33 ms transposed 

letter effect was not significant, t < 1. The other effects were not significant and were 

typically in the wrong direction. For the pseudoprefixed nonwords, the response times 

were longest for targets with an identical prime and quickest for targets preceded by a 

substitute letter prime. These effects are difficult to interpret as processing of the 

nonwords involves additional processing (e.g. rejection of lexicality) in addition to the 

processing time prior to rejection.  The error data for nonwords showed that participants 

were significantly more accurate when targets were preceded by substitute letter primes 

relative to transposed letter primes, t1(53) = 2.78, p < .01, t2(74) = 2.25, p < .05.   

 Experiment 3 was conducted as an English replication of Dunabeitia et al. (2007). 

The findings, however, replicated Experiments 1 & 2, and contradicted the results found 

in Dunabeitia et al. (2007). Participants were quicker to respond “yes” to prefixed words 

preceded by a transposed letter prime compared to a substitute letter prime. Dunabeitia et 

al. (2007) actually found an 8 ms cost for the transposed letter condition compared to the 

substitute letter condition with their prefixed Spanish targets.  In marked contrast, there 

was a 38 ms transposed letter benefit in Experiment 3 for English prefixed words. While 

there was a slightly higher error rate for the prefixed words preceded by transposed letter 

primes compared to substitute letter primes, it was not close to significant, so a speed-

accuracy tradeoff is not a viable explanation.  

 There was a nonsignificant 19 ms difference between the identical primes and the 

transposed letter primes for the prefixed targets and a significant 38 ms difference 

between the transposed letter and substitute letter primes. These results suggest that while 

there may be some minor cost to altering the prime, as indicated by the 19 ms difference, 
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transposed letters are still more facilitative than substitute letters, as indicated by the 

significant 38 ms difference. These data lend further support for late decomposition 

theories. 
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CHAPTER III 

GENERAL DISCUSSION 

 Experiments 1 & 2 demonstrated that decomposition does not occur in the 

parafovea prior to letter position encoding and Experiment 3 demonstrated that these 

processes also do not interfere with each other in the fovea. Taken collectively, these 

experiments are strong evidence for a late decomposition model. In the timeline of visual 

word processing, these experiments demonstrate that morphemic decomposition does not 

occur prior to letter position encoding, as the transposed letter effect was elicited in 

prefixed words, when the transposition occurred across the prefix boundary. These 

experiments do not necessarily support specific models, but they clearly argue against 

models proposing “prelexical” morphological decomposition.  

 Proponents of the early decomposition model include Dunabeitia et al. (2007) 

whose findings motivated Experiment 3. Dunabeitia et al. (2007) found evidence 

supporting early decomposition (i.e. a disappearing transposed letter effect when the 

transposition occurs across a morpheme boundary). This disappearing TL effect occurred 

using masked priming with Basque and Spanish words. In an attempt to replicate, I used 

our English materials with the same paradigm, hypothesizing that (a) the different 

paradigms in Experiments 1 & 2 and the Dunabeitia et al (2007) were measuring different 

phases of word processing or (b) polymorphemic words may be treated differently in 

Spanish and Basque than they are in English.  

 In Experiment 3, there were strong transposed letter effects elicited in both 

prefixed and non-prefixed words. This is contradictory to the difference in paradigm 

hypothesis, which proposed that the differences in letter position encoding in the fovea 
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and parafovea were responsible for the inconsistent results. Had I found congruent 

results, the focus of this discussion would be on foveal vs. parafoveal processing and 

letter position encoding. Because I found no evidence of decomposition with foveal 

measures, the discussion will focus on the second hypothesis, the differences between 

Spanish and Basque, and English.  

 Dunabeitia et al. (2007) used both Basque and Spanish stimuli. Basque is a unique 

language; it is the last pre-Indo-European language in Western Europe and has no 

demonstrable relationship to any other currently spoken language (Perea, Urkia, Davis, 

Agirre, Laseka & Carreiras, 2006). It is an agglutinative language, meaning words are 

formed by joining morphemes together. Because Basque has such distinct morphology 

and syntax, it is not surprising that different effects were elicited with Basque words and 

English words.  The different effects produced by English and Spanish prefixed stimuli, 

however, merit a more thorough discussion. 

 A relevant difference between Spanish and English is their respective 

orthographies. Spanish has a shallow orthography, meaning there is one-to-one mapping 

between sounds and letters. English has a deep orthography; there is not a close 

relationship between sounds and letters. Both Experiment 3 and the experiments of 

Dunabeitia et al. (2007) examined the decomposition of polymorphemic words in the 

fovea. To accomplish this, the studies examined the effect of transpositions and 

substitutions across morpheme boundaries. However, there is, in some sense, a confound, 

because the morpheme boundary is usually also a syllable boundary in prefixed words.  

The two languages differ, however, in their syllable structure.  In English, syllable 

boundaries are not always clearly defined, whereas in Spanish, syllables have clearly 
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defined boundaries and there is a close relationship between letters and sounds (Carreiras, 

Alvarez & De Vega, 1993). If syllable boundaries are often less clearly defined in 

English, it follows that readers may not use the syllable as a lexical access unit in word 

processing. In Spanish, where syllable boundaries are clear, the syllable may hold a more 

privileged role in word processing. Evidence in favor of syllabic processing during visual 

word recognition has been mostly obtained in Romance languages with clear syllable 

boundaries, like Spanish, rather than in English (Alvarez, Carreiras, & Perea, 2004). 

  The studies on the role of syllable in English word processing have yielded 

inconsistent results. Because syllable boundaries are not well defined and ambisyllabicity 

cases (phonemes that can belong to the preceding or to the following syllables) occur 

often (Selkirk, 1982, see also Alvarez, Carreiras, & Taft, 2001), the definition and 

investigation of the syllable has been expanded. Taft (1979), based on a series of lexical 

decision experiments, proposed a syllable based on orthographic and morphemic 

properties, with no consideration of the phonological properties. This “syllable” was 

called the Basic Orthographic Syllabic Structure (BOSS) and was considered the first part 

of the root morpheme of a word, plus all the consonants following the first vowel, but 

without creating an illegal consonant cluster (the BOSS of faster is fast) (Alvarez et al., 

2007). In contrast, Hansen and Rodgers (1968) proposed the Vocalic Center Group 

(VCG), which was a phonological account of the written syllable (the VCG of faster is 

fas). The BOSS, in contrast to the VCG, preserves morphological relationships by 

assigning a common BOSS to all affixed forms of a root (Lima & Pollatsek, 1983). In his 

experiments with monomorphemic words, Taft (1979) found that a division of a word 



47 

 

immediately after its initial VCG was more costly than a division after the BOSS. Taft 

(1979) cited this as evidence for the BOSSs representation in the lexicon.  

 Lima and Pollatsek (1983) conducted a series of experiments examining the role 

of the VCG and the BOSS in word identification. Their experiments were designed to test 

the claim by Taft (1979) that the BOSS was the lexical access unit implicated in word 

recognition. Lima and Pollatsek (1983) did not replicate Taft’s findings; they found no 

BOSS advantage with monomorphemic words when BOSS-divided words were 

compared to VCG-divided words. They also used polymorphemic words and found no 

significant priming effects of either the VCG or the BOSS.  Lima & Pollatsek (1983) 

concluded that while syllabic units may be helpful in lexical access, they are not the only 

lexical representations of words.  

 In contrast to English, there is considerable and consistent evidence regarding the 

role of the syllable in word processing in Spanish. Carreiras, Alvarez and De Vega (2004) 

conducted a series of masked priming with lexical decision experiments to investigate the 

possible influence of the syllable on visual word recognition for Spanish-skilled readers. 

To accomplish this, they designed experiments that tested the effects of the frequency of 

the syllables embedded in words.  

 Their first experiment used high- versus low-frequency words that contained 

high- versus low-frequency syllables. They hypothesized that if participants used 

syllables to visually recognize words, then reaction times should be shorter for high-

frequency syllables. They found the typical word frequency effect, reaction times were 

faster for high frequency words than for low-frequency words, but the opposite effect was 

found for syllable frequency. Reaction times were slower for words with high frequency 
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syllables than low frequency syllables. There was no interaction.   The authors concluded 

that these results were strong evidence for the importance of syllables as a processing unit 

in Spanish, as they have a strong effect on visual word recognition. They further explain 

their results as explainable by a parallel distributed processing-type model, in which the 

higher frequency syllables fire a larger set of lexical candidates than the low-frequency 

syllables. Importantly, the results demonstrate a clear role of syllables in Spanish word 

processing. 

 The authors replicated the effect using a different paradigm, masked priming with 

naming, again finding the effect of syllable frequency opposite to the effect of word 

frequency with no interaction. They then conducted a third experiment, designed to 

control for bigram frequency and again found the same pattern, where the inhibitory 

effect of syllable frequency was significant, independent of bigram frequency.  Alvarez, 

Carreiras and Taft (2001) also demonstrated the inhibitory syllable-frequency effect with 

three lexical decision experiments. Alvarez et al. (2004) found priming effects for 

disyllabic pairs sharing the first three letters and the first consonant-vowel syllable 

(ju.nas-JU.NIO), but not for pairs that shared the first three letters but not the first 

consonant-vowel syllable (jun.tu-JU.NIO).  

 Taken collectively, these studies are strong evidence for the syllable’s privileged 

role in visual word recognition in Spanish. The picture in English is less clear. If syllable 

boundaries are not well defined, readers may not be using the syllable as a lexical access 

unit and may be less sensitive to their boundary disruption. On the other hand, in Spanish, 

readers are clearly using syllables as processing units and will be very sensitive to their 

boundary disruption. This seems to be the most plausible explanation for the incongruent 
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results of Dunabeitia et al. (2007) and Experiments 1-3. English readers are benefiting 

from the transposed letter effect because the boundary disruption does not interfere with 

processing units, whereas Spanish readers are not benefiting from a transposed letter 

effect because the transposition disrupts a syllabic boundary, thus destroying the unit 

necessary for lexical access.  

 These results are suggestive of the hypothesis that English and Spanish readers 

process and identify words differently, which further suggests that a single letter-position 

or morphemic decomposition model will not satisfy both languages. Experiments 1-3 

provide evidence for a late decomposition model, as the transposed letter effect is elicited 

despite the disruption of morpheme boundaries. The Spanish literature demonstrates a 

different effect, where decomposition interferes with letter position encoding, suggesting 

these are co-occurring processes. Thus, any model of letter-position encoding or 

morphemic decomposition must consider the qualities of the language it is trying to 

capture. 
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APPENDIX A 

 

TABLES 

 

Table 1 

Means as a Function of Word Type and Preview Type for Experiment 1 

  

First Fixation 

 

Gaze Duration  

 

Go Past 

 

Total Time 

 

 

Novel Prefixed Identical  

 

264 

 

374 

 

433 

 

563 

Novel Prefixed TL  264 366 465 565 

Novel Prefixed SL  284 419 517 601 

 

Lexical Prefixed Identical  249 309 344 450 

Lexical Prefixed TL  240 309 353 390 

Lexical Prefixed SL  269 326 358 430 

 

Lexical Non-Prefixed Identical  245 293 336 401 

Lexical Non-Prefixed TL  243 293 362 393 

Lexical Non-Prefixed SL  256 335 375 413 

 

Note. All durations are in milliseconds.  

 

Table 2 

LMM Means as a Function of Word Type and Preview Type for Experiment 1 

  

First Fixation 

 

Gaze Duration  

 

Go Past 

 

Total Time 

 

 

Novel Prefixed Identical  

 

257 

 

372 

 

440 

 

573 

Novel Prefixed TL  258 364 447 557 

Novel Prefixed SL  280 416 504 586 

 

Lexical Prefixed Identical  253 322 359 465 

Lexical Prefixed TL  236 313 346 385 

Lexical Prefixed SL  270 334 366 435 

 

Lexical Non-Prefixed Identical  240 300 335 405 

Lexical Non-Prefixed TL  243 301 366 403 

Lexical Non-Prefixed SL  259 350 389 420 

 

Note. All durations are in milliseconds.  
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Table 3 

Means as a Function of Word Type and Preview Type for Experiment 2 

  

First Fixation 

 

Gaze Duration  

 

Go 

Past 

 

Total Time 

 

 

Novel Prefixed Identical  

 

264 

 

412 

 

530 

 

628 

Novel Prefixed TL  257 396 504 574 

Novel Prefixed SL  265 461 539 609 

 

Lexical Prefixed Identical  242 336 411 475 

Lexical Prefixed TL  251 332 381 435 

Lexical Prefixed SL  261 371 420 473 

 

Lexical Non-Prefixed Identical  242 308 343 369 

Lexical Non-Prefixed TL  240 303 361 409 

Lexical Non-Prefixed SL  256 335 379 420 

 
Note. All durations are in milliseconds.  

 

Table 4 

LMM Means as a Function of Word Type and Preview Type for Experiment 2 

  

First Fixation 

 

Gaze Duration  

 

Go Past 

 

Total Time 

 

 

Novel Prefixed Identical  

 

259 

 

394 

 

518 

 

608 

Novel Prefixed TL  252 392 496 580 

Novel Prefixed SL  269 467 551 613 

 

Lexical Prefixed Identical  239 331 411 464 

Lexical Prefixed TL  250 329 381 425 

Lexical Prefixed SL  263 371 420 472 

 

Lexical Non-Prefixed Identical  244 298 338 366 

Lexical Non-Prefixed TL  238 297 356 405 

Lexical Non-Prefixed SL  254 327 373 412 

 
Note. All durations are in milliseconds.  
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Table 5 

LMM Means as a Function of Word Type and Preview Type for Experiments 1 & 2 

Combined 

  

First Fixation 

 

Gaze Duration  

 

Go Past 

 

Total Time 

 

 

Novel Prefixed Identical  

 

258 

 

387 

 

492 

 

596 

Novel Prefixed TL  254 383 480 571 

Novel Prefixed SL  272 449 534 607 

 

Lexical Prefixed Identical  244 327 393 465 

Lexical Prefixed TL  245 324 369 412 

Lexical Prefixed SL  266 357 401 459 

 

Lexical Non-Prefixed Identical  242 299 337 380 

Lexical Non-Prefixed TL  240 298 360 405 

Lexical Non-Prefixed SL  255 335 401 415 

 

Note. All durations are in milliseconds.  
 

 

Table 6 

Mean lexical decision times and % of errors (in parentheses) for targets in Experiment 3 

   

Type of Prime 

   

Priming 

(SL-TL) Identical Transposed Substitute 

 

 

Word Trials 

    

       Prefixed Pairs 789(3.7) 808(5.2) 846(4.3) 38 

       Non-prefixed Pairs 770(4.1) 777(4.0) 794(4.6) 17 

 

Nonword Trials     

       Psuedoprefixed Pairs 936(4.9) 

899(8.8) 

925(4.3) 

894(10.2) 

915(2.8) 

927(3.4) 

-10 

33        Non-prefixed Pairs 

    

Note. All durations are in milliseconds.     
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APPENDIX B 

 

FIGURES 

 

Figure 1 

Example Sentence for Experiment 1 for the Lexical Prefixed Condition 

              *              I 

Because the student miaspplied the mathematical equation, the exam was confusing.  

                              I       * 

Because the student misapplied the mathematical equation, the exam was confusing.  

 

Preview Conditions 

Identical = misapplied 

Transposed Letter = miaspplied 

Replacement Letter = miorpplied  

 

The asterisk denotes the position of the eye, and the “I” denotes the invisible boundary.  

 

 

Figure 2 

Example Sentence for Experiment 2 for the Lexical Prefixed Condition 

              *                I  

Because the student miaspplied the mathematical equation, the exam was confusing.  

                                I       * 

Because the student misapplied the mathematical equation, the exam was confusing.  

 

Preview Conditions 

Identical = misapplied 

Transposed Letter = miaspplied 

Replacement Letter = miorpplied  

 

The asterisk denotes the position of the eye, and the “I” denotes the invisible boundary.  
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Figure 3 

Figure Representing Masked Priming with Lexical Decision Paradigm with Prefixed 

Transposed Letter Prime for Experiment 3 
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