


Figure 11: The α-hemolysine pore(a) at pH 7.5 and the charge on the constriction
ring(b) vs pH. Blue: positively charged groups, red: negatively charged residues,
green: hydrophobic residues, gray: hydrophilic residues. The chain itself is nega-
tively charged. Adopted from [34].
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Figure 12: Three most prominent event types of NaPSS translocation through
α-hemolysine pore. The blockades were produced 57.5 kg/mol NaPSS in 1M KCl
pH 7.5 solution under 150mV. Ia and Ib are the open pore and blockaded pore
currents respectively [34]. We are interested in type B events. Adopted from [34].
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Figure 13: The blockade times of 16 kg/mol NaPSS at 140mV vs trans pH of the
solvent. Medium level blockade time (τ12 in this notation) we are interested in is
marked red. Adopted from [34].
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Figure 14: A schematic picture of the free energy landscape of a polymer chain
passing through a hole [27]. The 'distance' on this plot is the reaction coordinate,
which, in our case, is the number of monomers already translocated. Adopted
from [27].
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Figure 15: A schematic picture of the type B event of α-hemolysine pore translo-
cation. Part A depicts the event while parts B and C show two possible ways the
translocation may be. Green circles on (Figure15 B,C) specify where the chain
end(s) are '�xed' to compute the free energy barrier.
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Figure 16: The schematic layout of the pore (A) and its model (B). Internal
region of the cavity (regions 2 and 3) is �lled with solvent(water). The boundary
layer of the solvent has, however, di�erent ε. The outer layer is protein and lipid
membrane(with much lower ε).
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Figure 17: The generalized Rasmussen-Kolasakis algorithm [3] for a charged chain.
It takes few dozen iterations for this thing to converge (up to 4th digit). The
initial('seed') density needs to be provided separately. ρp(r) here is that of formula
(10). ∆t is chosen to be 0.1-0.2.
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Figure 18: The 'heat �uxes' out of the spherical coordinate cell.
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Figure 19: Dependence of the free energy barrier of the polyelectrolyte chain on
the polymer length(in the number of segments) for di�erent values of the ring
charge. The 2 curves are for Q = 5, the 3 one is for Q = 2.5, and ∇ is for Q = 0
respectively. Here lB = l = 1, R = 4, f=0.75, Ns = 25. ε mismatches are taken to
be 0.1
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Figure 20: Dependence of the free energy barrier of the polyelectrolyte chain on
the polymer length(in the number of segments) for di�erent values of the ring
charge. The 2 curve is for Q = 5, the 3 one is for Q = 2.5, and ∇ is for Q = 0
respectively. Here lB = l = 1, R = 4, f=0.5, Ns = 25. ε mismatches are taken to
be 0.1
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Figure 21: Dependence of the free energy barrier of the polyelectrolyte chain on the
polymer length(in the number of segments) for di�erent salt concentrations. Here
lB = l = 1, R = 4, f=0.5. The two lower curves are given for ∇-Ns = 25,Q = 5;
4-Ns = 25,Q = 0 . The two upper curves are given for 2-Q = 5,Ns = 100;
3-Q = 0,Ns = 100 ε mismatches are taken to be 0.1
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Figure 22: Dependence of the free energy barrier of the polyelectrolyte chain on
the polymer length(in the number of segments) for di�erent ring charge positions.
Here lB = l = 1, R = 4, f=0.5 and the salt concentration 0.25M(25x2 ions). The
regular position, where the charge is centered at the ring and the charge spread
is 0.2π is depicted on ∇ curve. The situation with the charge moved 0.5 units of
persistence length away from the center of the cavity is depicted on the 3 curve.
Finally, the situation for the charge spreaded over 0.3π and localized at the ring
(the same as the �rst one) is depicted on the 2 curve. ε mismatches are taken to
be 0.1
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Figure 23: Dependence of the free energy barrier of the polyelectrolyte chain on
the polymer length(in the number of segments) for di�erent position of the �rst
segment. Here lB = l = 1, R = 4, f=0.5, the salt concentration 0.25M(25x2 ions)
and the �rst segment is positioned 0.5 units of persistence length toward the center
of the cavity. The ring charge is zero(3 curve) and 5e(2 curve). ε mismatches are
taken to be 0.1
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Figure 24: Dependence of the free energy barrier of the polyelectrolyte chain on
the polymer length(in the number of segments) for di�erent values of ε mismatch.
Here lB = l = 1, R = 4, f=0.5 and the salt concentration 0.25M(25x2 ions).ε
mismatches are taken to be 0.1 and 1.
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Figure 25: The procedure to attached a phosphate divalent charged group to the
end of NaPSS chain.
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