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ABSTRACT 
 

IRON STATUS, INFLAMMATION AND ANEMIA  
IN BANGLADESHI WOMEN EXPOSED TO ARSENIC  

 

FEBRUARY 2011 

JOYCELYN FARAJ, B.S. UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Alayne Ronnenberg 

 

Iron depletion is the most common nutrient deficiency worldwide and is the 

leading cause of anemia. The prevalence of anemia in Bangladeshi women has 

been estimated by others at 45%, but the prevalence of iron depletion (ID) and 

iron deficiency anemia (IDA) in these women remains unknown. Chronic arsenic 

(As) exposure, which is a major public health problem in Bangladesh, is 

associated with increased risk of anemia.  Arsenic exposure also triggers 

inflammatory responses that alter iron parameters, including serum ferritin, 

rendering IDA assessment more challenging. We assessed the prevalence of ID 

and IDA in 147 Bangladeshi women, ages 18-33 years, who participated in a 

larger study of arsenic exposure and skin lesions. The current study includes 75 

women with skin lesions (cases) and 72 women without lesions (controls). Blood 

samples, anthropometric, sociodemographic and dietary data were collected at 

enrollment. Hb, ferritin and hs-c-reactive protein (CRP) were measured in serum. 

Overall, the prevalence of anemia (Hb < 120 g/L) was 18%.  Although the 

prevalence of ID (ferritin ≤12mcg/L) did not differ between cases and controls, 
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the prevalence of anemia  was almost three times higher among women with 

arsenic-related skin lesions compared with controls (25% vs 10%, respectively; 

p=0.02). Of the women with anemia, 27% (N=7) also had ID (Hb<120g/L and 

ferritin ≤12 mcg/L), indicating IDA. Women with normal iron status had double the 

concentration of toenail arsenic compared to iron-depleted women (2.9 vs 1.4 µg 

As/g toenail; p=0.00). In addition, the arsenic concentration of their water source 

was three-times higher than that of iron-depleted women (18.8 vs 6.2 µg As/L; 

p=0.03). Mean CRP was higher in cases than controls (p=0.04) as well as in 

those with serum ferritin >12mcg/L compared to those who were iron deplete 

(p=0.02). In multivariable logistic regression,. the risk of ID was 84% lower in 

women ages 29-33 compared to women ages 18-22 (OR=0.16, 95% CI=0.04, 

0.56); every 1µg increase in toenail As level was associated with a 45% lower d 

risk of ID (OR=0.55 , 95% CI=0.33, 0.94).The presence of inflammation 

decreased the odds of being classified as  ID by 80% (OR=0.20, 95% CI=0.04, 

0.96).  Much of the anemia in this cohort appears unrelated to iron deficiency, but 

could be linked to other nutrients, such as folate and vitamin B12, which are 

involved in both hematopoiesis and arsenic metabolism. It is possible that 

arsenic exposure in this cohort compromised folate and vitamin B12 status. 

Because these vitamins are also important during pregnancy, additional studies 

are needed to assess B-vitamin status in arsenic-exposed women and to 

determine whether B-vitamin status influences reproductive outcomes in these 

women. 
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CHAPTER 1 

 

INTRODUCTION 

 

Iron deficiency is one of the most common nutrient deficiencies, affecting 2 billion 

people worldwide.  It is also the leading cause of anemia (WHO, 2005), and 

therefore contributes to disability and death. In developed areas of the world, 

only about 8% of the population has anemia, but in developing regions, the 

percentage of anemia averages 36% (Crichton, 2006).  Estimates of the national 

prevalence of anemia in Bangladesh have remained constant at 74% for the past 

30 years; this high rate of anemia is a major public health concern for 

Bangladesh, causing a loss of productivity totaling 1.9% of the national gross 

domestic product (Ahmed, 2000).   

 

According to the World Health Organization (WHO), approximately 50% of all 

cases of anemia, defined as hemoglobin concentration less than 120 g/L in non-

pregnant adults, can generally be attributed to iron deficiency (WHO, 2005), and 

the leading cause of iron deficiency is dietary inadequacy.  In women of 

reproductive age, menstrual losses also contribute considerably to iron 

deficiency.  In developing countries, such as Bangladesh, parasitic infections 

such as malaria and hookworm also contribute to iron deficiency (WHO, 2005). In 
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addition to iron, deficiencies of other micronutrients, including folate and vitamins 

B12, B6, and A also contribute to anemia (WHO, 2005; Ronnenberg et al., 2000). 

 

Iron deficiency and anemia hinder normal human functions in all age groups, 

reducing work performance (Haas JD, 2001). Maternal iron deficiency can also 

result in adverse pregnancy outcomes, including preterm delivery and lower birth 

weight (Allen, 2000; Ronnenberg et al, 2004).  Impaired immune responses, 

gastrointestinal abnormalities, changes in the hair and nails, impaired 

thermogenesis, altered thyroid metabolism, and changes in catecholamine 

turnover have also been observed in subjects with iron deficiency (Crichton, 

2006). 

 

In addition to its high prevalence of anemia, Bangladesh also faces a major 

health challenge: chronic arsenic poisoning.  An estimated 57 million 

Bangladeshis are chronically exposed to arsenic via drinking water (British 

Geological Survey, 2001). The mechanism of arsenic toxicity remains largely 

unknown; however, there is evidence that arsenic poisoning may influence 

hematological variables (Hernandez-Zavala et al., 1999; Szymanska-Chabowska 

et al. 2002; Tchounwou et al, 2003).  In vivo and in vitro studies have shown that 

arsenic can bind to animal and human hemoglobin (Delnomdedieu et al. 1995; 

Lu et al, 2004; Winski & Carter, 1995) and can alter heme metabolism, 

hemoglobin concentration and red blood cell morphology (Delnomdedieu et al, 

1994; Flora et al 2005; Kannan et al, 2001).  Other studies found that chronic 
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ingestion of arsenic-contaminated drinking water altered heme metabolism by 

increasing the activity of two key enzymes in heme metabolism, porphobilinogen 

deaminase and uroporphyrinogen decarboxylase, in peripheral red blood cells 

and increasing total urinary excretion of porphyrins (Hernandez-Zavala et al. 

1999).  

 

The effects of chronic arsenic toxicity on the heme system and on iron status 

remain largely unexplored.  The main goal of this research project is to study the 

relationship between biomarkers of iron status, inflammation, anemia, and 

arsenic-associated skin lesions in women of reproductive age from Bangladesh.   
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CHAPTER 2 

 

IRON 

 

2.1 Introduction and Biological Functions 

Iron (Fe) is an essential nutrient, for numerous biological processes, including 

electron transfer reactions and substrate oxidation-reduction, regulation of gene 

expression, binding and transport of oxygen, and regulation of cell growth and 

differentiation (Beard, 2006)   Although essential, iron can also be a potential 

toxicant to cells, hence its bioavailability is highly regulated by various complex 

mechanisms. The regulating mechanisms used by the body include control of 

dietary iron absorption, iron entry into cells, intracellular storage of iron as ferritin, 

release of iron from cells, and sequestering of free iron by iron binding proteins. 

 

Iron exists in two oxidation states in aqueous solution, ferrous iron (Fe2+) and 

ferric iron (Fe3+), and it can change from one state to the other by the subtraction 

or addition of an electron.  Certain reducing agents, such as vitamin C (ascorbic 

acid) can convert ferric iron to ferrous iron.  Exposure to oxygen can also convert 

ferrous iron to its ferric form.  This inter-conversion of oxidation states is essential 

for electron transfer reactions as well as for reversible binding to ligands.  
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Preferred ligands of iron include oxygen, nitrogen and sulfur atoms (Beard, 

2006).  

 

 2.1.1 Iron-Containing Proteins 

Most of the iron in plant or animal cells is stored within large complex proteins 

such as hemosiderin or ferritin.  The remainder of the iron is either contained as 

an essential functional component within proteins and enzymes, or in iron 

transport proteins (Beard, 2006).  The main categories of iron-containing proteins 

in mammals include heme-containing hemoproteins (e.g., hemoglobin, 

myoglobin, and cytochromes); iron-sulfur cluster-containing enzymes (such as 

flavoproteins); iron storage proteins (e.g., ferritin); iron transport proteins (e.g., 

transferrin, lactoferrin); and iron-dependent enzymes (Beard 2006).   

 

Heme-proteins: The key function of iron is to move oxygen from the environment 

to terminal oxidases.  Oxygen is bound to iron in the porphyrin ring of the heme 

moiety in hemoglobin, found within red blood cells (RBC), or in myoglobin, the 

facilitator of oxygen diffusion in tissues (Beard, 2006).  Hemoglobin (Hb, MW 64 

KDaltons) is a tetrameric protein with two pairs of identical subunits (alpha-2 and 

beta-2).  Each of the subunits has one heme (iron-protoporphyrin-IX) prosthetic 

group whose ferrous iron reversibly binds dioxygen.  The four subunits of Hb are 

not covalently attached, but they do react cooperatively with dioxygen, with 

specific modulation by pH, carbon dioxide pressure, organic phosphatases, and 

temperature, all of which determine the efficiency of oxygen transfer from the 
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Figure 2.1:  Hemoglobin molecule. Iron in heme group binds to the center 
of the alpha and beta chains of hemoglobin. 
 
Sylvia S. Mader, Inquiry into Life, 8

th
 edition. The McGraw-Hill Companies © 1997 

alveoli capillary interface in the lungs to the red blood cell/capillary tissue 

interface in peripheral tissues (Beard, 2006).  Decreasing pH causes an allosteric 

effect (Bohr effect) that decreases the binding affinity of heme iron for dioxygen, 

thus improving the release of oxygen in tissues where the pH is lower and the 

CO2 pressure is higher than in arterial blood (Beard, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

Fe-S Proteins:  Another group of iron-containing proteins are iron-sulfur cluster 

proteins.  These proteins contain iron-sulfur centers with equal numbers of iron 

and sulfide ions (2Fe-2S and 4Fe-4S).  They are usually involved in electron 

transfer reactions, and include proteins of the mitochondrial electron transport 

chain as well as various mini-electron transport systems (Beard, 2006).  Some 
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Fe-S proteins also have functions in catalysis and biological sensors for iron, 

oxygen, and superoxide (Flint and Allen, 1996).  

 

Fe Storage Proteins:  The proteins involved in iron storage are ferritin and 

hemosiderin.  These proteins play a key role in cellular ―housekeeping‖ in most 

cells by sequestering free iron, thereby preventing the unwanted effects of iron-

catalyzed free radical generation or iron oxidation and precipitation.  In addition, 

these proteins serve as an iron reservoir in specialized cells involved in iron 

metabolism, such as macrophages of the reticuloendothelial system and 

parenchymal cells of the liver (Beard, 2006).  

 

The apo-ferritin (iron-free) molecule has a molecular mass of approximately 500 

kDaltons, and can hold up to 4,500 iron atoms in a non-toxic, water-soluble, yet 

bioavailable form (Crichton, 2006).  The mechanism of iron release from the 

ferritin molecules is not well understood, but appears to involve reducing 

conditions and a more acidic pH (Crichton, 2006).  The iron-storage protein 

ferritin is primarily an intracellular protein; however, minor amounts of ferritin are 

present in the circulation in proportion to iron stores.  Plasma ferritin, unlike 

intracellular ferritin, is glycosylated and relatively iron-poor.  Ferritin is a positive 

acute-phase reactant, and as such is elevated in states of inflammation.  

 

Ferritin is a soluble protein, but can be degraded to insoluble hemosiderin, which 

accumulates in lysosomes and also acts as a storage form of iron that is 
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available for protein and heme synthesis (Ward et al, 1994). Hemosiderin is 

insoluble and particulate, with a granular appearance when stained, as opposed 

to ferritin, which is soluble and has a non-granular light blue staining of the 

hepatocytes or macrophage cytoplasm (Batts, 2007).  Increased hemosiderin 

deposition in the liver and in biliary epithelium is observed mainly in conditions of 

iron overload (i.e., hereditary hemochromatosis and transfusion-dependent 

hemoglobinopathies) (Crichton, 2006).   

 

Fe Transport Proteins:  Transferrin is the major plasma protein involved in iron 

transport throughout most of the extracellular fluids of the body, with a 

continuous circulation from the blood to interstitial fluid.  It is a glycoprotein, 

synthesized mainly in the liver, containing two iron-binding sites, encoded on 

chromosome 3 (Crichton, 2006).  The protein is composed of a single 

polypeptide chain of approximately 680 amino-acid residues, with two similar 

amino- and carboxy- terminal lobes, each organized into two distinct domains; 

each lobe contains an iron-binding site.  Transferrin‘s affinity for Fe3+ is high (Kd 

10-19 to 10-20 M).  There are six atoms required for iron binding, four of which are 

provided by the protein (one aspartate, one histidine, and two tyrosine residues) 

and the remaining two are provided by a carbonate anion, which is essential for 

iron binding (Crichton, 2006).  Conformational changes take place during the 

binding and release of iron.  When the iron-binding site is free, the protein adopts 

an open conformation, and when iron is bound in the presence of the carbonate 
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anion, the transferrin iron binding sites take up a pincer-like closed position 

around the iron atom (Crichton, 2006).  

 

2.2 Iron Absorption 

 
Intestinal iron absorption depends on three conditions: the iron content of the 

diet, the bioavailability of the dietary iron, and the capacity of the mucosal cells to 

absorb the iron (Crichton, 2006).  There are two kinds of dietary iron: heme and 

non-heme or inorganic iron.  Iron-replete persons will absorb proportionally less 

of any amount of non-heme iron consumed than will those who are iron-deficient. 

This type of selective absorption is the main mechanism by which iron is 

regulated in the human body (Beard, 2006).  The recommended dietary intake of 

iron for adults is around 13-18 mg per day, out of which only 1 mg is absorbed.  

Even in iron deficiency, absorption is only increased to approximately 2-4 

mg/day, and in iron overload, it is reduced to 0.5 mg/day (Miret, 2003).  

 

2.2.1 Non-Heme Iron Absorption 

 

Most dietary iron occurs in the non-heme form, which is present in foods as 

either the reduced ferrous (Fe2+) or the oxidized ferric (Fe3+) form. Non-heme iron 

is found in both plants and animal sources; in plants, it is present in three major 

forms: as metalloproteins (plant ferritin), as soluble iron in the sap of xylem, 

phloem and plant vacuoles, and as nonfunctional iron complexed with plant 

structural or storage components, primarily in the form of phytates.  A large 

amount of dietary non-heme iron is present as contaminant ferric oxides and 
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hydroxides.  In animal-derived foods, iron can be found in meat products as 

ferritin and hemosiderin; in egg yolk, it is bound to the phosphoprotein 

phosphovitin, and in milk it is bound to lactoferrin or associated with fat globule 

membranes and low molecular weight compounds (such as citrate) (Crichton, 

2006).   

 

Upon entering the stomach, non-heme iron is acted upon by gastric juices 

containing pepsin and hydrochloric acid, which reduce ferric to ferrous iron, 

making it more bioavailable.  Iron is better absorbed in the upper small intestine, 

mainly in the duodenum, where the low pH enhances its solubility (Miret, 2003).  

Under normal physiological conditions (i.e. normal pH and presence of oxygen), 

ferrous iron is quickly oxidized to ferric iron and precipitates as ferric 

oxyhydroxides; precipitation  tends to occur in the luminal contents of the 

gastrointestinal tract as the pH increases.  However, the slightly acidic 

microclimate in the duodenal surface (pH 6-6.5) helps maintain significant levels 

of iron in the ferrous form, as does cell surface reductase activity.  This 

microclimate also provides a proton gradient directed toward the cell interior, 

creating an additional driving force for iron uptake into the enterocyte (O‘Riordan 

et al., 1995). 

 

Non-heme iron is thought to be taken across the brush-border membrane of the 

enterocyte after being reduced from ferric to ferrous iron by an apical or brush 

border ferric reductase called duodenal cytochrome b (DCYTB). Once iron is 
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reduced by ascorbic acid or other reducing agents, ferrous iron can be 

transported by the divalent metal ion transporter (DMT1), which transports only 

ferrous iron (Gunshin, Mackenzie et al, 1997).  Iron deficiency and hypoxia  

stimulate duodenal expression of DMT1, DCTYB and ferroportin (an iron 

exporter), leading to increased iron absorption (Zimmermann and Huller, 2007). 

 

2.2.2 Heme Iron Absorption 

 
Hemoglobin and myoglobin from animal foods are the main protein sources for 

heme iron. Heme iron has a high intrinsic bioavailability and is soluble in an alkali 

environment.  Heme is released from hemoglobin during digestion in the small 

intestine and is thought to then bind to a specific receptor on the enterocyte, after 

which it is internalized via endocytosis (Crichton, 2006). Absorbed heme is acted 

upon by heme oxygenase 1 (HOX1) in the enterocyte to release iron to the 

soluble cytoplasmic pool (Beard, 2006).   Release of iron from heme by HOX1 

appears to be the rate-limiting step in heme-iron absorption (Crichton, 2006). 
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Figure 2.2:  Transport of heme and non-heme iron through enterocyte 

Zimmermann MB & Hurrell RF. Nutritional Iron Deficiency. Lancet. 2007 Aug 11;370(9586):511-20  

 

 

 

2.3 Iron Stores and Mobilization 

 
Once inside the enterocyte, iron from both heme and non-heme sources enters a 

low molecular-weight pool, where it can either be stored in the mucosal cell as 

ferritin or it can be transported across the basolateral membrane into the plasma 

by the transmembrane protein ferroportin 1, also known as IREG-1 (Crichton, 

2006).  This pool of intracellular transit iron is referred to as ―labile iron‖.  

 

In order for absorbed iron to be incorporated into apotransferrin, it needs to be 

oxidized to its ferric form either by hephaestin (a membrane bound protein) or by 

ceruloplasmin (the main copper-containing protein in the serum) (Crichton, 
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2006).  The main route of iron delivery to cells is mediated by the transferrin 

receptor on the cell surface, whose concentration is directly influenced by cellular 

iron status. The delivery of iron to cells via transferrin is dependent on the 

expression of transferrin receptors, which have a high affinity for saturated 

transferrin (Crichton, 2006). 

 

Regulation of transferrin receptor synthesis is mediated by iron-response 

proteins (IRPs) binding to mRNA iron- response elements (IREs) (Casey, Hentze 

et al, 1988).  As the cellular pool of low-molecular-weight iron decreases, there is 

an up-regulation of iron uptake into cells, and a down-regulation of the synthesis 

of iron storage proteins; this mechanism is exerted via the action of iron 

regulatory proteins (IRP-1, IRP-2) that regulate transferrin receptor and ferritin 

mRNA translation (Beard, 2006). 

 

2.4 Iron Homeostasis 

 
The mean serum iron level is approximately 20 micromol/L, and the normal 

plasma transferrin concentration is approximately 30 micromol/L. Each transferrin 

has two slots for iron; consequently, transferrin is normally about a third 

saturated with iron (Crichton, 2006). Plasma transferrin typically carries about 3 

mg of iron. A decline in the iron storage pools to 15% saturation of iron binding 

sites results in less than adequate iron being delivered to essential body iron 

proteins (Beard, 2006). 
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Figure 2.3:  Iron stores and mobilization throughout the body.  
 
Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986-95. 
 

 

 

 

 

 

The major pathway of iron turnover involves the release of iron from the 

hemoglobin of destroyed erythrocytes, followed by degradation of myoglobin and 

iron-containing enzymes (Sherwood et al, 1998).  About 85-90% of the body iron 

stores are found in the erythroid mass.  Red blood cells, which have an average 

lifetime of 120 days, contain about 80% of the body‘s functional iron (Crichton, 

2006).  The formation of RBC requires about 30 mg of iron daily, which is 

balanced by an equal flux of iron from the breakdown of senescent red blood 

cells by the reticuloendothelial cells in the spleen and Kupffer cells (Miret, 2003).  

About 85% of iron derived from hemoglobin degradation is re-released to the 

body in the form of iron bound to transferrin or ferritin (Crichton, 2006).  
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In the erythroid iron cycle, senescent red blood cells are broken down mainly by 

macrophages in the spleen, and the extracted iron is returned to the circulation 

where it binds to transferrin.  Plasma transferrin then binds to specific transferrin 

receptors (TfRs) on surface of cells.  The number of transferrin receptors on a 

cell‘s surface reflects the cell‘s iron requirements; the cells that require the most 

iron are the nucleated red cell precursors in the bone marrow that synthesize 

hemoglobin: these have the greatest number of receptors (Baker, 1994). 

Transferrin binds to the receptors on these erythroid precursors in the bone 

marrow, and the cycle is completed when new RBCs enter the circulation in the 

following 7-10 days. Iron absorption increases during enhanced erythropoietic 

activity. The rate of erythropoiesis is regulated by the concentration of 

erythropoietin, produced by the kidneys (Crichton, 2006).  Iron deficiency 

increases iron transfer through the cycle to by stimulating increased ferroportin 

expression on macrophages, hepatic synthesis of transferrin, and expression of 

transferrin receptor (TfR1) in the bone marrow and other tissues (Zimmermann 

and Huller, 2007). 

 

Two essential regulators of iron absorption recently identified are hepcidin, an 

antimicrobial peptide synthesized by the liver (Ganz, 2003), and hemojuvelin, a 

426-residue protein that shows homology to a molecule involved in axonal 

guidance in the central nervous system (Papanikolaou et al., 2004). Hepcidin is 

an antimicrobial peptide that was shown to be involved in regulation of iron 
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homeostasis in animal studies (Nicolas et al., 2001; Pigeon et al., 2001).  The 

mRNA for murine hepcidin appears to be upregulated during parenteral or dietary 

iron overload as well as during immune stimuli (treatment with 

lipopolysaccharide) (Crichton, 2006). Hepcidin is a negative regulator of iron 

uptake in the small intestine and of iron release from macrophages (Crichton, 

2006). In the absence of hepcidin, there is both increased absorption of dietary 

iron, leading to iron overload, and uncontrolled release of iron sequestered by 

macrophages, resulting in splenic iron deficiency (Crichton, 2006). In vitro studies 

have shown that interleukin-6 (IL-6) induces hepcidin during inflammation 

(Nemeth et al., 2004).  Plasma hepcidin binds ferroportin and blocks iron uptake 

from the duodenum and prevents iron release from macrophages (Crichton, 

2006). Not much is known about how hemojuvelin functions, but it appears its 

action involves the regulation of hepcidin expression (Crichton, 2006).  

 

Body iron losses are relatively small (1-2 mg per day), consisting of losses via 

epithelial cells (skin, gastrointestinal cells, urinary tract cells) and fluids (tears, 

sweat, and menstrual losses) (Miret, 2003).  These iron losses are distributed 

among gastrointestinal tract, skin, and urinary tract in a ratio of 6:3:1 (Crichton, 

2006).  For a 55-kg, non-menstruating woman, the basal iron loss would equal 

0.77 mg/day.  Menstruation increases the amount of iron loss, and absorption of 

1.36 mg of iron is the median requirement for maintenance of iron balance in 

normal menstruating women. To maintain balance in 95% of women, absorption 

of 2.84 mg/day of iron is required (Crichton, 2006). 
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Figure  2.4: Effects of hepcidin on iron absorption and iron release from macrophages.  
Cornell University. http://diaglab.vet.cornell.edu/clinpath/modules/chem/femetb.htm 

 

 

 

 

The liver contains about 60% of the body‘s ferritin; the remaining 40% is found in 

muscle tissues and cells (macrophages) of the reticuloendothelial system 

(Crichton, 2006).  Theoretically, up to 4500 ferric iron atoms can be stored in one 

ferritin protein, and in-vivo, ferritin is normally about 20% saturated (800 iron sites 

occupied) (Beard, 2006).  The amount of ferritin synthesized by cells is under the 
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control of the mRNA-binding protein IRP, which binds with high affinity to an IRE 

located in the 5‘-untranslated end of ferritin mRNA.  A similar set of IREs exists 

on the 3‘ end of the mRNA for transferrin receptor and DMT-1 that allows 

reciprocal regulation of iron storage and iron uptake (Crichton, 2006).  In low iron 

situations, IRP1 binds to the IREs of various iron proteins to regulate the 

translation of the mRNA transcripts by stabilizing the mRNA and allowing 

translation of the peptide (Worwood, 2002). This results in an increase in the 

availability of erythrocyte free iron. The concentration of serum transferrin 

increases, but there is decreased saturation. In the presence of adequate cellular 

iron, binding of iron by IRP changes the conformation of the protein and prevents 

it from binding to the mRNA. The mRNA is quickly degraded and synthesis of 

transferrin receptors is reduced (Worwood, 2002). 

 
 

2.5 Iron Deficiency 

Iron deficiency is characterized by exhausted iron stores, which occurs when 

serum ferritin concentration drops below 12 µg/L. Simultaneous anemia (Hb<120 

g/L) leads to iron deficiency anemia. Clinical symptoms of iron deficiency include 

the signs and symptoms of anemia (tiredness and lassitude).  Clinical 

manifestations include glossitis, angular stomatitis, koilonchya (spooning of the 

nails), blue sclera, esophageal webbing, and microcytic hypochromic anemia 

(Beard, 2006).  Impaired immune function and responses, gastrointestinal 

abnormalities, changes in hair and nails, impaired thermogenesis and muscle 

function, altered thyroid metabolism, and changes in catecholamine turnover are 
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symptoms observed in patients with iron deficiency (Beard, 2006; Crichton, 

2006).  Iron deficiency also increases the risk of adverse pregnancy outcomes 

and impaired infant development (Zimmermann & Hurrell, 2007).  Iron deficiency 

is normally treated with an oral administration of 125 to 250 mg/day of ferrous 

sulfate, which should deliver 39 to 72 mg of elemental iron per day and will 

normally return a deficient person to normal iron levels within 12 weeks (Beard, 

2006). 

 

2.6 Assessment of Iron Status 

The best minimally invasive method of assessing iron status is measurement of 

serum ferritin concentration, which bears a quantitative relationship to iron stores 

in the range of 20 to 200 µg/L, with each 1 µg/L indicative of 8 mg of storage iron 

(Crichton, 2006).  A serum ferritin concentration of 12 µg/L indicates exhaustion 

of iron stores, and any values below this indicate depletion of the functional iron 

compartment.  Iron stores can also be invasively assessed by measuring the iron 

content of bone marrow, through liver biopsies or by quantitative phlebotomy. 

The gold standard for iron store estimation is staining a bone marrow aspirate for 

iron. 

 

Despite its usefulness in assessing iron status, ferritin is an acute-phase 

reactant, and as such it is elevated in states of infection, inflammation, neoplasia, 

hepatic dysfunction and alcohol consumption, resulting in misleadingly high 

serum ferritin concentration (Crichton, 2006). During an acute phase response, 
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acute phase proteins (APP) are produced prior to the full activation of the 

immune response to prevent tissue damage and to remove harmful molecules 

and pathogens.  Increased production of APP is due to changes in their 

production by hepatocytes, which are in turn regulated by cytokines such as 

interleukin-1, interleukin-6, and tumor necrosis factor alpha (Feelders et al, 

1998).  The APPs that are increased during inflammation include: C-reactive 

protein (CRP), alpha-1-antichymotrypsin (ACT), alpha-1-acid glycoprotein (AGP), 

serum amyloid A (SAA), fibrinogen, haptoglobin, ceruloplasmin and ferritin 

(Worwood, 2007). 

 

The major diagnostic challenge in the assessment of iron status is to differentiate 

between iron deficiency anemia in otherwise healthy individuals and anemia of 

chronic disease.  This is because inflammatory disorders tend to increase 

circulating hepcidin concentrations, and hepcidin blocks iron release from 

enterocytes and the reticuloendothelial system, resulting in iron-deficient 

erythropoiesis (Zimmermann & Hurrell, 2007).  The distinction between anemia 

of chronic disease and iron deficiency anemia is also difficult because increased 

serum ferritin in anemia does not rule out iron deficiency anemia in the presence 

of inflammation.  A commonly used marker of inflammation is C-reactive protein 

(CRP). However, the extent of increase of CRP concentration that invalidates the 

use of serum ferritin to diagnose iron deficiency is unclear, although CRP values 

higher than 10-30 mg/L have been used (Zimmermann & Hurrell, 2007). In our 

study we will use an hs-CRP cut-off value of 3mg/L to indicate inflammation. 
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Moreover, the increase in CRP during the acute-phase response is typically 

shorter in length than the increase in serum ferritin.  Alternative markers of 

inflammation include the alpha-1-acid glycoprotein (AGP) because it tends to 

increase later during infection than CRP and remains elevated for several weeks 

(Wieringa, 2002).  

 

Measurement of the soluble transferrin receptor (sTfR) in plasma may aid in 

distinguishing iron deficiency anemia from anemia of chronic disease.  This is 

because the main determinants of plasma sTfR are the erythroid mass in the 

bone marrow and iron status.  sTfR is derived mostly from developing RBCs and 

hence reflects the intensity of erythropoiesis and the demand for iron; the 

concentration rises in iron deficiency anemia and it is a marker of the severity of 

iron deficiency only when stores have been exhausted and erythropoiesis is 

increased, provided that there are no other causes of enhanced erythropoiesis 

(WHO, 2007; Cook, 2005; Skikne et al, 1990).  Also, plasma sTfR is not 

particularly affected by the acute-phase response, but it might be affected by 

malaria, age, and ethnicity (Cook, 2005; Verhoef et al, 2001; Menendez et al, 

2001) 

 

In developing countries, where there is a high frequency of infection, iron status 

assessment should include measures of plasma ferritin, whole blood hemoglobin 

as well as plasma sTfR (Mei, 2005).  When possible, additional measures such 

as whole blood zinc protoporphyrin (ZPP), plasma CRP, and/or AGP should also 
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be completed (Zimmermann, 2005).  In an anemic individual with high CRP, 

AGP, or both, high sTfR and ZPP concentrations are probably indicators of 

concurrent iron deficiency, despite high ferritin (Zimmermann and Hurrell, 2007).  

The WHO recommends that iron assessment include hemoglobin, serum ferritin 

and transferrin receptor, as well as at least one acute phase protein, with CRP, 

ACT and AGP as first choices (WHO, 2007). 
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CHAPTER 3 

 

IRON DEFICIENCY AS A PUBLIC HEALTH PROBLEM 

 

Iron deficiency is the most prevalent single nutrient deficiency in the world and is 

recognized by the World Health Organization (WHO) as 1 of the 10 greatest 

global health risks in existence today (WHO, 2002).  Iron deficiency is considered 

the primary cause of anemia, hence iron-deficiency anemia (IDA) and anemia 

are often used synonymously, and prevalence of anemia has often been used as 

proxy for IDA (WHO, 2008).  The WHO estimates the number of persons with 

anemia worldwide at almost 2 billion, with approximately 50% of the cases 

attributable to iron deficiency.  However, the prevalence varies according to 

population groups and local conditions (WHO/UNICEF/UNU, 2001). Despite the 

fact that iron deficiency is considered the primary cause of anemia, there are not 

enough data on the prevalence of iron deficiency, possibly due to the difficulty in 

assessing iron status with accuracy using a single indicator. Therefore, in order 

to acquire reliable information on existing iron deficiency, a combination of 

biomarkers must be used (WHO, 2008). 

 

Anemia is seldom present in isolation. It usually coexists with numerous other 

conditions, such as malaria, parasitic infections, nutritional deficiencies, and 
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hemoglobinopathies.  Risk factors for developing anemia include: low intake of 

iron, poor absorption of dietary iron from diets high in phytates or phenolic 

compounds (especially during periods of the life cycle when iron requirements 

are high), heavy blood loss (menstruation, delivery, or internal bleeding), 

parasitic infection (hookworm, ascaris, schistosomiasis), acute and chronic 

infection (malaria, cancer, tuberculosis, HIV), presence of other micronutrient 

deficiencies (vitamin A, vitamin B12, folate, riboflavin), and the impact of 

hemoglobinopathies (WHO, 2008). 

 

3.1 Epidemiology of Iron Deficiency 

Iron deficiency is a global public health problem, affecting both developed and 

developing countries with major consequences for human health as well as 

social and economic development.  It occurs in all stages of the life cycle, but the 

groups more susceptible to iron deficiency and anemia are preschool children, 

reproductive-aged women, and pregnant women.  According to the WHO, from a 

global perspective, the prevalence of anemia is highest in pre-school aged-

children (47.4%) and lowest in men (12.7%); however, the highest number of 

individuals affected is non-pregnant women (468.4 million) (WHO, 2008).  The 

prevalence and severity of iron deficiency is considerably greater in women than 

in men due to the physiologic requirements related to reproduction, such as 

menstruation, pregnancy, and lactation (Islam, 2001).  

The overall prevalence of anemia among women in developing countries is 42%, 

whereas in developed countries, the prevalence remains under 10% (WHO 



 

25 

 

2008). Women are affected the most by anemia in South East Asia, where 200 

million women are anemic.  Of these, 182 million are non-pregnant women of 

reproductive age.  In Bangladesh, the estimated prevalence of anemia in 2001 in 

non-pregnant, non-lactating women from rural areas was approximately 33.2% 

(taken from random sampling); this translates to more than 11,000 women 

(WHO, 2008). 

 

3.2 Etiology of Iron Deficiency  

Iron deficiency can result from one or more of the following factors: inadequate 

dietary iron intake, poor absorption, and increased blood losses (Ma, 2007; 

Beard, 2006). Populations who have increased physiologic iron demands (i.e.: 

pregnant women and growing children) are at increased risk of not meeting their 

adequate iron intake. Diets high in phytates or phenolic compounds can inhibit 

iron absorption due to their ability to chelate and precipitate minerals (Ma, 2007). 

Increased blood losses, especially in menstruation and delivery for women, as 

well as gastrointestinal bleeding caused by parasitic infection such as hookworm 

and malaria can lead to iron depletion. Other nutrient deficiencies, such as 

vitamin A, folate, or vitamin B12, can lead to anemia.  

 

3.3 Iron Deficiency and Reproductive Health 

Iron deficiency and anemia can have a vast number of detrimental health effects, 

especially in at-risk populations, including preschool-aged children, pregnant 

women, and women of reproductive age (15-45.99 years). Women of 
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reproductive age naturally have increased iron needs that are related to 

menstruation, pregnancy and lactation.  Menstrual iron loss, estimated from an 

average blood loss of 33 mL/month, equals 1.5 mg of iron per day but may be as 

high as 2.1 mg per day (Cole et al. 1971).  There is also a higher demand for iron 

during pregnancy due to the increase in maternal red blood cell mass, growing 

fetal requirements (Allen, 1997) and to the compensation for blood losses during 

delivery. Some evidence suggests that pre-conception iron deficiency can 

influence the outcome of pregnancy. Mild and moderate anemia at pre-

conception have been associated with reduced fetal growth as well as increased 

risk of adverse pregnancy outcome in a cohort of Chinese women (Ronnenberg 

et al, 2004). 

 

Iron deficiency anemia during pregnancy is a risk factor for preterm delivery, 

subsequent low birth weight, and possibly inferior neonatal health (Allen, 2000).  

A direct causal relationship has not been established for the mechanism leading 

to these negative health outcomes, but it has been hypothesized that the 

resulting hypoxia from low iron status and anemia play a role in increasing stress 

hormones, norepinephrine, and cortisol during pregnancy, which can induce 

preterm labor (Allen, 2001). 
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CHAPTER 4 

 

ARSENIC 

 

Inorganic arsenic is a well- established human carcinogen that is associated with 

a myriad of adverse health effects in addition to cancer (National Research 

Council, 2001).  In the past decades, high levels of the element arsenic have 

been found in several water supplies in Southeast and Southwest Asia, South 

and Central America, and some areas in Africa.  Millions of persons are exposed 

globally through arsenic-contaminated drinking water. Light is being shed on the 

devastating effects of chronic arsenic poisoning as the signs and symptoms of 

arsenicosis are appearing.  There is also increasing evidence that susceptibility 

to the toxic effects may vary considerably among individuals and can depend on 

the concentration as well as duration of exposure. 

 

4.1 Arsenic: Properties 

Arsenic (As) is a widely-distributed metalloid found mainly in the earth‘s crust at 

an average concentration of 2 mg/kg (WHO, 2001).  It is usually present in trace 

amounts in all rock, soil, water, air, and biological tissues. Arsenic is present in 

over 200 mineral species, the most common of which is arsenopyrite or ferrous 

arsenic sulphide (FeAsS2); this form has been identified as the prime source of 
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arsenic pollution in Bangladesh (Fazal et al, 2001a).  Arsenic exists as inorganic 

and organic species.  It can be present in four electron valence states: -3, 0, +3 

and +5.  Inorganic arsenic has two main oxidation states: trivalent [arsenite, 

As(III)] and pentavalent [As(V), arsenate]. Arsenite is 60 times more toxic than 

arsenate (Fazal et al, 2001b).  

 

4.2 Arsenic Contamination 

Arsenic levels in groundwater average 1-2 micrograms/liter except in areas with 

volcanic rock and sulfide mineral deposits where arsenic levels can range up to 

3mg/liter (WHO, 2001).  Terrestrial plants may accumulate arsenic by root uptake 

from the soil or by adsorption of airborne arsenic deposited on the leaves (WHO, 

2001).  Non-occupational human exposure to arsenic from the environment is 

mainly via the ingestion of food and water.  In the case of Bangladesh, the 

population is mainly exposed through the intake of contaminated groundwater, 

which is used as drinking water; this arsenic is of geological origin. The WHO 

standard of arsenic in drinking water is 10µg/L, whereas the Bangladeshi 

standard for drinking water is much higher (50 µg/L) (Smith et al, 2000). The 

World Health Organization‘s provisional tolerable daily intake (PTDI) for arsenic 

is 2.1 µg As/kg-day (Kile et al 2007). 

 

4.3 Arsenic Metabolism 

Pentavalent and trivalent soluble arsenic compounds are extensively and rapidly 

absorbed in the gastrointestinal tract (WHO, 2001).  Arsenic metabolism is 
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usually characterized by two main types of reactions: (1) reduction reactions of 

pentavalent to trivalent arsenic, and (2) oxidative methylation reactions in which 

trivalent forms of arsenic are sequentially methylated to form mono-, di-, and 

trimethylated products with S-adenosyl methionine (SAM) as methyl donor and 

glutathione (GSH) as an essential co-factor (WHO,2001).  The methylation of 

inorganic arsenic facilitates its excretion in the form of dimethylarsinate (DMA(V)) 

and methylarsonate (MA(V)), which are readily excreted in urine (WHO, 2001; 

Vahter, 2002).  The trivalent arsenic compounds have been shown to be highly 

reactive and toxic (Petrick et al.,2000, Vega et al., 2001). 

  

 

 

 

Inorganic arsenic metabolism varies widely among species, populations and 

individuals.  Several factors appear to influence the metabolism of arsenic.  

Some studies suggest that genetic polymorphisms may have the strongest 

Figure 4.1: Metabolic pathway of arsenic metabolism in vertebrates. Abbreviations: GSH, 

glutathione; GST-omega, glutathione S-transferase omega; SAHC, S-ademosylhomocysteine; 
SAM, S-adenosylmethionine. Reproduced from Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, 
Wollenberg ML. 2004. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen 
peroxide in the detoxification of the trivalent arsenic species. Toxicol Appl Pharcamol 198(3):327-335. 
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influence on rate and efficiency of inorganic arsenic methylation (Lindberg, 

2008). Previous studies have shown an association between malnutrition 

(particularly a protein-deficient diet) and higher risk for several arsenic-related 

toxic effects (Vahter et al, 1987), possibly due to alterations in arsenic 

metabolism or reduced antioxidant activity (Milton et al, 2004; Mitra et al, 2004).  

Several other nutritional factors also influence arsenic methylation, such as 

availability of methyl groups and micronutrients involved in one-carbon 

metabolism (Kile & Ronnenberg, 2008; Gamble et al, 2005).  Gender, age and 

smoking have also been shown to influence inorganic arsenic metabolism 

(Gamble et al., 2005; Loffredo et al., 2003; Steinmaus et al., 2005; Vahter, 2002). 

Lindberg suggests that sex hormones may enhance the efficiency of arsenic 

methylation in women of childbearing age (Lindberg et al, 2008). 

 

4.4 Arsenic Toxicity and Carcinogenicity 

Arsenic has the ability to impair cellular respiration by inhibiting various 

mitochondrial enzymes and uncoupling oxidative phosphorylation (Tchounwou, 

2003). Most arsenic toxicity results from its interaction with sulfhydryl groups of 

proteins and enzymes and its substitution for phosphorus in several biochemical 

reactions (Goyer, 1996).  In vitro, arsenic inhibits oxidation of pyruvate and beta-

oxidation of fatty acids by reacting with protein sulfhydryl groups to inactivate 

enzymes, such as dihydrolipoyl dehydrogenase and thiolase (Belton, 1985).  

Genotoxicity tests suggest that arsenic inhibits DNA repair and induces 

chromosomal aberrations, sister-chromatid exchanges, and micronuclei 
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formation in both human and rodent cell cultures as well as in cells from exposed 

humans (Tchounwou, 2003). Based on single-cell gel electrophoresis 

experiments (comet assay), arsenic trioxide induces DNA damage in human 

lymphocytes (Schaumloffel and Gebel, 1998).  In other studies, arsenic 

compounds have been noted to induce gene amplification, arrest cells in mitosis, 

inhibit DNA repair, and induce expression of the c-fos gene and the oxidative 

stress protein heme oxygenase in mammalian cells (Gonsebatt, 1997; 

Nakamuro, 1981; Natarajan, 1996; Ramirez 1997). 

 

As inorganic arsenic is metabolized, it is first methylated to (MMA(V)) and 

(DMA(V)).  Methylation of inorganic arsenic involves a two-electron reduction of 

pentavalent to trivalent arsenic species, followed by the transfer of a methyl 

group from a methyl donor.  The generally held view of arsenic carcinogenesis in 

the past was that arsenite (As(III)) was the most probable cause of 

carcinogenesis and the methylation of arsenic species was a detoxification 

pathway (Tchounwou, 2003). Several authors agreed that methylation minimized 

the toxicity or carcinogenicity of arsenic (Kitchin, 2001). A recent alternative view 

of arsenic carcinogenesis, however, is that there may be several forms of arsenic 

that  induce carcinogenesis and that arsenic methylation may be a toxification—

not a detoxification—pathway (Tchounwou, 2003).  (MMA(III)) has been found in 

urine of humans exposed to arsenic and this metabolite is known to inhibit 

enzymes and to cause cell toxicity and genotoxicity, and hence could be a 

potential cause of arsenic carcinogenesis (Tchounwou, 2003). 
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4.4.1 Possible Mechanisms of Arsenic Carcinogenesis 

Kitchin discusses nine possible modes of action of arsenic carcinogenesis in his 

review: induced chromosomal abnormalities, oxidative stress, altered DNA 

repair, altered DNA methylation patterns, altered growth factors, enhanced cell 

proliferation, promotion/progression, suppression of p53, and gene amplification 

(Kitchin, 2001).  Of these, three modes of action have shown positive results in 

both human and animal cell models: chromosomal abnormalities, oxidative 

stress, and altered growth factor (Tchounwou, 2003). The mode-of-action studies 

suggest that arsenic may be acting as a co-carcinogen, promoter, or a 

progressor of carcinogenesis (National Research Council, 2001). 

 

4.4.2 Animal Toxicity Studies 

To assess whether cytotoxicity and carcinogenicity of arsenic in animal models 

can be extrapolated to humans, it is necessary to have an understanding of the 

mode of action, metabolism, and toxicokinetics of different arsenic compounds in 

different animal species. Although a good animal model has yet to be found, rat 

and mouse models have been created for all human organs in which inorganic 

arsenic is known to cause cancer (skin, lung, urinary bladder, liver, and kidney) 

(Kitchin, 2001). 

 

During the methylation pathway, inorganic arsenic undergoes a series of 

reductions and oxidative methylations in the human body to form the pentavalent 
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species (which are more easily excreted in the urine) to highly reactive and 

unstable trivalent metabolites. These trivalent species are monomethylarsinous 

acid (MMAIII) and dimethylarsinous acid (DMAIII). Exogenous arsenic in the form 

of MMAV and DMAV shows limited absorption and metabolism in humans and 

most animals (except rats) and are excreted mostly as parent compound (Cohen 

& Arnold, 2006). The rat is considered a poor model for arsenic metabolism 

because it is the only known animal model where a large proportion of the DMA 

is bound to red blood cells, leading to a decreased urinary excretion of this 

compound and increased accumulation in the body (Vasken Aposhian et al. 

2004). 

 

Animal models for DMAV-induced promotion of carcinogenesis have been 

described for all five organs in which humans develop cancer post inorganic 

arsenic exposure; however, complete carcinogenesis by DMAV has only been 

achieved in rat bladder and mouse lung (Kitchin, 2001). Arsenic as a promoter of 

carcinogenesis (but not complete carcinogenesis) has been achieved in mouse 

models for skin and lung cancer and in rat models for bladder, kidney, liver, and 

thyroid cancer (Kitchin, 2001). Rossman et al. (2001) showed that arsenite 

(trivalent arsenic) is a co-carcinogen for mouse skin in the presence of solar 

ultraviolet radiation, but arsenite alone did not cause tumors (Rossman et al. 

2001). No carcinogenesis experiments have been reported with DMAV exposure 

in hamsters, dogs, or monkeys (species that do not develop tumors after 

inorganic arsenic administration) (Kitchin, 2001). Among mammals that 
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methylate arsenic, humans excrete unusually high amounts of MMA, thus human 

tissues may be exposed to higher concentrations of pentavalent or trivalent MMA 

than are mice, rats, beagles, hamsters, or rabbits (Vahter, 1994). 

 

4.4.3 Dietary influence on Arsenic toxicity 

A dietary supplementation and arsenic toxicity study in mice (Singh et al. 2008) 

showed that treatment with arsenic trioxide and jaggery for a month reduced the 

frequencies of clastogenic endpoints compared to arsenic-treatment alone. Garlic 

as well as the fruit Emblica officinalis, also have been shown to significantly 

reduce the clastogenicity caused by arsenic administration in mice 

(Roychoudhury et al, 1996; Choudhury et al. 1997; Biswas et al. 1999). Poddar 

demonstrated that dietary iron supplementation also helps prevent arsenic 

toxicity by reducing its clastogenic effects (Poddar et al. 2000); selenium has 

similar antagonistic properties as iron-arsenic affinity and can ameliorate the 

arsenic-induced mutagenicity and clastogenicity in mice (Biswas et al. 1995; 

Rossman et al. 2004).  A diet deficient in protein has been shown to decrease 

the arsenic methylation resulting in enhanced arsenic toxicity in rabbits (Vahter & 

Marafante, 1987). Other evidence indicates that oxidative stress is one of the 

major causes of arsenic toxicity. Studies in arsenic-exposed rats suggest that 

supplementation with vitamins E, C and A reduces the reactive species, helping 

reduce the toxic effects of arsenic (Wei et al. 2005; Ramanathan et al. 2005). 
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Figure 4.2: Arsenic-
induced plantar skin 
lesion. Dhaka Community 

Hospital, Bangladesh 
Arsenic Foundation 

4.5 Effects of Arsenic on Human Health 

Arsenic is known to be a human carcinogen. Several studies have suggested 

that arsenic toxicity in humans depends on the exposure dose, frequency and 

duration, age and gender as well as on individual susceptibility, which is 

influenced by genetic and nutritional factors (Chen & Lin, 1994).  Long-term 

exposure to arsenic increases the risk of cancer. In workers exposed to arsenic 

via inhalation, the main carcinogenic effect is an increase in their risk of lung 

cancer (Enterline & Henderson, 1987); when exposure occurs via ingestion, the 

main carcinogenic outcome is increased risk of skin cancer. In addition, chronic 

exposure to arsenic can result in increased risk of several 

internal cancers, such as liver, kidney, lung, colon, and 

bladder (Tchounwou et al, 1999).  Based on epidemiologic 

studies, chronic exposure to arsenic through contaminated 

drinking water also has non-carcinogenic effects on several 

organs and systems of the body including dermal, 

cardiovascular, reproductive, neurological, respiratory, 

hepatic, hematological, renal, and gastrointestinal 

(Tchounwou, 2003). 

 

Dermatologic effects: chronic arsenic exposure causes a characteristic pattern of 

noncarcinogenic dermal effects that starts with spots of hyperpigmentation and 

may progress to palmar and plantar hyperkeratosis (Mazumder, 1998). 



 

36 

 

Figure 4.3: Arsenic-
induced gangrene, (aka 
Blackfoot Disease).  
Dhaka Community Hospital, 
Bangladesh 
Arsenic Foundation 

These characteristic skin lesions induced by arsenic toxicity are used as an 

indicator of high exposure and are distinct from other clinical manifestations of 

arsenic toxicity (Tchounwou, 2003).  A study by Mazumder et al (1998) found 

that males were more likely than females to exhibit both hyperpigmentation and 

palmar-plantar keratosis.  

 

Cardiovascular Effects: Epidemiologic studies have 

shown that the cardiovascular system is especially 

sensitive to chronic exposure of arsenic contaminated 

drinking water. Some of the noticeable effects include 

hypertension and increased cardiovascular disease 

mortality. Rahman et al (1999) carried out a cross-

sectional evaluation of blood pressure in 1,595 adults 

over the age of 30 who lived all their lives in rural 

Bangladesh and were exposed to high arsenic 

levels. The study found that increasing arsenic 

levels in drinking water were associated with increased incidence and severity of 

hypertension. There is also an increased risk of coronary heart disease, as 

individuals with blackfoot disease have increased mortality from ischemic heart 

disease (Chen, 1988).  Blackfoot disease is a condition caused by peripheral 

atherosclerosis and thromboangiitis obliterans that results in gangrene and 

spontaneous amputation of the affected extremities (Tseng 1977). 



 

37 

 

Hematologic Effects and Diabetes:  Hernandez-Zavala et al studied the activities 

of enzymes of the heme biosynthesis pathway and their relationship with the 

profile of urinary protoporphyrin excretion in individuals exposed chronically to 

arsenic via drinking water in Mexico (Hernandez-Zavala et al, 1999).  The more 

evident alterations observed in heme metabolism of highly exposed individuals 

included increases in porphobilinogen deaminase (PBG-D) and 

uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood 

erythrocytes; increases in the urinary excretion of total porphyrins, mainly due to 

coproporphyrin III (COPRO-III) and uroporphyrin III (UROIII); and increases in 

the COPRO/URO and COPRO-III/COPROI ratios (Hernandez-Zavala et al, 

1999). These results suggest that chronic arsenic exposure alters human heme 

metabolism. However, the biological mechanism responsible for these changes 

remains unknown. 

 

4.5.1 Effects of Arsenic on Female Reproductive Health 

Arsenic and its methylated metabolites have the ability to cross the placenta 

(Concha, 1998), and evidence from human studies suggests potential for 

adverse reproductive health effects.  Nordstrom et al. studied offspring of female 

employees and nearby residents of a Swedish copper smelter where high levels 

of arsenic were documented (Nordstrom et al, 1978a; Nordstrom et al, 1978b; 

Nordstrom et al, 1979a; Nordstrom et al, 1979b ). The offspring of women 

exposed to arsenic had lower birth weights than those of women who resided 

outside the smelter area, and the difference increased if the mothers worked in 
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the jobs with increased exposure (Nordstrom et al, 1979b).  An incremental trend 

was noticed in the rates of spontaneous abortion with increasing exposure to 

arsenic (Nordstrom et al, 1978b; Nordstrom et al, 1979b).  Congenital 

malformations were also seen more frequently if the pregnant mother was 

employed in high-exposure jobs during gestation (Nordstrom et al, 1979a).   

 

Studies of populations affected by arsenic-contaminated drinking water have also 

found increased rates of spontaneous abortion and stillbirth (Borzsonyi et al. 

1992; Castro, 1982). A study in Inner Mongolia of a population exposed to 

arsenic-contaminated drinking water showed that even low arsenic levels in the 

water (20-50 µg/L) were associated with increased systolic blood pressure in 

women six weeks post partum (Kwok et al. 2007). It was suggested that the 

cardiovascular challenge during pregnancy increased arsenic susceptibility 

(Vahter, 2009).  There is also evidence that arsenic may cause anemia, 

especially during pregnancy, probably by destabilizing red blood cell  membranes 

(Biswas D et al. 2008) and decreasing delta-aminolevulinic acid dehydratase 

activity (Kannan GM et al, 2001), a critical factor in heme synthesis. 

 

4.5.2 Gender Differences in Arsenic toxicity: 

In general, women have a higher fraction of DMA and a lower fraction of MMA in 

urine than men (Hopenhayn-Rich, 1996).  This enhanced arsenic methylation in 

women has been shown to be limited to child-bearing age, since pre-pubertal 

and post-menopausal women showed methylation patterns similar to that of boys 
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and men, respectively (Lindberg, 2008).  This difference may be related to 

involvement of female sex hormones in the arsenic methylation process, which 

may influence endogenous production of choline in women. After its oxidation to 

betaine, choline is the only source of methyl groups, besides folate, for the re-

methylation of homocysteine to methionine (Vahter, 2009).  Choline is 

synthesized in the body by SAM-dependent methylation of serine or recycled 

from lecithin (phosphatidylcholine), whose synthesis was recently shown to be 

up-regulated by estrogen; this may explain the efficiency of arsenic methylation 

in women in women of reproductive age (Vahter, 2009). 
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CHAPTER 5 

 

BANGLADESH 

 

Bangladesh is located in Southern Asia, bordering the Bay of Bengal between 

Burma and India.  It comprises 144 thousand square kilometers, and is 

comparable in size to the U.S. state of Iowa (CIA, 2009).  The estimated 

population as of 2009 is 156 million, making Bangladesh the eighth most dense 

country in the world (CIA, 2009), with an estimated 2,000 inhabitants per square 

mile (UN, 1999); its capital city is Dhaka.  

 

The Bangladeshi population currently faces many public health challenges, one 

of the most important of which is arsenic poisoning.  The contamination of 

groundwater by arsenic in Bangladesh is the largest poisoning of a population in 

known history, with an estimated 35 to 77 million persons at risk of drinking 

contaminated water (Smith et al, 2000).  In the 1970s, the United Nation‘s 

Children‘s Fund (UNICEF) worked together with the Bangladeshi Department of 

Public Health to reduce morbidity and mortality from gastrointestinal diseases 

caused from drinking surface water contaminated with microbes and parasites.  

They installed tube wells that were 5-cm in diameter at a depth of less than 200 

meters to provide the Bangladeshi population with ―pure water‖ from 
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underground aquifers. At that time, arsenic contamination was not assumed to be 

a problem, and the water from these millions of wells was not tested for arsenic 

(Smith et al, 2000).  The problem of arsenic contamination became evident 20 

years later, when high arsenic levels were confirmed in 1993 upon testing the 

well water.  It was found that 43 out of the 64 districts of Bangladesh have 

arsenic levels higher than 50µg/L, which is the maximum level permitted or 

considered to be ―safe‖ in Bangladesh (Smith et al, 2000, Safiuddin, 2001); 59 

out of the 64 districts have arsenic levels higher than 10 ug/L, which is the 

maximum level recommended by the WHO (Hossain M.F., 2006). 

 

 

 

 

 

 

 

 

The Bangladeshi population exposed to these high levels of arsenic is at risk of 

developing arsenic poisoning, or arsenicosis.  Arsenicosis causes painful 

cutaneous skin lesions, such as keratosis, hyper- or hypopigmentation, whose 

latency is typically 10 years, although the appearance of these skin lesions is 

thought to be dose-dependent (Guha Mazumder DN et al., 1998; Tondel M, 

Rahman M et al, 1999).  Although the long-term effects of arsenic contamination 

 
Table 4.1: Magnitude of arsenic poisoning in Bangladesh  

 
Population of Bangladesh 125 million* 
Total population in regions where some wells are known to 
be contaminated: 

35-77 million 

Maximum concentration of arsenic permitted in drinking 
water according to WHO recommendations: 

 

10 µg/L 
Maximum concentration allowed in Bangladesh: 50 µg/L 
Number of tube wells sampled by the British Geological 
Survey (1998): 

2,022 

-Proportion of wells with arsenic concentrations >50 µg/L: 35% 
-Proportion of wells with arsenic concentrations >300 µg/L: 8.4% 
Smith A.H., Lingas E.O., & Rahman M. Contamination of drinking water by arsenic in Bangladesh: a 
public health emergency. Bulletin of the World Health Organization, 2000,78(9) 
 *Population of Bangladesh in year 2000 
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of drinking water appear to manifest slowly, which is why some of these negative 

health outcomes have only just begun to be observed, a great number of persons 

will develop these diseases in the future as a result of continuing exposure to 

arsenic. Currently there is an effort to determine whether nutritional status 

influences susceptibility to arsenicosis (Gamble et al. 2007; Milton et al. 2004; Li 

L. et al, 2008). 

 

Another important issue in Bangladesh is the quality of life, as determined by 

morbidity and poverty.  Close to 80% of the population lives in poverty, with a per 

capita income of $250 per year in the mid-1990s. Roughly 50% of the population 

survives on less than $1 per day, a percentage that is en route to being lowered 

to 30% in order to meet the Millennium Development Goals by 2015 (UN, 2005).  

The economy is based primarily on agriculture, and with the arsenic 

contamination issue, less land is able to be used, rendering the per hectare 

agricultural yield among the lowest in the world (Khuda Be & Helali J, 1991). 

  

Malnutrition in Bangladesh is also a challenging issue, as it relates to maternal 

health, pregnancy outcome and childhood development.  The cycle of maternal 

malnutrition, poverty, developmental delay and ill health all contribute greatly to a 

country‘s progress and economy.  The current proportion of Bangladeshi mothers 

who are malnourished is estimated at 45% (WHO, 2005). The proportion of births 

attended by skilled birth professionals has risen from 5% to 12% in the past few 

years, but still remains unacceptably low (WHO, 2005).  According to the WHO, 
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the maternal mortality ratio remains high at 570 deaths per 100,000 live births—a 

figure that is likely due in part to both malnutrition and arsenic exposure (WHO, 

2005). 
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CHAPTER 6 

 

PURPOSE OF THE STUDY 

 

Iron is an essential nutrient, especially in women of reproductive age, as it can 

heavily affect reproductive health and pregnancy outcome.  The female 

population of Bangladesh is likely at increased risk for iron deficiency, since there 

is a high prevalence of anemia. They are also at increased risk of arsenic toxicity 

in the drinking water.  Arsenic alters heme metabolism and erythrocyte function 

by binding to hemoglobin, changing the shape of erythrocytes (Delnomdedieu et 

al. 1995; Lu et al, 2004; Winski & Carter, 1995) and lowering hemoglobin levels 

(Flora et al 2005; Kannan et al, 2001). 

 

The effects of chronic arsenic toxicity on iron status remain largely unexplored.  

The main goal of this research project is to better understand the relationship 

between iron status, as measured by serum ferritin concentration, inflammation, 

and anemia in an arsenic-exposed cohort of reproductive-age women from 

Bangladesh.  The results from this study may lead to a greater understanding of 

the determinants of iron status in Bangladeshi women of reproductive age and 

may aid in the creation of interventions aimed at improving the iron status of this 

population.  The results from this study may also help to determine whether iron 
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status and inflammation status, as measured by hs-CRP, are affected by arsenic 

exposure.  

 

6.1 Hypotheses:  

 A large proportion of Bangladeshi women in this cohort will have depleted iron 

stores as determined by serum ferritin ≤12 micrograms/L. 

 A large proportion of anemia, as determine by Hb<120 g/L, will be related to 

iron depletion. 

 Although iron status may be compromised in women with arsenic-associated 

skin lesions (cases), inflammation will reduce our ability to detect iron 

depletion. 

 Increased serum concentration of hs-CRP, a marker of inflammation, will be 

more common among cases than controls. 

 

6.2 Specific Aims: 

1. Measure serum concentrations of ferritin and identify factors associated 

with ferritin levels among women of reproductive age from the Pabna 

district of Bangladesh. 

o Possible factors that will be analyzed include education and height, 

weight, and body mass index (BMI). 

2. Determine the percentage of women in this cohort with iron deficiency 

(ferritin ≤12 micrograms/L) and iron deficiency anemia (Hb <120 g/L and 

ferritin ≤12 micrograms/L). 
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3. Determine the percentages of cases and controls with elevated C-reactive 

protein (>3 mg/L) 

4. Assess the relationship between iron deficiency, inflammation, anemia 

and risk of arsenic-associated skin lesions. 

5. Determine whether C-reactive protein levels are useful in refining 

estimates of iron deficiency and iron deficiency anemia in women with and 

without arsenic-associated skin lesions. 
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CHAPTER 7 

 

MATERIALS AND METHODS 

 

7.1 Subjects 

Researchers in the Department of Environmental Health at the Harvard School of 

Public Health (HSPH) conducted a study focused on arsenic exposure and skin 

lesions in Bangladesh (Breton et al. 2006).  The study consisted of 1800 men 

and women (900 case-control pairs) recruited by Dhaka Community Hospital 

Trust primary-care clinics from 23 villages throughout the Pabna district of 

Bangladesh between 2001-2003. Up to 80% of controls from the initial HSPS 

study were selected from ―low-exposure‖ arsenic (<50 mcg/L) areas and 20% of 

the subjects were from ―high exposure‖ arsenic (≥ 50 mcg/L) areas in Pabna, 

based on the Bangladesh drinking water standard of 50 mcg/L. Participants with 

arsenic-induced skin lesions were only included in the study if a physician 

diagnosed any of the following: keratosis of the extremities; spotted melanosis; 

Bowen‘s disease; or squamous cell carcinoma.  Controls consisted of men and 

women from that same area without any visible signs of arsenic-induced skin 

lesions.  
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 The current research project included 147 women (75 cases, 72 controls) 

randomly chosen among female subjects 18 to 33 years of age who had serum 

archives of ≥ 1.3 mL.   

 

7.2 Data Collection 

At enrollment, anthropometric, behavioral and demographic data were obtained 

through a questionnaire administered by a community health worker. 

 

7.2.1 Blood Sample Collection  

Between 2001 and 2003, researchers from the Department of Environmental 

Health at the Harvard School of Public Health collected venous blood samples 

from all study subjects in Bangladesh. Hemoglobin was assayed from whole 

blood using Sahli’s method.  Serum was isolated by centrifugation, and aliquots 

were reserved, frozen and shipped on dry ice to HSPH where they were stored at 

-80◦ C.  Frozen serum samples from 147 women were transported on dry ice to 

the Ronnenberg laboratory at the Department of Nutrition, University of 

Massachusetts Amherst, where they were stored at -80oC until biomarker 

assessment. 

 

7.2.2 Laboratory Measurements 

Ferritin concentration was determined using a commercially-available enzyme 

immunoassay kit from Ramco Laboratories Inc (Stafford, TX). The immunoassay 

results were read by an MRX Microplate Reader (Revelation) at 490 nm 
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wavelength with a correction filter set at 520 nm wavelength.  In order to identify 

subjects who may have speciously elevated ferritin levels caused by infection or 

inflammation (and not sufficient iron status), high-sensitivity C-reactive protein 

(hs-CRP) levels were assessed using a commercially available immunoassay 

test kit from Biocheck, Inc (Foster City, CA).  This assay has been validated by 

numerous researchers (Vikram NK, et al. 2004; Elkind et al 2006). Hs-CRP 

concentrations were read using the same microplate reader mentioned above at 

a wavelength of 450nm. Both ferritin and hs-CRP levels were plotted against a 

standard curve to determine biomarker concentrations, which were calculated 

using GraphPad Prism version 4.00 for Windows (GraphPad Software, San 

Diego California, USA).  

 

Iron deficiency was defined as serum ferritin concentration equal to or below 12 

micrograms/liter.  Anemia was defined as hemoglobin levels under 120 grams/L, 

and iron-deficiency anemia was defined as hemoglobin under 120 grams/L and 

ferritin equal to or less than 12 micrograms/L. Iron deficiency in the presence of 

inflammation was defined as serum ferritin levels less than 50 micrograms/L if 

hs-CRP concentration exceeded 3mg/L.  

 

All participants provided informed consent, and the study protocol was approved 

by Human Subjects Committees of the Harvard School of Public Health and the 

University of Massachusetts Amherst. 
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7.3 Statistical Analyses  

The statistical analyses were carried out using SPSS version 16.0 (SPSS Inc., 

Chicago, IL, USA).  Descriptive data are presented as means +/- standard 

deviations, medians, ranges, and percentiles.  The normality of our variables was 

assessed using both Kolmogorov-Smirnov & the Shapiro-Wilk tests of normality.  

Natural log transformation was applied to variables that were not normally 

distributed (serum ferritin, hs-CRP, water arsenic & toenail arsenic). Geometric 

means and their 95% confidence intervals are presented for logarithmically 

transformed data. 

 

Physical and sociodemographic characteristics of the cases and controls were 

compared using the x2 test for categorical data and the student t-test for 

continuous data.  Simple linear regression and multivariable linear regression 

were performed to explore the relationship between serum ferritin and the same 

predictors mentioned above. Univariable and multivariable logistic regression 

models were used to explore the potential association between iron deficiency 

and the following potential predictors: age, height, weight, BMI, hs-CRP, toenail 

arsenic, water arsenic, education and marital status. Statistical significance was 

set at p < 0.05. 

 
 
 
 
 
 
 
 



 

51 

 

 
 
 
 

CHAPTER 8 

 

RESULTS 

 

Our study included 147 women from the Pabna district in Bangladesh. The 

demographic characteristics of the population by case-control status are 

presented in table 8.1. The women in this study ranged from 18-33 years in age. 

The mean height was 152 cm (4‘9‖) and weight was 102 pounds, resulting in an 

average BMI of 20.2 kg/m2. Almost a third (30%) of the women were classified as 

underweight with a BMI<18.5 kg/m2, and most of the remaining had a BMI 

between 18.5 kg/m2-25 kg/m2. The majority of the participants (73%) were 

married. Thirty-six percent of the study population had no formal education. This 

analysis cohort includes cases (N=75) and controls (N=72) based on the 

presence of arsenic-associated skin lesions (table 8.1). 

Because serum ferritin was not normally distributed according to the 

Kolmogorov-Smornov (p=0.000) and Shapiro-Wilk (p=0.00) tests of normality, 

data were transformed to their natural logarithm (ln). After ln transformation, the 

Kolmogorov-Smornov (p=0.2) showed a deviation from normality that was not 

significant, whereas the Shapiro-Wilk (p=0.03) test showed a significant deviation 

from normality in the log-transformed data. 
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Serum ferritin concentration ranged from 0.8 µg/L to 224.5 µg/L, with a geometric 

mean of 28.0 µg/L. Overall, 18.4% of the women had iron depletion (serum 

ferritin ≤12 µg/L). About a fifth of our sample had anemia (17.8%) as determined 

by hemoglobin <120 g/L (World Health Organization Standard).  

The main serological difference between women with arsenic-associated skin 

lesions (cases) and those without (controls) was the mean serum hemoglobin 

(124 g/L vs 129 g/L, respectively; p=0.02) as seen in table 8.1. Cases were also 

more likely to have inflammation (p= 0.04) and have a higher toenail arsenic 

concentration (p= 0.00).  

 

The proportion of women who had iron depletion was lower in women ages 28-

33 compared to those ages 18-22 years old (p=0.00). Married women were also 

less likely than unmarried women to have iron depletion (12.7% vs 35%, 

respectively; p=0.01). The prevalence of inflammation was 21.4%, as determined 

by high-sensitivity c-reactive protein levels over 3 mg/L (which was also log-

transformed). Women with normal serum ferritin levels were also more likely to 

have inflammation compared to those who were iron deplete; however, this was 

not statistically significant.  Over half of the study population‘s  main water source 

contained arsenic levels over the WHO health standard of 10 µg/L, and about a 

third (32.9%) of the participants‘ main water source contained arsenic levels over 

the safety standard for Bangladesh (>50µg/L). Arsenic data were also skewed 

and log transformed for our analysis (Table 1). 
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TABLE 8.1: Characteristics of Controls and Cases in our study 
Continuous 
Variables 

Mean ± SD 
(N=147) 

Controls (N=72) Cases (N=75) P-value 
(T-test) Mean ± SD Mean ± SD 

Age (years) 25.5 ± 5.0 25.7 ± 5.3 25.4 ± 4.74 0.66 
Height (cm) 152.0 ± 5.7 151.9 ± 6.0 152.1 ± 5.7 0.83 
Weight (kg) 47.2 ± 10.6 48.6 ± 13.2 46.0 ± 7.1  0.13 
BMI (kg/m2)c 20.2 ± 3 20.5 ± 3.0 19.9 ± 2.9 0.22 

Ferritin (µg/L)* 28.2 (24.2, 32.9) 27.8 (21.7, 33.0) 29.8 (23.9, 37.3) 0.48 
Hemoglobin (g/L)c 126.4 ± 12.8 128.9 ± 10.1 123.9 ± 14.5 0.02 

hs-CRP (mg/L)*c 0.7 (0.5, 1.0)  0.44 (0.23, 0.85) 1.0 (0.65, 1.7) 0.04 
Water As (µg/L)*c 15.3 (10.2, 23.0) 12.3 (7.6, 19.8) 18.9 (9.7, 36.9) 0.33 
Toenail As (µg/g)*c 2.5 (2.1, 3.0)  1.8 (1.5, 2.1) 3.5 (2.6, 4.8) 0.00 
Categorical 
Variables 

Total  
 N (%) 

Controls  
 N (%) 

Cases 
 N (%) 

P-value 

Age 
18-22 
23-27 
28-33 

 
50 (34) 

42 (28.6) 
55 (37.4) 

 
25 (50) 

18 (42.9) 
29 (52.7) 

 
25 (50) 

24 (57.1) 
26 (47.3) 

 
0.63 

BMI 
<18.5 kg/m2 
18.5-24.9 kg/m2 
>25 kg/m2 

 
44 (30.1) 
91 (62.3) 
11 (7.5) 

 
15 (34.1) 
50 (54.9) 
6 (54.5) 

 
29 (65.9) 
41 (45.) 
5 (45.5) 

 
0.07 

Iron status 
Normal ferritin 
Iron deplete (ferritin 

≤12ug/L) 

 
120 (81.6) 
27 (18.4) 

 
58 (48.3) 
14 (51.9) 

 
62 (51.7) 
13 (48.1) 

 
0.83 

Water Arsenic 
≤10 ug/L 
10-50 ug/L 
>50 ug/L 

 
60 (42.9) 
34 (24.3) 
46 (32.9) 

 
29 (48.3) 
24 (70.6) 
17 (37.0) 

 
31 (51.7) 
10 (29.4) 
29 (63.0) 

 
0.01 

hs-CRP (mg/L) 
Normal (<3 mg/L) 
High ( ≥3 mg/L) 

 
114 (78.6) 
31 (21.4) 

 
58 (50.9) 
13 (41.9) 

 
56 (49.1) 
18 (58.1) 

 
0.42 

Hemoglobin (g/L) 
Normal (Hb≥120 g/L) 
Anemia (Hb<120g/L) 

 
120 (82.2) 
26 (17.8) 

 
 64 (53.3) 

7 (26.9) 

 
56 (46.7) 
19 (73.1) 

 
0.02 

Marital Status 
Single/Unmarried 
Ever Married 

 
37 (25.2 

110 (74.8) 

 
18 (45.9) 
55 (50.0) 

 
19 (54.1) 
55 (50.0) 

 
0.83 

Education 
No formal education 
1ary or 2ary Education 
Higher secondary 
Educ. 

 
53 (36.1) 
69 (46.9) 
25 (17.0) 

 
23 (43.4) 
36 (52.2) 
13 (52.0) 

 
30 (56.6) 
33 (47.8) 
12 (48.0) 

 
0.60 

*presenting geometric means (exponentiated natural log mean values, and 95% CI) 
c
 missing one or more values: BMI: N=146 (controls:71), CRP:N=145 (controls:71; cases:74), Hb: N=146 (controls:71) 
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TABLE 8.2: Characteristics of Bangladeshi Women in our Study Sample  
(categorized by iron status) 

 
Continuous 
Variables 

 
Mean ± SD 

(N=147) 

Ferritin >12ug/L 
(N=120) 

Ferritin≤12ug/L 
(N=27) 

P-value 
(T-test) 

Mean ± SD Mean ± SD 

Age (years) 25.5 ± 5.0 26 ± 4.8 22 ± 4.8 0.001 
Height (cm) 152.0 ± 5.7 151.9 ± 5.8 152.2 ± 5.3 0.85 
Weight (kg) 47.2 ± 10.6 46.4 ± 7.5 46.8 ± 6.2 0.80 
BMI (kg/m2)c 20.2 ± 3 20.1 ± 3.06 20.2 ± 2.5 0.96 

Ferritin (ug/L)* 28.2 (24.2, 32.9) 38.7 (34.2, 43.7) 7.1 (5.5, 9.0) 0.000 

Hemoglobin (g/L)c 126.4 ± 12.8 126.5 ± 11.9 126.5 ±16.5 0.95 

hs-CRP (mg/L)*c 0.7 (0.5, 1.0) 0.9 0.6,1.3) 0.25 (0.1,0.8) 0.02 
Water As (ug/L)*c 15.3 (10.2, 23.0) 18.8 (12.0, 29.5) 6.2 (2.4, 15.9)  0.03 
Toenail As (ug/g)* c 2.5 (2.1, 3.0) 2.9 (2.3, 3.6) 1.4 (1.1, 1.8) 0.00 

Categorical 
Variables 

Total 
N (%) 

Ferritin >12ug/L 
N (%) 

Ferritin 
≤12ug/L N (%) 

P-value 

Age 
18-22 
23-27 
28-33 

 
50 (34) 

42 (28.6) 
55 (37.4) 

 
34 (68) 

35 (83.3) 
51 (92.7) 

 
16 (32) 
7 (16.7) 
4 (7.3) 

 
0.00 

BMI 
<18.5 kg/m2 
18.5-24.9 kg/m2 
>25 kg/m2 

 
44 (30.1) 
91 (62.3) 
11 (7.6) 

 
39 (88.6) 
71 (78.0) 
9 (81.8) 

 
5 (11.4) 

20 (22.0) 
2 (18.2) 

 
0.36 

Case Status 
Control 
Case 

 
72 (49) 
75 (51) 

 
58 (80.6) 
62 (82.7) 

 
14 (19.4) 
13 (17.3) 

 
0.83 

Water Arsenic 
≤10 ug/L 
10-50 ug/L 
>50 ug/L 

 
60 (42.9) 
34 (24.3) 
46 (32.9) 

 
45 (75.0) 
28 (82.4) 
41 (89.1) 

 
15 (25) 
6 (17.7) 
5 (10.9) 

 
0.18 

hs-CRP (mg/L) 
Normal (<3 mg/L) 
High ( ≥3 mg/L) 

 
114 (78.6) 
31 (21.4) 

 
89 (78.1) 
29 (93.5) 

 
25 (21.9) 
2 (6.5) 

 
0.07 

Hemoglobin (g/L) 
Normal (Hb≥120 
g/L) 
Anemia (Hb<120g/L) 

 
120 (82.2) 
26 (17.8) 

 
100 (83.3) 
19 (73.1) 

 
20 (16.7) 
7 (26.9) 

 
0.27 

Marital Status 
Unmarried 
Ever married 

 
37 (25.2) 
110(74.8) 

 
24 (64.9) 
96 (87.3) 

 
13 (35.1) 
14 (12.7) 

 
0.01 

Education 
No formal education 
1ary or 2ary Education 
Higher secondary 
Educ. 

 
53 (36.1) 
69 (46.9) 
25 (17.0) 

 
46 (86.8) 
56 (81.2) 
18 (72.0) 

 
7 (13.2) 

13 (18.8) 
7 (28) 

 
0.28 

 *presenting geometric means (exponentiated natural log mean values, and 95% CI) 
c
 missing one or more values (BMI: N=146, CRP:N=145, Hb: N=146, Water As: N=139, toenail As: N=139) 
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A summary of the dietary patterns of this cohort is shown in Table  8.3.  Low 

quality of the dietary data impeded us from carrying out further analysis in this 

dataset. 

Table 8.3 Dietary factors associated with Iron deficiency (serum ferritin ≤12 ug/L) 
Consumption 
frequency of each 
food: 

Total 
(N=147) 

Normal Iron status 
(ferritin >12ug/L) 
(%) 

Iron Depletion  
(ferritin ≤12ug/L) 
(%) 

p-value 

Fish: 
None to < 3/monthly 
1-6 times weekly 
Once or more per day 

 
4  
128 
15 

 
2 (50%) 
104 (81.3%) 
14 (93.3%) 

 
2 (50%) 
24 (18.8%) 
1 (6.7%) 

 
0.15 

Fowl: 
None/Almost none 
1-3/month 
1-6 weekly 

 
26 
105 
16 

 
19 (73.1%) 
88 (83.8%) 
13 (81.3%) 

 
7 (26.9%) 
17 (16.2%) 
3 (18.8%) 

 
0.43 

Beef : 
None/Almost none 
1-3/month 
1-6 weekly 

 
31 
92 
24 

 
24 (77.4%) 
77 (83.7%) 
19 (79.2%) 

 
7 (22.6%) 
15 (16.3%) 
5 (20.8%) 

 
0.62 

Egg : 
None/Almost none 
1-3/month 
1-6 weekly or 1-2 daily 

 
19 
48 
80 

 
16 (84.2%) 
37 (77.1%) 
67 (83.8%) 

 
3 (19.3%) 
11 (22.9%) 
13 (16.2%) 

 
0.63 

Bean : 
None/Almost none 
1-3/month to 1-6 weekly 
1 or more times daily 

 
135 
10 
2 

 
109 (80.7%) 
9 (90.0%) 
2 (100%) 

 
26 (19.3%) 
1 (10.0%) 
0 (0%) 

 
0.79 

Vegetables:  
None to <3/month 
1-6 weekly 
One or more daily 

 
8 
102 
37 

 
4 (50.0%) 
85 (83.3%) 
31 (83.8%) 

 
4 (50.0%) 
17 (16.7%) 
6 (16.2%) 

 
 
0.09 

Milk : 
None/Almost none 
1-3 times per month 
1-6/week to1-2/day 

 
30 
40 
77 

 
19 (63.3%) 
34 (85.0%) 
67 (87.0%) 

 
11 (36.7%) 
6 (15.0%) 
10 (13.0%) 

 
0.02 

Rice : 
None/Almost none 
1-3/month to 1-2/day 
3+ per day 

 
35 
27 
85 

 
34 (97.1%) 
22 (81.5%) 
64 (75.3%) 

 
1 (2.9%) 
5 (18.5%) 
21 (24.7%) 

 
0.01 

Bread : 
None/Almost none 
1-3/month to 1-2/day 
3 or more/day 

 
82 
36 
29 

 
61 (74.4%) 
31 (86.1%) 
28 (96.6%) 

 
21 (25.6%) 
5 (16.1%) 
1 (3.4%) 

 
0.02 
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We conducted univariable linear regression to evaluate the associations between 

potential covariates and (natural log) serum ferritin (table 8.4). Age, inflammation 

(hs-CRP), married status, toenail As and As in water were each significantly and 

positively associated with serum ferritin. In our multivariable linear regression, 

only hs-CRP (p=0.00), toenail arsenic levels (p=0.01) and marital status 

(p=0.001) were significant predictors of serum ferritin after adjustment for other 

variables.  

Table 8.4: Linear regression: predictors of  serum ferritin 
(Y=natural log of serum ferritin) 

 
 

 
Univariable 

Model 

 
Multivariable 

Model 1 

 
Multivariable 

Model 2 
  

Coefficient 
 

p-value 
 

Coefficient 
 

p-value 
 

Coefficient 
 
p-value 

Age (yrs) 0.04 0.004a 0.02 0.48   

Height (cm) -0.02 0.14a -0.02 0.21   
Hs-CRPc 0.12 0.000a 0.11 0.000b 0.11 0.000 
Toenail Asc 
(µg As/g toenail) 

0.22 0.002a 0.15 0.06b 0.16 0.017 

Arsenic  in water 
≤10ug/L 
10-50ug/L 
>50ug/L 

 
Ref 
0.22 
0.45 

 
 

0.27 
0.01a 

 
Ref 
0.13 
0.04 

 
 

0.52 
0.84 

  

Education 
No formal Educ. 
1ary or 2ary Educ. 
Higher 2ary Educ. 

 
Ref 

-0.25 
-0.49 

 
 

0.13 
0.03a 

 
Ref 

-0.05 
-0.12 

 
 

0.79 
0.68 

  

Marital Status 
Not Married 
Ever  married 

 
Ref 
0.71 

 
 

0.00a 

 
Ref 
0.40 

 
 

0.08b 

 
Ref 
0.55 

 
 

0.001 
a- Included in 1

st
 multivariable linear regression model (p-value <0.25) 

b- Included in 2
nd

 multivariable linear regression model (p-value <0.10) 
c- used transformed value (natural log transformation) 
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We used univariable logistic regression to identify factors crudely associated with 

iron depletion, defined as serum ferritin ≤12µg/L (table 8.5). From this analysis, 

we observed a strong association between increasing age and decreasing risk of 

iron depletion. Women in the oldest tertile were 81% less likely than women in 

the youngest tertile to have iron depletion (p=0.006). Marital status was also 

related to iron depletion (Table 8.6), as women who were married were 73% less 

likely to have iron depletion (p=0.003, 95%CI: 0.11, 0.65). Women in the highest 

tertile of toenail arsenic concentration were 84% less likely to have iron depletion 

(p=0.007) compared to those in the lowest tertile. Those whose water originated 

from wells containing the highest amounts of arsenic were 75% less likely to 

have iron depletion (p=0.015) compared to those whose water arsenic content 

was in the lowest tertile.  No other significant crude associations were observed 

in this analysis. 

 

From our multivariable logistic regression analysis in table 8.7, the only 

significant predictors of iron depletion were age, BMI, toenail arsenic, and 

inflammation after controlling for other variables. Women between 29-33yrs old 

were 84% less likely to have iron depletion compared to women ages 18-22 

(OR=0.16; 95%CI=0.04, 0.56). Women with inflammation were 80% less likely to 

have low ferritin compared to those without inflammation (OR=0.20, 95%CI=0.04, 

0.96). Women who were normal or over-weight (BMI>18.5kg/m2) were nearly 

four times more likely to have iron depletion (OR=3.72, 95%CI=1.17, 11.87) than 

were women with a lower BMI. In addition, r every 1µg As increase per gram of 

toenail was associated with a 45% lower risk of ID (OR=0.55, 95%CI=0.33, 0.94). 
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Table 8.5: Crude Associations with events of Iron Depletion (ferritin ≤12 µg/L),  
by tertiles 

 
 

 
N 

 
# events (%) 

 
OR 

 
95% CI 

 
p-value 

Age (years) 
18-22  
23-28  
29-33 

 
50 
48 
49 

 
16 (32) 
7 (14.6) 
4 (8.2) 

 
Ref 
0.36 
0.19 

 
 
0.13, 0.98 
0.06, 0.62 

 
 
0.046 
0.006 

Height (cm) 
<150  
151-154 
154-166 

 
56 
49 
42 

 
10 (17.9) 
11(22.5) 
6 (14.3) 

 
Ref 
1.33 
0.77 

 
 
0.51, 3.47 
0.26, 2.31 

 
 
0.56 
0.64 

Weight (lb) 
<97 
97.1-106 
106.1-156 

 
50 
48 
48 

 
8 (16) 
8 (16.7) 
11 (22.9) 

 
Ref 
1.08 
1.60 

 
 
0.37, 3.14 
0.58, 4.39 

 
 
0.895 
0.364 

BMI (kg/m2) 
<18.9 
18.9-20.6 
>20.6 

 
48 
49 
49 

 
7 (14.6) 
9 (18.4) 
11 (22.5) 

 
Ref 
1.35 
1.74 

 
 
0.46, 3.97 
0.61, 4.94 

 
 
0.585 
0.300 

CRP (mg/L) 
<0.5 
0.5-1.8 
1.8-51 

 
49 
48 
48 

 
12 (24.5) 
10 (20.8) 
5 (10.4) 

 
Ref 
0.79 
0.34 

 
 
0.30, 2.05 
0.11, 1.06 

 
 
0.63 
0.06 

Hb (g/L) 
<120  
121-130 
130-170 

 
53 
50 
43 

 
8 (5.1) 
10 (20) 
9 (20.1) 

 
Ref 
1.44 
1.52 

 
 
0.52, 3.99 
0.53, 4.35 

 
 
0.486 
0.433 

Toenail As (µg/g) 
0.1-1.3 
1.31-3.49 
3.5-53.75 

 
47 
48 
47 

 
14 (29.8) 
10 (20.8) 
3  (6.4) 

 
Ref 
0.62 
0.16 

 
 
0.24, 1.58 
0.04, 0.61 

 
 
0.32 
0.007 

As in water (µg/L) 
11-46 
47-94 
95-140 

 
46 
48 
48 

 
15 (32.6) 
6  (12.5) 
5  (10.4) 

 
Ref 
0.30 
0.25 

 
 
0.10, 0.85 
0.08, 0.77 

 
 
0.023 
0.015 

 

Table 8.6.Crude associations between socio-demographic factors and ID 

 N # events (%) OR 95% CI p-value 

Education 
No formal Education 
1ary/2ary Education 
Higher 2ary education 

 
53 
69 
25 

 
7 (13.2) 
13 (18.8) 
7 (28) 

 
Ref 
1.53 
2.56 

 
 
0.56, 4.14 
0.79, 8.3 

 
 
0.41 
0.12 

Marital Status 
Not married 
Ever Married 

 
37 
110 

 
13 (35.1) 
14 (12.7) 

 
Ref 
0.27 

 
 
0.11, 0.65 

 
 
0.003 
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Table 8.7:  logistic regression: predictors of  ID (Y=Iron Depletion) 

 Model 1 
(univariable) 

Model 2 
(includes p <0.25) 

Model 3 
(includes p<0.10) 

OR p-value OR p-value OR p-value (95% CI) 
Age 
18-22 
23-28 
29-33 

 
Ref 
0.36 
0.19 

 
 

0.046a 
0.006a 

 
Ref 
0.38 
0.16 

 
 

0.13 
0.02b 

 
Ref 
0.40 
0.16 

 
 

0.11 (0.13, 1.23) 
0.01(0.04, 0.56) 

Height (cm) 1.007 0.85     
Weight (kg) 0.99 0.80     
BMI (kg/m2) 
Underweight  
Normal weight/above 

 
Ref 
2.09 

 
 

0.17a 

 
Ref 
5.02 

 
 

0.01b 

 
Ref 
3.72 

 
 

0.03 (1.17, 11.87) 
Toenail As levels 
(µg/g)c 

0.48 0.005a 0.55 0.04b 0.55 0.03 (0.33, 0.94) 

Arsenic  in water 

≤10µg/L 

10-50µg/L 

>50µg/L 

 
Ref 
0.68 
0.39 

 
 

0.48 
0.09a 

 
Ref 
0.60 
0.66 

 
 

0.42 
0.53 

 
 

 

Hs-CRP 
No inflammation 
Inflammation 

 
Ref 
0.25 

 
 

0.07a 

 
Ref 
0.20 

 
 

0.06b 

 
Ref 
0.20 

 
 

0.05 (0.04, 0.96) 
Education 
No formal Education 
1ary or 2ary Educ 
Higher 2ary Educ 

 
0.7 
1.00 
1.7 

 
0.41 

 
0.34 

 
Ref 
0.60 
0.33 

 
 

0.45 
0.25 

  

Marital Status 
Not Married 
Married 

 
1.00 
0.31 

 
 

0.009a 

 
Ref 
0.35 

 
 

0.11 

  

a- Included in 1
st
 multivariable logistic regression model (p-value <0.25) 

b- Included in 2
nd

 multivariable logistic regression model (p-value <0.10) 
c- used transformed value (natural log transformation) 

 

Of the 147 women in the cohort, 26 had anemia (18%), as determined by the 

World Health Organization cutoff of hemoglobin levels less than 120 g/L (graph 

8.1).  The prevalence of iron depletion, as determined by serum ferritin <12 µg/L, 

was 18% (N=27) as observed in graph 8.2. 
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Cases have higher levels of inflammation, determined by serum c-reactive 

protein (p=0.04). The higher prevalence of inflammation in this group of women 

with arsenic-associated skin lesions could possibly mask iron depletion. In order 

to determine whether inflammation could be masking iron depletion, we extended 

the cutoff for ‗adequate‘ iron stores to 50µg ferritin/L in the presence of 

inflammation, defined as hs-CRP over 3 mg/L.   

ane
mia
10%

no 
ane
mia
90%

controls ane
mia
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no 
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75%
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17%

No 
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Graph 8.2: Prevalence of iron deficiency in our study. ID, as defined by serum 
ferritin ≤12 ug/L, is 18% (N=27). The distribution of iron deficiency between controls 
and cases is similar, 19% (N=14) vs 17% (N=13), respectively. 

Graph 8.1: Prevalence of anemia in our study. Anemia, as defined by hemoglobin 
levels <120 g/L among this cohort is 18%. The difference in prevalence of anemia 
among controls and cases is statistically significant, with controls having a 
prevalence of anemia of 10% (N=7) vs 25% (N=19) in cases (p= 0.02) 
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The proportion of women who now had iron depletion increased from 18% 

(N=27) to 28% (N= 41) as observed in graph 8.3.  Among the 26 women with 

anemia (Graph 8.4), only 26% were also iron deficient (iron deficiency anemia). 

The prevalence of IDA did not change after the cut-off form iron deficiency was 

extended in the presence of inflammation (table 8.8).  The only predictor of 

anemia was case status (table 8.9; p=0.02). 

 

ID
28%

No 
ID

72%

controls
ID

28%

No 
ID

72%

cases
ID

28%

No 
ID

72%

total

63%

IDA
38%

controls

79%

IDA
21%

cases

ane
mia
74%

IDA
26%

total

Graph 8.4:  Prevalence of iron deficiency anemia. Among the women with anemia 
(N=26), the prevalence of anemia concurrent with iron depletion (Iron Deficiency 
Anemia, or IDA) varies by case-control status. Of the 7 controls with anemia, 38% 
(N=3) have IDA; of the 19 cases with anemia, 21% (N=4) have IDA. The total 
prevalence of IDA among the women with anemia is 26% (N=7). Total prevalence 
of IDA in this cohort is 4.8% (N=7) 

Graph 8.3: Prevalence of iron deficiency with inflammation. ID increases once 
inflammation is accounted for. The new cutoff for iron depletion (<50 ug/L if hs-crp 
>3mg/L) increases the proportion of women with iron depletion in both cases and 
controls. Controls increase from 19% (N=14) to 28% (N=20), and cases from 17% 
(N=13) to 28% (N=21). Total ID prevalence increases from 18% (N=27) to 28% 
(N=41). 
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Table 8.8: Proportion of women with Iron depletion using two different serum 
ferritin cutoff points to account for the presence of inflammation. 
 Controls (N=72) Cases (N=75) Total (N=147) 
Iron Depletion (ID) cutoff: 
Ferritin <12 ug/L 
Ferritin <50 ug/L (+ hs-CRP >3mg/) 

 
14 (51.9%) 
20 (48.8%) 

 
13 (48.1%) 
21 (51.2%) 

 
27 (18.4%) 
41 (28.3%)b 

Anemia (Hb<120g/L only) 7 (26.9%)a 19 (70.4%) 26 (17.7%) 
The following percentages are out of the total number of women with Anemia, as 

determined by Hemoglobin less than 120 g/L (N=26) 
IDA  (Hb<120g/L+ Iron depletion)  
Ferritin <12 ug/L 
Ferritin <50 ug/L (+ hs-CRP >3mg/) 

 
3 (42.9%) 
3 (42.9%) 

 
4 (57.1%) 
4 (57.1%) 

 
7 (26.9%) 
7 (26.9%) 

a
Controls included =71 

 
Table 8.9:  Logistic regression: predictors of  Anemia (Y=Hb<120g/L) 
 Model 1 

(univariable) 
Model 2 

(includes p <0.25) 
Model 3 

(includes p<0.10) 
OR p-value OR p-value OR p-value (95% CI) 

Age 
18-22 
23-28 
29-33 

 
Ref 
1.92 
1.23 

 
 

0.23* 
0.71 

 
Ref 
2.23 
1.69 

 
 

0.17 
0.39 

  

Height (cm) 0.97 0.49     
Weight (kg) 1.01 0.37     
BMI (kg/m2) 
Underweight  
Normal weight/above 

 
Ref 
1.19 

 
 

0.72 

    

Case Status 
Control 
Case 

 
Ref 
3.1 

 
 

0.02* 

 
Ref 
3.23 

 
 

0.02b 

 
Ref 
3.1 

 
 

0.02 (1.21, 7.92) 
Toenail As (µg/g) c 1.02 0.94     
Arsenic  in water 

≤10µg/L 

10-50µg/L 

>50µg/L 

 
Ref 
0.71 
0.60 

 
 

0.56 
0.35 

    

Iron status: 
Normal ferritin (>12ug/L) 
Low ferritin (<12ug/L) 

 
Ref 
1.8 

 
 

0.23a 

 
Ref 
2.4 

 
 

0.11 

  

Serum ferritin (ug/L)
C 

0.84 0.45     
Hs-CRP 
No inflammation 
Inflammation 

 
Ref 
0.78 

 
 

0.65 

    

Education 
No formal Education 
1

ary
 or 2

ary
 Educ 

Higher 2
ary 

Educ 

 
Ref 
0.59 
0.65 

 
 

0.27 
0.50 

    

Marital Status 
Not Married 
Married 

 
Ref 
1.53 

 
 

0.43 

    

c
-used transformed value (natural log transformation) 
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Table 8.10:  Logistic regression: predictors of Arsenic-associated skin lesions 
(Y=case/control status) 

 Model 1 
(univariable) 

Model 2 
(includes p <0.25) 

Model 3 
(includes p<0.10) 

OR p-value OR p-value OR p-value (95% CI) 
Age 
18-22 
23-28 
29-33 

 
Ref 
1.33 
0.90 

 
 

0.49 
0.78 

    

Height (cm) 1.006 0.83     
Weight (kg) 0.97 0.16a 1.01 0.86   
BMI (kg/m2) 
Underweight  
Normal weight/above 

 
Ref 

0.397 

 
 

0.015a 

 
Ref 
0.34 

 
 

0.05b 

 
Ref 
0.36 

 
 

0.02 (0.15, 0.86) 
Case Status 
Control 
Case 

 
 

     

Toenail As (µg/g)c 1.86 0.001a 2.29 0.001b 3.0 0.001 (1.43, 3.70) 
Arsenic  in water 

≤10µg/L 

10-50µg/L 

>50µg/L 

 
Ref 
0.39 
1.60 

 
 

0.04a 
0.24a 

 
Ref 
0.26 
0.97 

 
 

0.012b 

0.95 

 
Ref 
0.25 
0.95 

 
 

0.01 (0.09, 0.73) 
0.92 (0.35, 2.61) 

Anemia 
Hb>120g/L 
Hb<120g/L 

 
Ref 
3.10 

 
 

0.018a 

 
Ref 
7.12 

 
 

0.002b 

 
Ref 
7.13 

 
 

0.004 (2.09,24.3) 
Ferritin status 
Normal (>12ug/L) 
Low (<12ug/L) 

 
Ref 
0.87 

 
 

0.74 

    

Education 
No formal Education 
1ary or 2ary Educ 
Higher 2ary Educ 

 
Ref 
0.70 
0.71 

 
 

0.34 
0.48 

    

Marital Status 
Not Married 
Married 

 
Ref 
0.85 

 
 
0.67 

    

c
-used transformed value (natural log transformation) 

 
Higher toenail As levels (p=0.001) and anemia (p=0.00) were the two strongest 

predictors of arsenic-associated skin lesions after adjusting for other variables 

(table 8.10). 
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CHAPTER 9 

 

DISCUSSION 

 

Our study focused on young women of reproductive age from the District of 

Pabna in Bangladesh.  The prevalence of anemia in Bangladesh has been 

estimated by others to surpass 70% of the population, affecting approximately 

45% of the female, non-pregnant population (Ahmed, 2000). The prevalence of 

anemia, as determined by the WHO standard of less than 120 g/L, was much 

lower in our study group (17.8%). This could be in part due to the method of 

hemoglobin assessment used in the field, Sahli’s method. This colorimetric 

method of hemoglobin assessment has a potential for error rate due to subjective 

bias in visual comparison to determine concentration (Balasubramaniam  et al, 

1992). Sahli’s method has been found to have a high sensitivity (92.3% and 

98%), but a low specificity (39% and 66%) (Barduagniha et al, 2003; Anand et al, 

2009).  In our study population, there were 27 subjects whose hemoglobin 

concentration was exactly 120g/L, leading to our classifying them as not anemic. 

It remains unclear what proportion of these subjects were actually anemic, but 

had their hemoglobin levels rounded up to 120g/L, but had we included them in 

our anemic pool, the  estimated prevalence of anemia would have increased to 

36%. However, more recent studies have declared Sahli’s method to be in better 
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agreement [than other field hemoglobin tests] with autoanalyzer methods, which 

remain the gold standard for hemoglobin assessment (Anand et al, 2009). 

 

The WHO estimates that approximately half of the cases of anemia are due to 

iron deficiency. In our study, approximately one fourth (26.9%) of the subjects 

with anemia (N=26) had iron deficiency anemia (N=7), as defined by concurrent 

anemia (Hb<120g/L) and iron depletion (ferritin≤12µg/L). It has been assumed 

that half of the cases of anemia in developing countries are due to iron depletion, 

but we found this may not be the case in Bangladesh.  Ahmed found that severe 

anemia is less frequent in Bangladesh (2-3%); we did not find any subjects with 

hemoglobin levels less than 90 g/L, so this was in agreement with what is 

currently known (Ahmed, 2000).  However, according to the data on the etiology 

of anemia that Ahmed analyzed, iron deficiency seemed to be a substantial 

cause of anemia in the Bangladeshi population (Ahmed, 2000). This did not 

appear to be the case in our study population. Due to the nature of our study 

location, we adjusted the cut-off for defining iron depletion upward to account for 

the influence of inflammation or infection on ferritin, given that ferritin is an acute-

phase protein and infection may be more prevalent in Bangladesh. Bangladesh 

has high prevalence of communicable diseases, such as malaria (26 million 

people are at risk), tuberculosis (300,000 new cases per year), leprosy (Dhaka 

still has some cases of leprosy), and filiariasis, which is a problem in the northern 

districts of Bangladesh (WHO, 2010). Previous studies have extended the normal 

12-15 µg ferritin/L cutoff to 30-50µg/L to account for infection or inflammation 
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(Beard et al, 2006). We categorized those women who had ferritin levels <50µg/L 

in the presence of inflammation (hs-CRP >3mg/L) as iron depleted. This resulted 

in an increased sensitivity for diagnosing iron depletion, at the cost of possible 

decreased specificity. The new cut-off increased our number of iron depleted 

women from 27 to 41 (18.4% to 28.3%), but the prevalence of IDA remained the 

same. 

 

The strongest predictors of serum ferritin levels were serum c-reactive protein 

(p=0.000), marital status (p=0.001) and toenail arsenic levels (p=0.02). Ferritin, 

being an acute-phase reactant, is elevated in states of infection, inflammation, 

neoplasia, hepatic dysfunction and alcohol consumption (Crichton, 2006). 

Therefore the observation of an association between the marker of inflammation, 

c-reactive protein, and serum ferritin was not surprising. The average age for 

married women in our study was 27 years, whereas unmarried women were 20.9 

years old. We observed a significant decrease in risk of iron deficiency as women 

grew older;  women who were in the oldest group (ages 29-33) were 84% less 

likely to have iron depletion compared to the youngest group (ages 18-22) 

(p=0.01). Hence, the association with marital status is most likely due to the 

difference in age.  

 

The association between toenail arsenic concentration and serum ferritin levels 

was unexpected. Women who had normal iron stores (serum ferritin>12µg/L) had 

twice the toenail arsenic concentration of those who were iron depleted (2.9 µg 
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arsenic/gram toenail compared to 1.4 µg arsenic/gram toenail) (p=0.00). This 

observation could be due to the presence of high levels of iron in the same 

tubewell water where arsenic is prevalent. The national hydro-chemical survey of 

groundwater conducted by the British Geological Survey (BGS) and the 

Department of Public Health Engineering (DPHE) in Bangladesh have shown 

that a large proportion of wells exceed permissible limits for both iron and arsenic 

(BGS, DPHE, 2001). The permissible limit of iron for drinking water is 300µg/L to 

1.0mg/L, but in Bangladesh, Hossain reported that 41% and 25% of the 

tubewells studied exceeded iron concentrations of 1.0mg/L and 5.0 mg/L, 

respectively (Hossain et al, 1997).  In the district of Dhaka, the correlation 

between arsenic and iron concentrations was significant with a correlation 

coefficient of 0.47 p =0.0001 (Tonmoy et al, 2009). We found that the mean 

arsenic content (µg/L) in the tubewell water of women with normal ferritin levels 

was three times higher than the tubewell water of women who were iron deplete 

(18.8 µg arsenic /L compared to 6.2 µg arsenic/L, p=0.03). However, arsenic 

water concentration was not a predictor of iron status. A possible explanation for 

the absence of association could be the lack of water consumption or usage 

data. The food frequency questionnaire used to collect the dietary data did not 

include water intake. 

 

We did not observe any significant associations between dietary factors and iron 

status or arsenic toxicity. However, there was a slight trend toward decreased 

iron deficiency among women who consumed more fish, fowl and beef compared 
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to those who consumed less of these animal foods. According to Kile et al, the 

dominant source of arsenic exposure in women living in Pabna is the water 

consumed (Kile et al, 2007). They also observed that as arsenic concentrations 

in the drinking water decrease, the relative contribution of dietary arsenic sources 

are more relevant to ingested doses. Therefore, the combined intake from both 

diet and drinking water can result in arsenic consumption that exceeds the 

WHO‘s provisional tolerable daily intake of 2.1 pg As/kg-day, despite using tube 

well that contains less than 50µg As/L (Kile et al, 2007). 

 

In our study population, we also had 75 subjects with As-associated skin lesions 

(cases) and 71 without skin lesions (controls).  The women with As-associated 

skin lesions had a slightly higher mean serum ferritin concentration, but this was 

not significant (27.8 µg/L compared to 29.8 µg/L, p=0.48). However, the mean c-

reactive protein concentration was significantly higher in cases (1.0 mg/L) 

compared to controls (0.44 mg/L) (p=0.04). This could be caused by possible 

gastrointestinal and hepatic effects of chronic arsenic consumption, which could 

lead to inflammation and necrosis of the mucosa and submucosa of the stomach 

and intestine or cirrhotic portal hypertension (ATSDR 2007; Datta 1976).  

Experimental studies have also shown that arsenic exposure can inhibit 

endothelial nitric oxide synthase and produce inflammation and changes in 

coagulation, contributing to atherosclerosis (Simeonova and Luster, 2004). Case 

subjects also used tubewell water with a mean arsenic concentration that was 

1.5 times higher than the water used by the controls (18.9 µg As/L compared to 
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12.3 µg As/L for controls; p=0.33) and had much higher As toenail levels 

compared to controls (3.5 µg As/gram toenail vs 1.8 µg As/ gram toenail; 

p=0.00). There was a significant trend among subjects who used water with the 

highest As level and As-associated skin lesions. Of the 46 subjects that used 

tubewell water with As levels higher than the Bangladeshi safety standard (>50 

µg As/L) 63% were cases and 37% were controls (p=0.01). Case subjects were 

also more likely to have anemia (p=0.02), but not iron depletion (p=0.83). Breton 

et al found that higher hemoglobin levels were significantly protective against the 

presence of skin lesions in males, but not in Bangladeshi females (Breton et al. 

2006). In our study, we found that women with As-associated skin lesions were 3 

times more likely to have anemia (p=0.02) and vice-versa--women with anemia 

were 5.7 times more likely to have As-associated skin lesions (p=0.004).  

 

The etiology of much of the anemia in our study population does not appear to be 

related to iron status, contrary to our expectations. Another possible cause of 

anemia could be deficiency of other nutritional factors that play a role in arsenic 

metabolism.  Inadequate intakes of folate, methionine, calories, or protein are 

associated with arsenic-related health effects in both humans and animals 

(Vahter and Marafante, 1987; Hoffman et al, 1992; Lammon and Hood, 2004; 

Mitra el at , 2004; Chen et al, 1988). Other nutrients involved in one-carbon 

metabolism have been associated with the presence of skin lesions or with 

change in urinary arsenic species (Mitra et al, 2004; Steinmaus et al, 2005). 

Dietary factors that are related to one-carbon metabolism include folate, 
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methionine, cysteine, choline, betaine, and vitamins B6 and B12 (Gamble et al, 

2007). Gamble et al found that urinary DMA was positively associated with 

plasma folate, and negatively associated with homocysteine; they also found that 

inorganic arsenic and MMA were negatively correlated to plasma folate levels 

(Gamble et al, 2005).  

 

Folate and other nutrients directly linked to one-carbon metabolism may be 

directly linked to the anemia found in our study population, as the prevalence of 

hyperhomocysteinemia is reportedly high in this area, indicating the folate in this 

population may be compromised, possibly resulting in megaloblastic anemia, 

rather than iron deficiency anemia (ACC/SNC, 2001). Additional blood 

parameters, such as the mean cell volume (MCV), would be helpful in 

distinguishing among the causes of anemia. 

 

9.1 Strengths and Limitations 

An important strength of our current study is that our population was 

homogeneous in terms of race, and age was evenly distributed across cases and 

controls. We also used toenail arsenic levels as a marker of long-term arsenic 

exposure.  This is the first study that examines the etiology of anemia in the 

population of Bangladeshi women of reproductive age using serum ferritin in 

addition to hs-CRP to account for inflammation. 
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Our main limitation is the limited amount of serum volume we received, which 

precluded assessment of other biomarkers, such as folate, vitamin B12 and 

transferrin receptor. It would have been ideal to include transferrin receptor as 

one of our assessment tools for iron status, since this biomarker is reflective of 

iron stores and is not affected by infection or inflammation. These two conditions 

can be significant interfering factors in Bangladesh due to its high prevalence of 

communicable diseases. Although elevated CRP can identify some persons with 

inflammation, it has a faster spike than ferritin and a shorter half-life, so we may 

not have been able to identify all women who were actually iron deficient despite 

―normal‖ ferritin as a result of inflammation. . 

 

Lack of quality dietary data is also a weakness, as we were not able to fully 

assess the relationship between food intake and iron status or arsenic toxicity. 

Due to lack of health data, such as parity, menstrual characteristics, infections 

we were not able to fully explore female-related factors that can influence iron 

status in this population, leaving room for potential residual confounding.  

 

9.2 Future Directions 

In order to test the validity of our conclusions, the next steps would include 

assessing plasma folate and vitamin B12, in addition to observing the size of the 

red blood cells in the subjects with anemia (but not iron deficiency). Assessing 

hemoglobin from whole blood would be useful to get a more accurate 

assessment of their hemoglobin (anemia) status as well. Measuring transferrin 
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receptor would be the ideal step to get a more accurate determination of the 

prevalence of iron depletion in the presence of inflammation. 

 

 It would also be helpful to have more detailed dietary data, including water 

consumption and use (both frequency and duration of water use) to determine 

the extent to which whether arsenic toxicity results from exposure via water or 

food.  Finally, assessment of water iron in addition to arsenic content from the 

tubewells where the subjects get their water would help to confirm whether 

drinking water helps protect against iron deficiency.  

 

9.3 Conclusion 

The prevalence of anemia was much lower than expected (18%) compared to 

previous estimates of 45% for the Bangladeshi female non-pregnant population 

and over 70% for the overall population (WHO, 2008; Ahmed, 2000). The 

prevalence of IDA was 4.8%. Women with As-associated skin lesions were more 

likely to have anemia, but not ID, compared to controls. The proportion of women 

with ID was much lower than expected (18%); however, once inflammation was 

accounted for, the prevalence increased to 28%. Women exposed to higher 

levels of water arsenic and those with higher toenail arsenic concentrations were 

less likely to have iron depletion.  A possible explanation for this association 

could be the moderately strong correlation between arsenic and iron found in the 

tubewell water near our study region. It appears that a large proportion of the 

anemia observed in this population may be due to inadequacy of other 
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micronutrients, such as folate and B12, which are needed in both hematopoiesis 

as well as arsenic metabolism. Further studies are needed to determine the 

folate and B12 status in women of reproductive age in Bangladesh, as these 

nutrients, which are also key players in pregnancy and reproductive health, may 

be compromised due to arsenic exposure. 
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