


Modernity is further confirmed by using only samples with at least one independent
verification of modern deposition made in the vicinity of the sample. For example, nearby
sediment might contain:

e high sediment chlorophyll [e.g. Pirtle-Levy et al., 2009],

e detectable 'Be (half life = 53 days), generally deposited by recent precipitation
[Grebmeier and Cooper, 1995],

e high total organic carbon [e.g. Grebmeier and Cooper, 1995],

e orlong chain (>3 individuals) colonies of diatoms in the sample.

We compare this sediment dataset to two different time-averaged sea ice concentration
datasets: 10 years prior to sample collection and 30 years prior to sample collection. For the
older sea ice dataset, monthly sea ice concentrations were interpolated from Chapman and
Walsh [1991]. This dataset compiles ship observations, interpolations from government ice
charts, and calculated ice concentrations based on climatology [Chapman and Walsh, 1991].
Newer monthly sea ice concentrations were derived using brightness temperatures from the
Special Sensor Microwave/Imager (SSM/1) passive microwave satellite data [Cavalieri et al.,
1996]. SSM/I data have been available since 1978 as either daily or monthly ice concentrations
for 25 km? pixels. All sea ice concentration data was averaged over the sea ice bloom season
(March, April, May, and June).

Finally, the database was culled randomly so that there was an equal number of samples
(5) in each 5% sea ice concentration bin and the dataset spans a gradient of sea ice
concentration (0-95%). Several bins of ice concentration remain that have fewer than five
samples in them. A request for additional samples from these locations is pending.

Recently collected samples were analyzed for diatom assemblages following the

protocols laid out in Chapters 3 and 4. Data from the 1969 archived smear slides show that
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several diatom species were grouped together during analysis in the 1980s [e.g. Sancetta, 1982]
that have distinct ecological preferences we recognize now for certain types of sea ice. For
example, in earlier work, all Fragilariopsis species were grouped together. However, there are
five Fragilariopsis species in the Bering Sea and some have a stronger affinity for the marginal
ice zone than others [Lundholm and Hasle, 2010]. Additionally, many pennate benthic diatoms
were grouped together in the past, but there are many pennate benthic diatoms that attach to
sea ice and bloom with the epontic bloom, and others that live exclusively in the shallow, neritic
zone. Because of this earlier grouping of species, smear slides are currently being recounted.

The final step in creating this proxy is to use machine learning techniques to create
transfer functions that relate diatom assemblages to average sea ice concentration. Validation
of this proxy will be done using additional Haps core tops from across the Bering and Chukchi

seas that were not included in the transfer functions.

6.7 Diatom Morphology and Sea Ice Concentration

Recent findings in the Southern Ocean suggest that certain diatom species (i.e.
Thalassiosira antarctica Comber) adjust the number of areolae per micron based on upon the
type of ice they live in [Taylor and McMinn, 2001]. | am inspired by this to look for a link
between the number of areolae per micron on centric diatoms such as Thalassiosira trifulta
Fryxell and Thalassiosira antarctica var. borealis Fryxell, Doucette, and Hubbard as a function of
mean annual duration of sea ice today in the Bering and Chukchi seas. Likewise, Fragilariopsis
oceanica occurs in both plankton and ice and has been observed to be longer in length when
living in the ice. In addition, there are two different morphologic clades of F. oceanica,
[Lundholm and Hasle, 2010]. It’s possible that one clade contains individuals which are longer

than the other, and this is the morphotype that is associated with sea ice. | plan to measure the
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length and width of several Fragilariopsis species in order to look for a connection between
length and sea ice concentration. Paralia sulcata is a neritic species that forms long colonies
[Crawford, 1979] that are often preserved in sediments even hundreds of thousands of years
old. The valves are heterovalvular, meaning that the outer most valves on the colony have much
less developed ridges and grooves on the valve face than their inner counterparts. So, it is easy
to determine the average colony length by counting the relative number of outer valves vs.
inner valves. In Antarctica, Eucampia varies the length of its colony based on SST [Fryxell, 1991].
Perhaps Paralia sulcata responds to changing temperature or sea ice in a similar way. This is

another species whose morphology | will explore in the future.

6.8 Laminated Sediments in the Bering Sea

The sediments recovered during IODP Expedition 323 can provide centennial- to
millennial-scale resolution of variability in sea-ice extent and duration across the region, and
laminated intervals during both glacial and interglacial periods may provide the opportunity to

reconstruct seasonal- to decadal-scale variability as well.

6.8.1 Pliocene Laminations from Bowers Ridge

Laminated sediments occur near the Pliocene-Pleistocene boundary at Site U1340 on
Bowers Ridge. The laminations appeared as centimeter scale alternations of almost mono-
specific diatom mats (Lioloma pacificum) with diatom-rich silt. X-radiographs and epoxy
embedded thin sections revealed sub-millimeter scale laminations throughout the section. Work
is in progress on a 60 cm long interval, dated to either 3.0 Ma or 2.5 Ma (due to uncertainties
with the preliminary age model) from these Late Pliocene laminations. The primary methods
used to characterize the laminations include scanning electron microscope (SEM) analyses,

backscatter electron images (BSEI) and light microscope analysis of diatom assemblages.
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Exp 323 Site U1340A was subsampled between 446.385 and 446.895 mbsf using a
sediment slab cutter. The u-channel sections were freeze-dried and then epoxy embedded using
a fluid displacement technique [e.g. Ellis, 2006; Pike and Kemp, 1996]. A total of nine sediment
slabs were turned into polished thin sections and scanned at 2400 dpi under both plane
polarized and cross polarized light (Figure 6.6) to aid in lamination and sedimentary fabric
characterization. Scanned images will be analyzed using the software ImageJ to count laminae
pairs or triplets and to determine the thickness of individual lamina. A mosaic of low
magnification (60x) BSEI was used as a map of the core.

Small, 0.5 cm x 0.5 cm x 4 cm long, slabs were cut from two laminated sections of the
U1340A core in order to image the laminations in finer detail. General species composition,
degree of fragmentation, and clay content were recorded continuously along the slabs. In
addition, two thick white layers within this core were sliced along the top contact of the layer.
SEM analysis of these layers reveals the mono-specific mats of Lioloma sp. mentioned above.
This genus is generally found in subtropical to temperate latitudes, especially the Mediterranean
Sea [Hasle, 2001], and may be reflective of extreme Pliocene warmth here in the Bering Sea.

Thin sections and SEM analysis reveal sub-millimeter-scale laminations throughout the
section. Laminations can be broadly categorized as one of four types (Figure 6.6):

1) Lioloma type lamina—dominated by mats of Lioloma sp. With rare Neodenticulopsis

seminae (Pacific water tracer) and other species present.

2) Coscinodiscus (upwelling indicator) type lamina—dominated by Coscinodiscus sp.
frustules stacked one on top of another with layers of other species above and
below.

3) Mixed lamina—made up of higher diversity assemblages or very highly fragmented

diatom pieces.
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Figure 6.6. Preliminary investigations of a 60 cm long, Pliocene laminated interval collected in a
sediment core from the Bowers Ridge (IODP Exp 323, Site U1340A, 52X-6H, 28.5-79.5 cm). We
show the line scan image, core x-ray, and scans of thin sections. Low resolution SiO, and Fe,O,
from XRF scanning is overlaid on the core images. Representative scanning electron microscope
images are shown for three of the characteristic laminae.
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4) Clay type lamina—dominantly to entirely composed of clay minerals.

There are at least three very different mechanisms that may explain these laminations.
They may be seasonally or decadally deposited. Repeating patterns of diatom assemblages and
thick mats of Lioloma sp. support this scenario. Layer counting combined with high resolution
age dating will be necessary to confirm this. Laminations may reflect changes in the direction of
sea floor sediment transport. Instances of onlap and downlap, especially at the base of the
section, support this scenario. Additionally, clay type lamina and laminations with high silt
content may be due to increased sediment transport from the Aleutian Islands. Or, laminations
may simply be related to soft sediment deformation. BSEI evidence for this includes folded and
undulating layers of large centric diatoms, numerous examples of non-parallel laminations, and
possible micro-burrow infilling by large centric diatoms.

Very little evidence of sea ice was found throughout the Plio-Pleistocene section. Sea ice
diatoms are very rare (2-3 frustules were seen during detailed SEM analysis). However, the
transport mechanism for the silt and clay remains unknown. Elemental data from XRF scanning
is not yet fine enough resolution to reflect changes in individual laminations, however we expect
that these three lamination types might have characteristic geochemical signatures or may even
aid in clay mineral identification. Higher resolution XRF scanning, analysis of lamina thickness

and periodicity, and detailed diatom assemblage counts are in progress.

6.8.2 Quaternary Laminations from the Shelf-Slope Break

During the IODP Exp 323, three types of Quaternary laminations were observed at Site
U1345. A correlation was tentatively drawn between interglacials and biogenic-rich laminations
and between glacial and siliciclastic-rich laminations. The first variety was proposed to be

controlled by high productivity events, and the latter variety by changes in intermediate water
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ventilation [Takahashi et al., 2011]. | plan to collaborate with Mea Cook at Williams College to
combine high resolution lamination investigations (similar to the procedures described above)
with high resolution foraminiferal isotopic work and statistical methods such as wavelet
analysis. The goals of this project are three-fold:

1) to determine the temporal frequency of laminated sediments,

2) to better understand the mechanisms controlling lamination deposition,
whether it has to do with productivity, changes in ventilation, or a combination
of the two, and

3) to characterize the sedimentological make-up of the laminations.

Preliminary work combining the age model in development by Cook and orbital
parameters suggests that there may be a periodicity related to lamination development (Figure
6.7), although there is no single orbital configuration that is always present when laminations
are deposited. It is plausible that during the glacial periods, laminations are deposited during
Dansgaard-Oeschger events (Figure 6.x.), but again, this is not an absolute relationship. There

are many D-O events that do not have an associated laminated interval.
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CHAPTER 7
CONCLUSIONS

This dissertation uses diatoms to investigate past changes in sea ice and related sea
surface conditions in the Bering and Chukchi seas. One of the primary objectives was to
document environmental change on various time scales. This was achieved by examining
modern sedimentation, decadal-scale change in the very recent past, and centennial- to
millennial-scale changes 400 ka. This thesis advances our understanding of how sea ice drives
and interacts with the climate system and how primary producers react to and record climatic
changes.

A solid foundation of knowledge concerning the diatom distribution across the Bering
Sea shelf underlies the interpretations of climatic change presented. Currently, there is no
central repository of diatom taxonomy; all descriptions and changes in classification are
published in a wide array of journals and historical monographs. Chapter 2 collects these
references into a single document that summarizes the taxonomic richness of the Bering Shelf. It
builds on previous work by Sancetta [1982] by separating out groups of diatoms, specifically ice-
related pennate diatoms and the Chaetoceros resting spore morphotaxa, and by updating taxa
ranges. This work not only informs the rest of the dissertation, but will also be useful for training
students in diatom identification in the future.

There were two main objectives for Chapter 3. The first was to determine if Bering Sea
shelf sediments were appropriate recorders of the modern surface environments so that diatom
assemblages and organic biomarkers found in these sediments could later be correlated with
modern environmental conditions. Chapter 3 concludes that the top 1 cm of sediments on the
Bering Sea shelf represent several years to decades of deposition and not hundreds to

thousands of years. The second objective was to determine if the bioturbated shelf sediments
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were recording the physical and biological changes occurring in the Bering Sea over the past
several decades. It concludes that changes in the Pacific Decadal Oscillation and the strength of
the Aleutian Low are reflected as subtle changes in diatom assemblages down-core and in
samples collected 40 years apart. Specifically, changes in diatom accumulation rate, Chaetoceros
resting spores, and sea-ice diatoms appear to reflect changing productivity and sea ice regimes.
One of the primary science questions that initiated this dissertation was, “What was the
sea ice variability at finer than Milankovitch-scale temporal resolution in records older than
marine isotope stage (MIS) 5?” Chapter 4 examined this question by presenting a record of sea
surface changes during the transition from glacial stage 12 to glacial stage 10 at a site proximal
to the current marginal ice zone. This chapter concludes that diatom assemblages at this site
reflect changes in upwelling, sea ice, glacial ice, and potentially even current direction. It shows
that in the Bering Sea, the glacial termination preceding MIS 11 was highly productive with
reduced sea ice. At this time, shelf-derived nutrient pulses due to flooding of the Bering Land
Bridge may have triggered the development of laminated sediments. Peak MIS 11 was marked
by a brief, regional expansion of glaciers while sea level was at its highest point. This glaciation
was driven by unusually humid conditions, decreasing insolation, and reduced seasonality.
Finally, Chapter 4 concludes that when North Atlantic Deep Water (NADW) formation is vigorous
in the North Atlantic, productivity is high in the Bering Sea. A short-term decrease in NADW
strength at 410 ka may have triggered a reversal in the flow of water through Bering Strait.
Proxy development was a focal point of my dissertation and this thesis succeeds in
building a solid foundation on which to base a diatom-based sea ice proxy for the Bering Sea in
the near future. In Chapter 3, | suggested that studies using the top 1 cm of sediments for proxy
calibration compare sediment characteristics to 10 to 30 years of climate data. The diatom-

based sea ice proxy that is in development will calibrate surface sediments with two different
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environmental databases to determine the best fit: a 10-year average of sea surface conditions,
or the 30 year climatological mean. Chapter 5 begins this proxy calibration by comparing a 10-
year average of sea surface temperature and sea ice concentration during the spring (March,
April, May, June) with the molecular biomarker, IP,s. | propose that changes in the
concentration of IP,5in the sediments may be related to the length of time that the epontic

diatom bloom lasts.
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