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ABSTRACT 

APPLICATION OF ITEM RESPONSE THEORY MODELS TO THE ALGORITHMIC 

DETECTION OF SHIFT ERRORS ON PAPER AND PENCIL TESTS 

SEPTEMBER 2013 

ROBERT JOSEPH COOK, B.S., UNIVERSITY OF MASSACHUSETTS LOWELL 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Lisa A. Keller 

 

On paper-and-pencil multiple-choice tests, the potential for examinees to mark their 

answers in incorrect locations presents a serious threat to the validity of test score interpretations. 

When an examinee skips one or more items (i.e., answers out of sequence) but fails to accurately 

reflect the size of that skip on their answer sheet, that can trigger a string of misaligned responses 

called shift errors. Shift errors can result in correct answers being marked as incorrect, leading to 

possible underestimation of an examinee’s true ability. Despite movement toward computerized 

testing in recent years, paper-and-pencil multiple-choice tests are still pervasive in many 

high-stakes assessment settings, including K-12 testing (e.g., MCAS) and college entrance exams 

(e.g., SAT), leaving a continuing need to address issues that arise within this format. 

Techniques for detecting aberrant response patterns are well-established but do little to 

recognize reasons for the aberrance, limiting options for addressing the misfitting patterns. While 

some work has been done to detect and address specific forms of aberrant response behavior, 

little has been done in the area of shift error detection, leaving great room for improvement in 

addressing this source of aberrance. The opportunity to accurately detect construct-irrelevant 

errors and either adjust scores to more accurately reflect examinee ability or flag examinees with 

inaccurate scores for removal from the dataset and retesting would improve the validity of 

important decisions based on test scores, and could positively impact model fit by allowing for 

more accurate item parameter and ability estimation.  
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The purpose of this study is to investigate new algorithms for shift error detection that 

employ IRT models for probabilistic determination as to whether misfitting patterns are likely to 

be shift errors. The study examines a matrix of detection algorithms, probabilistic models, and 

person parameter methods, testing combinations of these factors for their selectivity (i.e., true 

positives vs. false positives), sensitivity (i.e., true shift errors detected vs. undetected), and 

robustness to parameter bias, all under a carefully manipulated, multifaceted simulation 

environment. This investigation attempts to provide answers to the following questions, 

applicable across detection methods, bias reduction procedures, shift conditions, and ability 

levels, but stated generally as: 1) How sensitively and selectively can an IRT-based probabilistic 

model detect shift error across the full range of probabilities under specific conditions?, 2) How 

robust is each detection method to the parameter bias introduced by shift error?, 3) How well 

does the detection method detect shift errors compared to other, more general, indices of 

person-fit?, 4) What is the impact on bias of making proposed corrections to detected shift 

errors?, and 4) To what extent does shift error, as detected by the method, occur within an 

empirical data set? 

Results show that the proposed methods can indeed detect shift errors at reasonably high 

detection rates with only a minimal number of false positives, that detection improves when 

detecting longer shift errors, and that examinee ability is a huge determinant factor in the 

effectiveness of the shift error detection techniques. Though some detection ability is lost to 

person parameter bias, when detecting all but the shortest shift errors, this loss is minimal. 

Application to empirical data also proved effective, though some discrepancies in projected total 

counts suggest that refinements in the technique are required. Use of a person fit statistic to detect 

examinees with shift errors was shown to be completely ineffective, underscoring the value of 

shift-error-specific detection methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

On paper-and-pencil multiple-choice tests, the potential for examinees to mark their 

answers in incorrect locations presents a serious threat to the validity of test score interpretations. 

When an examinee skips one or more items (i.e., answers out of sequence) but fails to accurately 

reflect the size of that skip on their answer sheet, that can trigger a string of misaligned responses 

(Skiena & Sumazin, 2000a, 2000b, 2004). This phenomenon, referred to as a shift error, can 

result in correct answers being marked as incorrect and the examinee’s score underestimating his 

or her true ability. While erasure analysis and answer-changing behavior studies (e.g., Matter, 

1985, McMorris & Weideman 1986; Shatz & Best, 1987; van der Linden & Jeon, 2012) show 

that many shift errors are detected and corrected by the examinees, Skiena and Sumazin estimated 

that approximately 2% of paper-based tests have undetected shift errors. Despite movement 

toward computerized testing in recent years, paper and pencil multiple-choice tests are still 

pervasive in many high-stakes assessment settings, including K-12 testing (e.g., Massachusetts 

Comprehensive Assessment System; MCAS) and college entrance exams (e.g., SAT). Honest 

mismarking is not the only way that shift errors may occur, however. Another possible cause 

relates to cheating behavior. One examinee may look to another examinee’s sheet for answers 

and, in the process, copy the answers to the wrong position on his or her own form, misaligning 

the copied responses by a position or two or perhaps even an entire column. In such cases, the 

threat to validity is not presented by the shift error itself, the stolen responses not being reflective 

of examinee ability and thus the more critical validity threat, but detection of such errors could 

provide a method for detection for this pattern of cheating behavior as well as a means for 

removing these invalid responses, thereby improving item parameter estimates. Methods for 

detecting copying behavior, with their reliance on pattern matching (Holland, 1996; Frary, 
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Tideman & Watts, 1977, Wollack, 1997), may also help inform the development of good methods 

for shift error detection. 

Shift errors, regardless of cause, represent a form of aberrant item score pattern (Meijer & 

Sijtsma, 1995). Much research has been done investigating aberrant item score patterns, with 

methods for their detection and indices of appropriateness and person fit long- and 

well-established (Levine & Rubin, 1979; Drasgow & Guertler, 1987, Meijer & Sijtsma, 2001; 

Karabatsos, 2003). While these indices may be effective and reliable in detecting aberrant 

response patterns, “finding an aberrant pattern does not provide the explanation for this 

aberrance. The application of person-fit analysis techniques may easily lead to the detection of 

aberrant patterns, whereas the reasons for this aberrance is poorly understood.” (Meijer & 

Sijtsma, 1995). Shift error analysis, instead of or in addition to person-fit analysis, provides a 

means for detection and understanding of this particular form of aberrant test behavior. Few 

methods for such analysis are offered in extant literature, though a series of studies by Skiena and 

Sumazin (2000a, 2000b, 2004) offer three such methods, two of which they found capable of 

detecting shifts with adequate selectivity but different degrees of sensitivity depending on the 

exam characteristics and lengths of the shifts present in the response vectors. While robust 

enough for careful use on real test data, their methods leave room for improvement. Based on the 

probabilities of aberrant patterns within full response sets, the methods either ignore item 

characteristics in calculating these probabilities or only factor in item difficulty as understood 

within a classical test theory framework, suggesting at least one avenue for possible 

improvement: application of item response theory models for calculating response probabilities, 

thereby incorporating item characteristics and examinee ability into the calculations. 

The opportunity to accurately detect construct-irrelevant errors and either adjust scores to 

more accurately reflect examinee ability or flag examinees with inaccurate scores for removal 

from the dataset and retesting would improve the validity of important decisions based on test 
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scores, and could positively impact model fit by allowing for more accurate item parameter and 

ability estimation.  

1.1.1 A Brief Explanation of Shift Error Detection Methods  

Probabilistic shift error detection methods must consist of two general steps: 1) 

calculation of response pattern probabilities for detection of improbable response vectors, and 2) 

evaluation of a proposed alternative response vectors. Skiena and Sumazin (2000a, 2000b, 2004), 

employed these two steps, finding substrings with improbable patterns (i.e., having a 

disproportionate number of incorrect answers given the total number correct) then looking at 

improvements in fit based on shifting those substrings. In a preliminary study trying out the 3PL 

(Cook & Foster, 2012), the steps were reversed, response patterns corresponding to but 

misaligned with the answer key were first detected and the realigned pattern was proposed as the 

alternative vector, then probabilities were calculated that these patterns were not misaligned. With 

Skiena and Sumazin’s methods, the probabilities of both the misalignment and the corrected 

substring play factors in identification of shift errors, whereas Cook and Foster’s is based solely 

on the probability that the response string could have occurred in its place absent a shift error. 

Regardless of the order the steps, the result of the process is a list of shift errors that may be 

evaluated against previously determined acceptable thresholds of error. 

1.1.2 Person Fit Methods vs. Shift Error Detection  

Numerous methods are available for evaluating the fit of a person’s performance on a test 

to the measurement model being used to score that test. These methods, referred to historically as 

appropriateness measurement (Levine & Drasgow, 1983), but more currently as person-fit 

methods (Meijer & Sijtsma, 1995), provide indices based on how well individuals’ response 

patterns fit with expected patterns based on the given test model (Meijer & Sijtsma, 2001). 

Indices have been developed to fit CTT models (e.g., personal point-biserial and biserial, Donlon 

& Fischer, 1968), the Rasch model (e.g., M, Molenaar & Hoijtink, 1990), 2PL and 3PL models 

(e.g., lz, Drasgow, Levine & Williams, 1985), and to CAT models (e.g., T statistics, van 
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Krimpen-Stoop & Meijer, 2000). Meijer & Sijtsma’s 2001 meta-analysis compared 24 different 

person-fit statistics, each applicable to one or more measurement models. Karabatsos (2003) 

tested 36 person-fit statistics and found one (HT, Sijtsma & Meijer, 1992) to greatly outperform 

the others. Drasgow, Levine, and Zickar (1996) proposed statistically optimal methods for 

detection of person-misfit in which probabilities of misfit are dependent on the specific type of 

misfit being looked for. Trabin and Weiss (1983) looked at person response curves, comparing 

expected to observed in order to detect certain types of misfit depending on specific differences 

between the two. None of these were determined to be effective in specifically identifying shift 

error though Drasgow, Levine, and Zickar’s statistically optimal methodology offered a 

framework given an appropriate shift-error misfit model. 

 The shift error detection methods of Skiena and Sumazin (2000a, 2000b, 2004) and those 

proposed herein represent efforts to pinpoint this one specific type of person misfit, developing 

optimal indices that can be compared against error thresholds that produce acceptable levels of 

accuracy while maximizing the detection rate. Unlike a more general person-fit index, which can 

flag misfitting persons for exclusion from test analysis, detection of shift errors has the potential 

to provide more alternatives for dealing with the resultant misfit, including, given adequate 

confidence in the results, correction of the response string. 

1.1.3 How Undetected Shift Errors Threaten Validity  

According to the Standards for Educational and Psychological Testing, “Validity refers to 

the degree to which evidence and theory support the interpretation of test scores entailed by 

proposed uses of tests,” going on to say that “… validation can be viewed as developing a 

scientifically sound validity argument to support the intended interpretation of test scores and 

their relevance to the proposed use” (AERA, APA, & NCME, 1999, p. 9). Kane (2006) suggests 

that this definition is reflective of the principles inherent in the construct-validity model. Unless 

the validity argument suggests that attention to detail or something like it provides important 

evidence in support of proposed test uses, answers arrived at correctly but entered incorrectly 
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introduce variance that is irrelevant to the construct and that undermines said validity argument. 

In the case of the would-be cheater, assuming him or her to be of low ability, the misalignment of 

copied answers may better reflect the examinee’s ability than were they in the correct location, 

but that is not to say that the responses are an accurate reflection of that examinee’s ability or that 

one could make accurate inferences based on the examinee’s score. Further, if detection of the 

shift error leads to accurate detection of cheating behavior, removal of the examinee prior to final 

parameter estimation, scaling and setting of cut scores enhances the validity of all of those steps. 

1.2 Statement of Problem 

Methods for the general detection of aberrant response patterns are well-established to the 

point that the most recent studies on the topic are either meta-analyses of previously developed 

methods (Miejer & Sijtsma, 2001; Karabatsos, 2003) or have focused only on application to new 

testing formats, such as CAT (van Krimpen-Stoop & Meijer, 2000). While numerous person-fit 

methods are demonstrated to effectively identify aberrant test behavior, they offer little to nothing 

in pinpointing its nature. Sources of both spuriously high and spuriously low scores are discussed 

throughout the literature (e.g., Levine & Rubin, 1979, Meijer, 1996) but little research (Trabin & 

Weiss, 1983; Drasgow, Levine & Zickar, 1996) has been done on identification of specific types 

of aberrance. On achievement and aptitude tests, examinees’ scores can be spuriously high by 

copying neighbors’ answers or obtaining correct answers prior to the test somehow. Assuming 

these to be the cause ignores the possibility of the aberrance being due simply to a series of lucky 

guesses. On attitude scales, higher scores can be achieved simply by faking good. Spuriously low 

scores can have several root sources, including poor alignment of curriculum to test content, low 

motivation, unusual interpretation of items, and shift errors. The resultant misclassifications can, 

in the case of spuriously high scores, lead to unqualified candidates being undeservingly selected 

into jobs or academic programs, while spuriously low scores could result in qualified people 

being denied said opportunities. 
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Absent causal explanation, options for action after detection of an aberrant response 

pattern are limited. In the case of spuriously high scores, the choice between accepting the score, 

retesting, or outright penalization/disqualification of the examinee would depend on proof that the 

score was based on some form of cheating behavior. To that end, much research is currently 

being done on cheating detection methods and strategies. One such avenue, an exception to the 

dearth of type-specific person-fit research, is the development of indices for detection of copying 

on tests (e.g., K-Index, Holland, 1996; ω, Wollack, 1997). These look for agreement beyond 

chance between a suspected source and examinees who may have had the opportunity to copy 

from said source.  

 No one is accusing examinees with spuriously low scores of cheating, but appropriate 

action in the face of such scores remains complicated when the cause of the aberrance remains 

unknown. If the cause is due to inferior test-taking strategies, a failure to understand instructions, 

a different source of construct-irrelevant variance (e.g., language affecting scores on math word 

problems), or low motivation, the underlying problem may not go away simply by retesting 

(Drasgow & Guertner, 1987). In the case of shift error, however, retesting (with appropriate 

cautions) is likely to avoid a repeat of spuriously low performance. What’s more, detection of 

shift errors with a high enough level of confidence could result in saving the time and expense of 

retesting altogether, since shift error detection has the capacity to determine not just the presence 

of such an error, but of the exact location and length of said error. In instances where shift errors 

are a byproduct of cheating behavior, shift error detection may provide another means toward 

exposing cheaters and taking appropriate action. 

It might be tempting to minimize the present impact of undetected shift errors due to 

current and future inroads toward computer based testing, but that would be wrong. Firstly, 

educational testing and credentialing exams are taking on more importance than ever with 

educational reform, and much of this will continue to be done with paper and pencil, and mostly 

on the bubble sheets that can result in the shift errors this research attempts to address. Validity of 
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results is critical, and so every effort should be made to reduce the systematic threat to validity 

introduced with shift errors. Secondly, as some of the current educational testing is being done 

with younger children who are much more likely to mismark answer sheets, every effort must be 

made to reduce this threat to validity in the test scores of younger children. Thirdly, new 

statistical indices will be of interest to many testing agencies that may not currently be identifying 

these shift error problems. Finally, shift errors do not only affect those who make them; the 

impact extends to the identification of pass rates, and the estimation of item statistics.  

1.3 Purpose of Study 

Studies into answer-changing behavior on tests (e.g., Holland, 1996; Frary, Tideman & 

Watts, 1977; Wollack, 1997) attribute as much as 16% of answer-changing behavior to clerical 

errors detected and corrected mid-test by the examinee. Skiena and Sumazin (2000a, 2000b, 

2004) claim that about two percent of paper and pencil tests contain undetected shift errors. 

Absent optimal methods for detecting shift errors, this remains a guess. Even if this is a severe 

overestimate, some simple math applied to a large-scale high-stakes testing program like the 

Massachusetts Comprehensive Assessment System (MCAS) can demonstrate the potential impact 

of shift errors. In 2012, 552,549 Massachusetts public school students were tested in 3 subjects 

each (Massachusetts Department of Education, 2012), meaning approximately 1.5 million tests 

were administered that year. If the two percent figure is accurate, that represents 30,000 

examinees with spuriously low scores due to an undetected shift error. Cut the rate to one percent, 

that’s still 15,000 examinees in one state in one year with test scores underrepresenting their 

ability due to shift errors. Whether or not that remains a gross overestimate, we can’t know 

without optimal detection methods. Other paper-and-pencil tests with large stakes attached 

include the SAT, with 3 million examinees yearly, and the ACT, with 1.6 million examinees 

yearly, both of which are used by universities in making admissions decisions. As to the impact 

on the individual examinees, parameter estimates, cut scores and pass rates, that also cannot be 

determined unless the shift errors can be accurately detected. In short, part of the importance of 
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the problem is knowing exactly how important a problem it is. Making this determination has the 

beneficial side effect of simultaneously providing a solution. 

The purpose of this study is to investigate new methods for shift error detection that 

employ IRT models, examining the methods for their selectivity (i.e., true positives vs. false 

positives), sensitivity (i.e., true shift errors detected vs. undetected), and robustness to parameter 

bias, all under a carefully manipulated, multifaceted simulation environment. This investigation 

should provide answers to the following questions, applicable across detection methods, bias 

reduction procedures, shift conditions, and ability levels, but stated generally as: 1) How 

sensitively and selectively can an IRT-based probabilistic model detect shift error across the full 

range of probabilities under specific conditions?, 2) How robust is each detection method to the 

parameter bias introduced by shift error?, 3) How well does the detection method detect shift 

errors compared to other, more general, indices of person-fit?, 4) What is the impact on bias of 

making proposed corrections to detected shift errors?, and 5) To what extent does shift error, as 

detected by the method, occur within an empirical data set? 

What follows is a literature review of issues and sources of aberrant test response 

behavior and methods for its detection, previous research on shift error detection and other 

specific forms of aberrant test response behavior, issues related to the paper-and-pencil test 

format, and a breakdown of the measurement models underlying the probability calculations used 

for detecting shift errors within this study. Following that are an outline of the methods for a 

series of studies with a breakdown of all study conditions, including descriptions of probability 

models, detection algorithms, and employed person-fit statistics, a report of the results from 

performing these studies, and a discussion of the meaning of these findings and their impact on 

future measurement practice and research. 

  



9 

 

CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Overview of Literature Review 

This chapter is a review of the literature pertinent to undetected shift error and methods 

for its detection. The chapter will be broken down by topic into the following sections: 

2.2 Aberrant Test Response Behavior and Measures of Person Fit.  

2.3 Issues of Validity and Differential Performance Dependent on Test Format.  

2.4 Probability and Measurement Models.  

2.2 Aberrant Test Response Behavior and Measures of Person Fit 

2.2.1 Aberrant Response Behavior and its Impact on Validity  

On a multiple-choice test, an examinee whose response pattern differs greatly from other 

examinees taking the same test could render that person’s test score an inappropriate measure of 

ability. “Even with the best tests and testing procedures, at least a few anomalies are likely to 

occur in any very large test administration and … an effort should be made to identify the 

resulting defective test scores” (Levine & Rubin, 1979). To that end, a multitude of 

appropriateness measures, called person-fit statistics in modern parlance, have been developed. 

Using the term “appropriateness index”, Levine and Rubin (1979) define a person-fit statistic as: 

… a measure of goodness of fit of a very general psychometric model to the 

individual examinee’s item-by-item pattern of responses. An appropriateness 

index is expected to be high if the examinee’s answer sheet is like that of 

similarly able examinees, and expected to be low if unlike similarly able 

examinees. Like the test score, the examinee's appropriateness score is solely a 

function of the examinee's item responses. Appropriateness indices thus 

summarize the internal evidence in the examinee's answer sheet indicating 

whether he or she approaches the test as do other examinees with the same ability 

(p. 271). 

 

Paraphrasing Smith (1986), Petridou and Williams (2010) describe how person misfit threatens 

validity: 

when examinees take a test their responses are expected to conform to some 

standard of reasonableness: they are expected to generally answer the easier 

items correctly and answer the more difficult ones incorrectly. Patterns that 
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contradict this expectation violate this standard of reasonableness and may be 

regarded as misfitting. Such response patterns, if they are unusual enough, signal 

what we call aberrant performances, which may indicate aberrant examinees. We 

suspect that such aberrance may imply the examinees are mismeasured, thus their 

score may be invalid” (p. 43). 

 

Petridou and Williams (2010) describe at length how person misfit is assumed to threaten 

validity, including a table summarizing quotes about the relationship between person-fit and test 

score validity, reprinted here in Table 1. In particular, according to Wolfe and Smith’s (2007) 

taxonomy of sources of evidence to support validity arguments, person misfit would provide 

evidence for substantive validity, defined as the extent to which theory explains differences in 

item response. Petridou and Williams (2010) investigated whether an aberrant response pattern 

was inherently indicative of mismeasurement and, thus, enough to render a test score invalid for 

its purpose. In a study of 674 individuals taking a 45-item mathematics test, two external sources 

of validity – interviews of 31 examinees and teacher assessments of approximately 400 

examinees – were applied to determine whether unexpected item responses accurately reflected 

examinee knowledge. When either the interview or the teacher assessment agreed with the misfit 

statistic, they concluded this was evidence of mismeasurement and responses were changed. They 

concluded that aberrance as indicated by a fit statistic is often evidence of mismeasurement but 

that it does not automatically imply mismeasurement. As Wright’s (1995) quote suggests, 

aberrance, whether truly indicative of mismeasurement or not, casts doubt on the estimate of a 

person’s ability, and as such, person misfit should be seen as a threat to validity. 

Hendrawan, Glas, and Meijer (2005) examined the effect of person-fit on a specific 

validity issue: classification decisions. With simulated samples of 400 and 1000 taking tests of 30 

and 60 items under various conditions in which ten percent of the sample were either guessing on 

some easy items or gained access to the answer on some difficult items, the effect of these 

misfitting examines on theta estimates using MLE and EAP and resulting classification decisions 

were investigated. They found that the effect of the misfitting examinees on the classification of 
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the normal examinees was minimal, though precision in classifying aberrant examinees 

approached zero as the aberrance became more extreme. 

2.2.2 Overview of Person-Fit Indices  

The quantity of available person-fit statistics is large, but they are nicely summarized and 

compared in Meijer & Sijtsma (2001) and Karabatsos (2003). For most common measurement 

models, multiple person-fit statistics are available. Meijer and Sijtsma (2001) provide a 

methodological review looking at person-fit statistics based on Classical Test Theory, the Rasch 

Model, and the 2PL and 3PL models, as well as person-fit statistics designed specifically to 

address aberrant behavior in computer adaptive testing. Table 2 is a reprinting of their compiled 

list of person-fit statistics, demonstrating the abundance of available indices and breaking them 

down by underlying model. 

Most group-based person-fit statistics are based on the Guttman (1944, 1950) model, in 

which it is assumed that a correct answer on a given item occurs at the exclusion of incorrect 

answers on any easier items. If items are arranged in order of difficulty, permitted patterns under 

the Guttman model are (1, 0), (0, 0), and (1, 1) where 1 is a correct response and 0 is an incorrect 

response. These are known as Guttman patterns. A response pattern of (0, 1) violates the Guttman 

model and is labeled an “error” or “inversion”. Group-based statistics are all based on weighted 

counts of these inversion patterns and differ only in the weighting scheme applied. Criteria for 

selection of a group-based person-fit statistic are 1) low correlation with the number correct score 

and 2) detection rate (Harnisch & Linn, 1981, Rudner, 1983). An issue with group-based statistics 

is that the distribution of values for most of them and, in turn, the probability of classifying a 

score pattern as misfitting are dependent on the test score distribution (Meijer & Sijtsma, 2001). 

For IRT models, be they one of the dichotomous or polytomous models, person-fit 

statistics take the form of residual-based statistics or likelihood-based statistics. Residual-based 

IRT person-fit statistics can be expressed generally as the sum of weighted differences between 

expected and actual outcomes on the items on a test. This form sets the expectation of a person-fit 
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statistic at 0. Squaring residuals before summation allows them to accumulate rather than risk 

them canceling each other out. Indices available based on mean-squared residuals include U and 

W (Wright & Masters, 1982), and UB and UW (Smith, 1985).  

Likelihood-based person fit statistics are all based on the log-likelihood function  

0

1

{ ln ( ) (1 ) ln[1 ( )]}
k

g g g g

g

l X P X P 


     

applied by Levine & Rubin for assessing person fit, in which k is the number of items, X is the 

response for item g (1 being a correct response, 0 being an incorrect one), and Pg(θ) is the 

probability of a correct response on item g for someone of ability level θ. Because l0 is not 

standardized and has an unknown null distribution, several refinements were to follow, most 

notably lz (Drasgow, Levine & Williams, 1985), which standardized l0 by simply subtracting its 

expected value and dividing the result by the standard deviation, and for the Rasch model, M 

(Molenaar & Hoijtink, 1990), a component of l0 both easy to approximate and known to follow 

the same order as l0 given an item-score pattern X. Group-based (i.e., CTT-based) fit statistics can 

also be used to detect misfitting patterns under an IRT model but may yield different results than 

those based on IRT parameters (Meijer & Sijtsma, 2001). 

 One type of person fit index that has both CTT- and IRT-based incarnations is the caution 

index. The caution index (Harnisch & Linn, 1981) is expressed as: 
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where 
iX  is the item score vector for examinee i, 

*

iX is the expected Guttman vector given the 

number correct for examinee i, and n is a vector of correct responses per item across all 

examinees. All caution index-based fit indices weigh item score vectors in terms of their 

agreement with a Guttman pattern in this way. For IRT-based caution indices, the expected 

Guttman vector is replaced by the vector P(θ) for a given ability level θ and IRT model, 

providing a more nuanced but preserved version of the Guttman pattern (Meijer & Sijtsma, 2001). 
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Karabatsos (2003), in a comparison of 36 person-fit indices across conditions including 

1) test length: short (17 item), medium (33 item), and long (65 item), 2) proportion of respondents 

that are aberrant: .05 to .5, and 3) respondent types: cheaters, creative responders, lucky guessers, 

careless responders and random responders, found that one fit statistic performed better than all 

of the others: HT (Sijtsma & Meijer, 1992). HT works similarly to a caution index in that it looks 

at covariance of an examinee response in relation to other examinee responses, but instead of 

comparing it to a vector of number correct, it sums the covariances of an individual respondent 

and each other respondent individually, then does the same for the maximum possible covariance 

in each case and takes the ratio: 
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 HT has a couple theoretical disadvantages that could lead one to choose a different 

measure of person fit. Firstly, it is not standardized to the Guttman pattern such that perfect fit 

would be given by 1T

iH  and perfect misfit is given by 0T

iH  . As such, even when an 

item-score pattern fits perfectly to the Guttman pattern, 
T

iH may still be less than 1 (Sijtsma & 

Meijer, 2001). Additionally, though we are working with IRT models, HT is a CTT-based 

statistic. It may be theoretically desirable to choose a statistic consistent with the measurement 

model actually being used. The advantages may outweigh the disadvantages, the primary 

advantage being that HT simply works the best. The effectiveness of all IRT-based person fit 

statistics are, to some extent, undermined by their dependence on ̂ , the person parameter 

estimate, rather than θ, the true person score. Using estimates rather than true scores can shrink 

the variance of IRT-based person fit statistics such that the distribution is no longer standard 

normal, with an empirical Type I error rate smaller than the nominal Type I error rate. Under 

these circumstances, it becomes more difficult to differentiate between true and false positives 
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(Molenaar & Hoijtink, 1990; Meijer & Sijtsma, 2001). In terms of relationship to the Guttman 

pattern, since the effectiveness of the statistic is based on finding a maximum ratio between true 

and false positives and not on this interesting theoretical feature of some person fit statistics, it is 

empirically irrelevant to their purpose. 

2.2.3 Specific Forms of Aberrant Response Behavior and Methods for their Detection  

Several forms of aberrant response behavior are defined in the literature. Levine and 

Rubin (1979) note that aberrant response behavior takes the general form of a disproportionate 

number of easy items answered incorrectly or difficult items answered correctly. They cite four 

specific forms of aberrant behavior: 1) improperly obtaining items, 2) shift errors, 3) creative 

responding, and 4) suboptimal test-taking strategies. Meijer (1996) expands upon, refines, and 

defines these forms into six categories of aberrant behavior. It should be noted that these 

proposed forms of aberrance have not necessarily been detected in empirical scenarios: 

1) Sleeping behavior: The examinee is slow to adapt to the task of taking the exam and, 

after adjusting, does not check answers to some of the easier items. This results in proportion 

correct on easy items being smaller than expected given proportion correct on the items of 

medium to high difficulty. 

2) Guessing behavior: The examinee guesses blindly at items that are beyond that 

individual’s ability. Proportion correct for items of a difficulty at or below that of the examinee’s 

ability is high while proportion correct for more difficult items is approximately equal to one over 

the number of response options. 

3) Cheating behavior: A person of low ability is likely to do well on the easy items but 

may, after struggling on some more difficult items, copy answers for the most difficult items. As 

such, cheating behavior may appear as a high proportion of easy and difficult items answered 

correctly while items of medium difficulty are answered incorrectly. 

4) Plodding behavior: Based on the assumption that response behavior is probabilistic, a 

response vector that perfectly follows a Guttman pattern may be considered “too good to be true.” 
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This is a pattern that may be generated by a methodical worker taking the time to answer each 

item correctly before moving onto the next. 

5) Alignment error: When an examinee reaches an item of high difficulty, the examinee 

may move on to the next item, intending to go back to the difficult item only after completing the 

easier items. If this person fails to skip a position on the answer sheet, this can result in an 

alignment or shift error of several items as the examinee fills in a string of responses intended to 

be in a given position but filled in in an incorrect location. Meijer (1996) conceptualizes this as 

several more difficult answers being scored incorrectly, though this seems a simplification of the 

nature of a shift error. While a shift error may be more likely to begin on a more difficult item, 

the rest of the misaligned string could take place on items of any difficulty.  

6) Extremely creative behavior: A high ability examinee may look at some easy items as 

too simple and apply a creative reinterpretation to those but not the better fitting medium and 

difficult items. As a result, proportion correct on the easier items will be lower than expected 

compared to the medium and high difficulty items. 

7) Subability deficiency: On a test made up of more than one subdomain, if an otherwise 

high ability examinee is weak in one particular subdomain, the examinee will perform 

disproportionately poorly on all items within that subdomain regardless of their difficulty level. 

While different forms of aberrance have been defined, identification of specific forms of 

aberrance remains difficult. Some behaviors, while very different, produce similar patterns of 

aberrance. Some aberrant patterns defy easy classification. Other aberrant behaviors produce 

response vectors that are closely aligned with the Guttman pattern and thus would not be flagged 

by a person-fit index (Meijer, 1996). Meijer and Sijtsma (2001) further note that while person-fit 

indices provide indications that item-score patterns are misfitting, most “do not allow the 

recovery of the mechanism that created the deviant item-score patterns” (p. 108). Karabatsos 

(2003) found that some forms of aberrance are easier to detect than others depending on the 

person fit index that has been selected but, whereas a particular form of aberrance may be more 
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likely to be detected, the indices offer no indication as to what form was detected beyond its 

being spuriously high or spuriously low. Meijer and Sijtsma (1995) note: 

“Finding an aberrant pattern does not provide the explanation for this aberrance. 

The application of person-fit analysis techniques may easily lead to the detection 

of aberrant patterns, whereas the reasons for this aberrance are poorly 

understood. Therefore, a full person-fit analysis requires additional research into 

the motives, the strategies, and the background of those examinees that deviate 

from the statistical norm set by the model or the group.” (p. 270) 

 

Hulin, Drasgow, and Parsons (1983) further note that when underlying causes of 

aberrance are unknown, little meaning can be given to the aberrant individual’s test score. 

Levine and Rubin (1979) acknowledged this stating that person-fit indices “will be most 

useful as broad, low-power screening devices for identifying a proportion of examinees 

requiring specific more powerful procedures” (p. 271).  

A couple of methods, however, do allow for identification of some forms of aberrance. 

Trabin and Weiss (1983) developed a method for identifying aberrant behavior by comparing 

expected and observed person response functions. A person response function is similar to a test 

response function except, rather than presenting probable test performance across the person 

parameter scale, it presents (expected or observed) performance at different difficulty levels for 

an individual of a given ability. Employing an IRT model, by stratifying items on an exam 

according to location for a given ability level, an expected proportion correct can be calculated 

for each of those strata, the result being a curve that represents expected performance along the 

range of difficulties for that ability level. When an individual’s observed performance curve is 

compared to this expected curve, when the relationship between the two takes certain forms, a 

certain type of aberrance may be inferred. If, for instance, a person’s observed response function 

is significantly lower than expected on the easier items, that may represent a form of careless 

behavior: sleeping or creative responding. A person whose curve has a very steep slope at their 

ability level is showing alignment to the Guttman pattern beyond what might be expected given a 

test’s probabilistic nature, indicating plodding behavior. A pattern that levels off at a certain 
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difficulty level such that it is approximately one over the number of response options is exhibiting 

guessing behavior. Sijtsma (1998; Meijer & Sijtsma, 2001) developed this into a person-fit index, 

( )D  by adding the average differences at each strata together, a method which Karabatsos 

(2003) found to be the most effective of the IRT- based approaches, though by itself it would 

potentially hide the form of aberrance as one can envision a scenario in which a person who is 

perfectly misfitting could have those average differences add up to zero, hiding that misfit 

(Armstrong & Shi, 2009). An approach in which differences between observed and expected are 

squared (Nering & Meijer, 1998) may serve as a better index. This chi-square statistic for ( )D 

may be calculated as follows: 
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where Ag is the vector of stratified subsets, G being the number of subsets. Xk is the response 

vector while ˆ( )kP  is the probability of getting a correct response on item k.  

Drasgow and Levine (1986; Drasgow, Levine, & Zickar, 1996) proposed a statistically 

optimal method for detecting aberrant response vectors. These are methods for detecting specific 

forms of aberrance because the statistical optimization requires a model specific to the form of 

aberrance being detected. Within this method, given statistically optimal models for both normal 

and aberrant responses, the likelihood of each response pattern under those models is calculated 

and the likelihood ratio of each pattern is calculated. Once this is done, the minimum likelihood 

ratio at which the acceptable Type I error rate is achieved provides the statistically optimal point 

at which to base your decisions to accept or reject the null hypothesis that a given response vector 

is not aberrant. The key to the method, then, is selecting appropriate models for calculating 

likelihoods that the vector is fitting and that it is misfitting. For calculating the likelihood that it is 
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fitting, within an IRT framework, this is a matter of applying the appropriate IRT model given the 

data and what number of parameters are appropriate to the item characteristics. For calculating 

the likelihood of an aberrant pattern, the specific form of hypothesized aberrance will indicate the 

appropriate calculation. They model several forms of aberrant behavior: cheating on both known 

and unknown item sets, dissimulation (“faking good”) on personality scales and biographical 

inventories, format unfamiliarity (contextualized as unfamiliarity with computers, but their 

description seems as though it would hold for any unfamiliar context), and the Levine-Rubin 

Spuriously Low Model (1979). 

The Levine-Rubin model fits for any of several contexts that result in spuriously low 

performance on some portion of a response vector, including shift error (Drasgow, Levine, & 

Zickar, 1996). According to this model, in a test of n items, m are answered with one of J possible 

response options selected at random. The remaining n minus m items have responses based on the 

normal (i.e., non-aberrant) model. The probability for response vector u under the normal model 

is given by the formula: 
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in which
iP is the probability of a correct response on item i and 

iu  is the response to item i in 

response vector u (1 for a correct response, 0 for an incorrect response), whereas for the response 

vector u* under the aberrant condition given a subset Sk subject to the aberrant condition and the 

remaining items subject to the normal condition, the probability is given by the formula: 
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in which all symbols are as for the previous formula and J, as noted above, is the number of 

possible response options. 

A pair of studies (Drasgow & Levine, 1986; Drasgow, Levine & McLaughlin, 1987) 

found misfit detection rates under this model given an 85 item test with 9 misfitting items to be 
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.08, .13, and .17 at alphas of .01, .03, and .05 while increasing the number of misfitting items to 

13 and looking only at the top 8% of examinees (under the premise that high-ability examinees 

are most severely affected by spuriously low responding) obtained detection rates of .81, .86, and 

.88. Increasing number of misfitting items to 26 while continuing to look only at the top 8% 

improved detection rates to 0.97, 0.98, and 0.99. Drasgow et al. (1996) are careful to note that 

optimal indices are only truly statistically optimal if the underlying aberrance model is correctly 

modeling the underlying aberrance, a condition easy to achieve under simulation but impossible 

to know when using empirical data.  

 Armstrong and Shi (2009) propose a method that, while not designed specifically to 

allow identification of the causes of aberrance, builds the person-fit statistic in a cumulative 

fashion such that it can identify the location of the aberrance within an item vector. While Miejer 

(1996) defines different types of misfit in terms of how such misfit might be reflected in spurious 

highness or lowness, Armstrong and Shi believe confining aberrance to consecutive items is a 

more reasonable assumption when looking at causes such as fatigue, distraction, cheating, or 

special knowledge. Shift error, though not specifically mentioned by Armstrong and Shi, is a 

form of misfit that will occur over consecutive items and may be due to fatigue or distraction. The 

statistic they propose, a parametric cumulative sum statistic (CUSUM), sums differences between 

expected and observed responses one item at a time so as to detect runs of either positive or 

negative deviations that could balance each other out and remain undetected if one calculation is 

made on the entire response vector. The authors note that this cumulative procedure can be 

applied with any person-fit statistic, including Drasgow and Levine’s (1986) optimal detection 

method. Thus, it is possible that both location and type may be ascertainable through a 

hybridization of the CUSUM method and a type-specific model for misfit detection. In a 

simulation study comparing detection performance of CUSUM to several person-fit statistics 

under conditions with 100 and 300 aberrant examinees out of 10,000, aberrances of 0, 8, 10, and 
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12 introduced, and alpha levels of .01 and .05 examined, found the CUSUM to detect the aberrant 

examinees at rates 3 to 4 times that of the non-cumulative person fit statistics.  

 In evaluating person-fit statistics, while a couple of the studies (e.g., Armstrong & Chi, 

2009; Hendrawan, Glas & Meijer, 2005) examine the effectiveness only at specific alpha levels, 

best practice, as defined by Levine & Rubin (1979) and used to great effect by Karabatsos (2003), 

is to employ receiver operating characteristic (ROC) curves (Green & Swets, 1966). Rather than 

presenting the detection rate at only a couple of alpha levels, the ROC curve shows the tradeoff 

between sensitivity and selectivity across the full type I error spectrum from 0 to 1. An example is 

shown in Figure 1. As the threshold of probability at which the detection method represents an 

identified error is made more permissive, sensitivity increases and can be seen by the curve 

increasing in the vertical dimension. This increased sensitivity can come at a cost in terms of 

selectivity, a tradeoff represented by increase along the horizontal dimension. A perfectly 

selective method with no type I error would hug the y-axis perfectly whereas a method incapable 

of detecting anything but false positives would hug the x-axis perfectly. By employing an ROC 

curve, one can determine the best type I error rate for any detection method in terms of what is an 

acceptable compromise between sensitivity to true positives and lack of specificity in eliminating 

false positives. While a typical ROC curve uses the characteristics of sensitivity (i.e., true positive 

rate) and 1 – selectivity (i.e., false positive rate). The example uses true positive rate but shows a 

different characteristic for presenting false positives: the false discovery rate (Benjamini & 

Hochberg, 1995). Whereas a false positive rate gives the ratio of negatives falsely identified as 

positive to total negatives, false discovery rate gives the number of negatives falsely identified as 

positives to total identified positives. Whereas a nominally low false positive rate of .01 or .05 

can still bury what seems like a good true positive rate under a mountain of false positives, a false 

discovery rate of the same guarantees that true positives outnumber false positives at exactly the 

rate specified, a more meaningful and useful finding when negatives greatly outnumber positives 

in the data. 
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2.2.3.1 Detection of Cheating Behavior  

Of all specific sources of person misfit, perhaps the most attention has been paid to 

cheating behavior. Whereas general aberrance detection generally features methods highlighting 

patterns of unusual disagreement with the Guttman scale, cheating detection historically has 

focused on unusual agreement between two examinees, particularly in their wrong answers. 

Whereas agreement in correct answers may simply indicate that both examinees are of similar 

ability, when incorrect answers agree to an unusual extent, this may indicate copying behavior 

(Angoff, 1974; Holland, 1996; Belov, 2011). One may consider shift error in an analogous way: 

as response vectors in unusual agreement with a misaligned portion of the answer key. As such, 

the indices developed to detect unusual agreement as indicators of cheating behavior may inform 

development of indices to detect unusual agreement as indicators of shift error. 

Angoff (1974) conducted the earliest research into this idea, comparing examinees on the 

SAT, comparing examinees known to be in different geographical locations (making copying 

impossible) to create a norm group and then in the same geographical locations to see if there was 

any behavior that differed significantly from these norms. Comparisons were made on 12 

variables, which were then used to produce eight indices “of copying” through bivariate 

comparisons. By controlling for independent variables, such as number answered incorrectly by 

the compared respondents, value on a dependent variable, such as number answered incorrectly in 

the same way by both respondents, could be assessed in terms of deviations from the mean in the 

normed group and, if significantly different from that mean, could be flagged as exhibiting 

copying behavior. When calculated on a sample of 50 examinee pairs known to have exhibited 

copying behavior, calculated t-values were at least 3.0 for at least one of the indices. An index 

measuring consecutive shared omits and incorrect responses while controlling for total omits and 

incorrect responses identified 41 of 50 known copying cases at that threshold. Two of the eight 

indices, including this last one, were put into operational use by Educational Testing Service. 
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Holland (1996) employed the K-Index to assess the degree of unusual agreement between 

incorrect multiple-choice answers in two examinees. Holland derives the probability that two 

examinees will have some number of matching incorrect responses and determines that the 

distribution of a binomial variable serves as a reasonable approximation of that derived 

probability. Since unusual agreement is defined by number of incorrect responses being at or 

above a certain level, the formula appropriate for stating this is: 
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where B is a binomial random variable, m is the count of items in agreement, n is the number of 

incorrect items that the source examinee got incorrect, and p is the probability that an incorrect 

responses in the comparison group that is in agreement with the incorrect response of the source. 

The K-index is ( )P B m  where p is defined by making comparison groups of examinees with 

the same number of items wrong and calculating the proportion whose wrong answers agree with 

the source’s. Note that this method’s rooting in proportions makes it analogous to CTT. 

Frary, Tideman & Watts (1977) has a CTT-based method considered to have a clear 

theoretical and statistical advantage over K-index and other CTT methods (Wollack, 1997). Their 

method compares the number of identically answered items for a pair of examinees to the 

expected number of identically answered items. The g2 index simply takes the difference between 

these two values and divides it by the standard deviation of the difference, giving it an 

approximately standard normal distribution. By treating one of the examinees in the pair as a 

source and the other as a copier, one can consider the source’s answers to be fixed and need only 

come up with reasonable probability estimates that the copier would select S’s answers under 

non-copying conditions. When correct responses agree, this would simply be the CTT p-value for 

each item:  

pc = ec/et 
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where ec is the number of examinees getting the item correct and et is the total number of 

examinees. For incorrect responses, the probability would be: 

pw = (1-pc)/(n-1)  

in which pw is the probability of an incorrect response, pc is the probability of a correct response, 

as given above, and n is the number of response options. Summing these probabilities for all 

items would give you an expected agreement rate. Summing pc(1-pc) for all items would give the 

standard deviation. Unlike the K-index, this method is not dependent only on incorrect answers, 

instead including correct and incorrect answers in its model. 

Wollack (1997) expands upon g2 by incorporating the nominal response model (NRM; 

Bock, 1972) rather than relying on proportion correct to generate response probabilities. NRM is 

discussed in section 2.6. As with g2, Wollack’s ω will be approximately standard normal, so long 

as the distribution of observed agreements between sources and copiers is also normal, a 

condition that will be met according to the central limit theorem so long as the number of items is 

sufficiently large.  

Several other indices (e.g., Belov, 2011; van der Linden & Sotaridona, 2004; Sotaridona 

& Meijer, 2002) are available for detection of copying behavior, all based on a comparison of 

observed and expected levels of agreement, either of all responses or correct responses. Those 

reported herein are the ones most influential in how shift error detection methods were developed 

in this paper.  

2.2.3.2 Detection of Shift Errors.  

Though alluded to as a source of person misfit (Levine & Rubin, 1979; Meijer & Sijtsma, 1995; 

Meijer, 1996; Dodeen & Darabi, 2009) and while some of the methods may be suitable for their 

detection, shift error has received little direct attention in the psychometric literature in terms of 

specific methods for its detection. Optimal statistical detection (Drasgow & Levine, 1986) as a 

concept is applicable given an appropriate misfit model. CUSUM’s focus on sequential items 

(Armstrong & Chi, 2009) is in concert with the sequential nature of shift errors. Beyond 
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acknowledging, defining, and perhaps classifying shift error as a subset of a more general 

category of person misfit, the psychometric literature offers little in terms of directly addressing 

shift error detection. Even if a method is especially adept at detecting shift errors, it may not be 

capable of classifying them as such so that appropriate action may be taken.  

Skiena and Sumazin (2000a, 2000b, 2004) lay out the challenges in detecting shift errors, 

noting that it is inadequate to simply identify answer sequences whose scores increase when 

shifted, as it would unfairly reward random guessers and other poor performers who arrived at 

such a sequence purely by chance. Even hunting for large blocks of incorrect answers that 

become correct when shifted is not entirely appropriate since shifted blocks could still have 

correct answers by chance and long strings of entirely correct answers may be as unlikely as long 

strings of incorrect ones. Factors they note as essential for consideration in detecting shift errors 

are 1) examinee performance, 2) exam difficulty, 3) change in number of correct/incorrect 

answers, 4) extent to which scoring method encourages or discourages random guessing, and 5) 

answer key pattern. They approach the issue of shift errors head-on as a computer science 

problem Skiena and Sumazin (2000a, 2000b, 2004). With a goal of discriminating between exams 

that contain shifted responses and those that do not, they approach the problem algorithmically, 

developing three approaches for shift detection. Each scans individual exams for patches 

representing potential shifts, differing in what information should be considered in scoring the 

exams. Their three models, in order of increasing complexity, are: 1) the dynamic programming 

model, 2) the single scan model, and 3) the double scan model. A breakdown of each follows. 

The dynamic programming model performs a string alignment between the answer key 

and the exam, calculating edit distance of optimal alignment of the two strings. Edit distance is a 

count of the number of operations required to align two strings (Gusfield, 1997). In the context of 

correcting for shift errors, when few edits result in better alignment of a response string to an 

answer key string, this is evidence that a shift error may have occurred. Assuming at most one 

shift error per response set, the dynamic programming model looks for the misalignment with the 
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greatest improvement at the lowest cost, improvement determined by number of items contained 

in the shift, cost determined by how many places the substring has been displaced and thus must 

be moved in order to achieve optimal alignment. A threshold is set by weighting the benefit vs. 

cost in a way that keeps false detections to an acceptable minimum while allowing as many true 

positives to be found as possible. 

The single scan model analyzes each substring within an exam probabilistically in order 

to determine its likelihood given the examinee’s overall score. Given a particular raw score, the 

method calculates a probability of a substring of size n having a given number of wrong answers. 

Patches of likelihood below predetermined probability thresholds based on the raw score are 

flagged as suspicious so that they may be tested for improvement (in likelihood) after a corrective 

shift. 

The double scan model is an extension of the single scan model that calculates the 

substring probabilities via a more complex algorithm, one in which probability distributions are 

determined for all items based on all examinees. Such a method is more capable of identifying 

easier patches of items and thus can treat such areas with more suspicion than when it assumes all 

items to be of the same difficulty, as with the single scan model. 

Whereas the dynamic programming model need only find the shift with the greatest 

benefit to cost ratio and determine if it meets the predefined threshold that minimizes false 

positives, the single and double scan models involve two steps, one in which suspicious patches 

are identified as per the model descriptions above and one in which those patches are scored in 

order to be classified as shift errors or not. Suspicious substring identification involves a series of 

probability calculations of the form ( , , , )P N n k m in which N is the total number of items in the 

exam, n is a substring length, k is the number of wrong answers in substring n, and m is the 

examinee’s raw score on the exam. The probability being calculated is the probability of getting k 

wrong answers in a substring of length n given a raw score of m on an exam of length N. When 



26 

 

interested in substrings for many different n’s, this involves a large number of operations that 

could prove prohibitive. Probability of a correct answer Pc = number correct m over total number 

of items N, the probability of getting k incorrect in a substring of length is expressed by the 

formula: 

n = Pc
n-k (1-Pc)

k.  

The double scan model employs the same method except it adds weights for item difficulty at the 

group level in its calculation for Pc. Because this method yielded no practical benefit within their 

study, specifics of the weighting method are not further discussed here. 

Because detection alone is not enough to discriminate between true and false shifts, 

Skiena and Sumazin further analyzed the suspicious substrings by determining significance of the 

score increase caused by correcting the shift. Models for calculating the significance are based on 

the null hypothesis that the suspicious substring is not a shift error and, thusly, the result of 

shifting it should relate to the answer key in a random fashion. This being the case, the 

probability of the shifted substring occurring by chance can be calculated. If that probability is 

below the specified alpha level, the null hypothesis may be rejected and the substring may be 

considered a shift error. Skiena and Sumazin test this hypothesis via two models, one independent 

of answer key and one dependent on it. The independent model calculates the probability that a 

block of length N with α response options will yield B correct answers by the following: 
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The dependent model considers the structure of the answer key and number of response options 

to factor in increases and decreases in probability due to repetition in the key.  

In testing their methods, Skiena and Sumazin (2000a, 2000b, 2004) name but do not 

describe three detection levels: Permissive, Proper, and Restrictive. Results in Skiena and 

Sumazin (2000a) are reported based on the permissive detection level. In their studies, they found 

that the permissive level excessively rewarded poor performers and might be adequate for their 
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university exams but not the SAT. They reported few false detections at the proper detection level 

while identifying 902 examinees with shift errors on SAT forms. Using a restrictive method 

reduced this finding to 159 with nearly no false detections but an inadequately low detection 

probability. Exact false detection rates are not reported. 

In Skiena and Sumazin (2000a), they looked at five exams from university courses, each 

with different difficulty levels (p=.62 to .81), sample sizes (N=66 to 204), numbers of response 

options (4 or 5), and number of items (30, 33, or 50). Into the response sets for these tests, they 

simulated shift errors of lengths 3 to 10 then ran their three detection methods on those sets plus 

the unshifted response sets. Under permissive conditions, they found that the dynamic 

programming method performed significantly worse than the single and double scan methods, 

while the double scan method did not perform sufficiently better than the single scan method to 

warrant its extra algorithmic complexity and processing time. Results for their single scan method 

are reprinted in Table 3. When no shifts are introduced, shifts are still detected within the data 

(representing either false positives or pre-existing real shift errors) at a rate between .000 and 

.019. With shifts of length 3 introduced, they are detected at rates between .127. As shifts of 

increasing lengths are introduced, detection rates steadily increase for all exams such that shifts of 

length 10 are detected at rates between .750 and .943. 

Skiena and Sumazin (2000b) replicates the previous study but uses Scholastic Amplitude 

[sic] Test (SAT) data. In this study, they conducted experiments to answer two questions: 1) how 

well do their methods detect shifted exams and 2) how often do actual exams contain uncorrected 

shift errors. Within this study, using the same methods as for the previous, they report results at 

all three detection levels. The simulation study demonstrates the same trends, with detection rates 

increasing as length increases. In the empirical data, containing approximately 1830 shift errors, 

at the restrictive level 159 shift errors were detected, 902 were found at the proper level, and 3611 

were found at the permissive level, demonstrating clearly that the permissive level is overly 

permissive while the proper and restrictive methods are sacrificing sensitivity in favor of 
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selectivity. A further breakdown of shift errors by race and income showed no significant 

differences based on either of those criteria. 

Cook and Foster (2012) tested two simple algorithms for shift error detection, one 

employing the 3PL model and one under which all responses are assumed equally probable. Both 

followed the same procedure, only differing in method of calculating probability. Each begins by 

detecting sequences of responses that coincide exactly with the answer key except for a 

misalignment either one position forward or one position backward, then calculate the probability 

that the response sequence is in the correct location given the probabilistic model. Probabilities 

are compared against a threshold set to minimize false positives to an acceptable Type I error 

rate. Methods were tested in simulation under nine shift error conditions. The first eight simulated 

shifts of one length, between three and ten, introduced to 100% of examinees while the ninth 

introduced shifts of all lengths from three to ten within the same group, each length introduced to 

1% of examinees. For each scenario, 100 replications of 2000 examinees were simulated based on 

a normal ability distribution and using 45 items, parameters taken from an actual state K-12 

assessment and responses simulated using the nominal response model (Bock, 1972). Application 

of the detection algorithms yielded 100% selectivity rates with varying degrees of sensitivity, 

dependent on shift condition for all conditions under the 3PL while not reaching 100% selectivity 

and always performing inferiorly under the equal probability model. Table 4, reproduced from 

Cook and Foster (2012), shows those results. Results were encouraging given that the method did 

not incorporate incorrect answers into the algorithm, potentially disguising shift errors that had 

one or more wrong answers contained within the shift. 

2.2.4 Addressing Aberrant Test Response Behavior  

While few studies have been conducted investigating the usefulness of applying 

person-fit statistics to empirical data (Meijer & Sijtsma, 2001), Smith (1985) recommends four 

actions that may be taken when a response vector is determined to be misfitting: 1) report 

multiple ability estimates for an examinee rather than just one, 2) correct the item-score pattern so 
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that it better fits the model (i.e., assume the misfit represents a correctable error), 3) discard the 

test results and retest the examinee, or 4) conclude that the error resulting from the misfit is small 

enough that the ability estimate is accurate enough without correction. Which action is most 

appropriate is highly dependent on context.  

2.3 Issues of Validity and Differential Performance Dependent on Test Format 

Shift error is a problem most specific to paper and pencil tests in which answers are given 

on a separate sheet rather than within the question booklet. As such, understanding the extent to 

which test format can influence performance helps to contextualize the problem of shift errors. A 

great deal of research has been conducted regarding the influence of test format on validity and 

differential performance. As computer-based testing has increased in prevalence, research on the 

topic has focused on determining whether paper-and-pencil tests and computer-based formats are 

equivalent, with a distinct emphasis on whether conversion to computer-based testing will be so 

different as to call into question whether the tests are measuring the same things (e.g., Mead and 

Drasgow, 1993; Pomplun & Custer, 2005; Kingston, 2009). The need for measurement 

equivalence is raised in the Guidelines for Computer-Based Tests and Interpretations (APA, 

1986), the Standards for Educational and Psychological Testing (APA, AERA, NCME, 1999) 

and in guidelines set forth by the International Testing Commission (2005), all promoting the 

position that “delivery mode should not affect examinee performance on any measure, and 

evidence of measurement equivalence or non-equivalence should be reported” (Rowan, 2010, p. 

3). Kingston (2009) highlights the importance of this point, stating: 

“Often making a traditional test available on computer is seen as a first step on a 

path that will lead to future larger improvements. However, because of 

technology access issues (for example, not all schools have sufficient computers 

or the necessary Internet bandwidth), concern over equity, or general political 

issues, many testing programs find it necessary to offer their constituencies 

(districts, school, or individuals) choice. Thus it becomes imperative to 

demonstrate the comparability of scores from computer and paper 

administrations.” (p. 23) 
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 Russell, Goldberg, and O’Connor (2003) found that computer familiarity plays a large 

role in differential performance on tests offered in both paper-and-pencil and computer-based 

formats, with those familiar with computers scoring higher on the computer-based version and 

those unfamiliar with computers performing better on the paper version. If format proficiency is 

not part of the construct of interest but is affecting test performance, this is a threat to validity that 

can render comparison of scores between modes of administration impossible (Rowan, 2010). 

Huff and Sireci (2001) note that introducing tutorials has helped to combat construct irrelevant 

variance caused by lack of computer familiarity but it is unclear from the literature what is being 

done to reduce error introduced exclusively by the paper format. In a 1993 meta-analysis, Mead 

and Drasgow found that the largest differences between these two modes of administration were 

for speeded tests, a phenomenon they attributed in part to difference in response format, 

particularly pressing a key vs. marking a bubble sheet. This study solely analyzed research on 

adult populations, though a study using cognitive test scores for students in grades 4 to 12 (Ito & 

Sykes, 2004) reached a similar conclusion. Pomplun, Frey, and Becker (2002) found, in a test of 

score equivalence between paper and computer versions of a speeded reading test, found higher 

scores on the computer version as well as more students completing the computer version. A 

format that is more likely to result in speededness and incompleteness logically allows for less 

time to check answers and correct errors.  

Format differences, however, predate computer-based testing. With the advent of 

machine scoring of tests, concerns arose as to how separating the answer sheet would affect 

reliability and validity of test results (Dunlap, 1940). Dunlap cites one source of error that could 

arise from separation of the answer sheet: failure to record the answer in the intended place, 

stating, “it often happens that he omits an item and, as a result, vertically displaces all remaining 

answers” (p. 5). In a series of experiments in which fourth graders were asked to complete tests 

using answer sheets with different numbering formats and to underline answers within the 

booklets as well as fill out the answer sheets, Dunlap found that approximately two-thirds of the 
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exams had discrepancies between booklet underlining and answer sheet marking with between 

2.5% and 16.0% (depending on conditions) of the discrepancies being of a type that would be 

consistent with a shift error. 

Several studies have investigated potential impact of using optically scored answer sheets 

rather than having answers embedded within a test booklet. Gaffney and Maguire (1971) tested 

840 students between grades two to nine and looked at differences between those answering 

within a booklet and those answering on a separate answer sheet in number correct of easy items. 

Given seven items for which class means were 6.6 when answering within a booklet, 

second-graders had mean scores of 3.4, 5.0, and 5.1 when answering on a separate sheet under 

conditions of minimal instruction and no practice, maximum instruction and no practice, and 

maximum instruction plus practice. Third-graders also performed significantly below 

within-booklet class means under all conditions whereas fourth- and fifth-graders only performed 

below the within-booklet means when not allowed to practice. Above fifth grade, students 

performed as well on the separate answer sheets as those answering within the booklets. 

 These results concur with two studies by Cashen and Ramseyer (1969; Ramseyer & 

Cashen, 1971), in which they found significant differences based on grade and level of 

instruction. In the first, approximately 120 first to third graders were given the 1963 California 

Test of Mental Maturity in both booklet and answer sheet formats and were found to have 

decreasing performance differences dependent on format as grade increased. First graders had 

raw scores 23.67 points higher on the booklet format than answer sheet, a difference that 

decreased to 10.79 points in second graders and a non-significant 3.32 point difference in third 

graders. In the 1971 follow-up, first and second graders were first given instructions and found 

score differences decreased to less than 10 points in both groups. In 1985, Ramseyer and Cashen 

performed yet another study of score differences dependent on test-format, this time investigating 

interaction of this effect with eye-hand coordination levels. In first graders, they found a mean 

difference of 12 points between booklet and answer sheet formats for those with low or middle 
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eye-hand coordination but a difference of only 4.5 for those in the high eye-hand coordination 

group. No second-graders were in the low eye-hand coordination group and those in both the 

middle and high coordination groups had differences in scores of about 5 points in favor of 

within-booklet answering. 

Muller, Orling, and Calhoun (1972) investigated differences in score reliability and 

variability dependent on whether answers were within-booklet or on a separate sheet. Examining 

groups of students at the third-, fourth-, and sixth- grade levels. At all three levels, mean number 

of errors tripled when responses moved from within booklet to a separate answer sheet while 

variability doubled in third graders and tripled for fourth and sixth graders, suggesting that 

moving to a separate answer sheet weakens test reliability. 

Wise, Duncan, and Plake (1985) examined differences in test scores for 53 third graders 

divided into low, medium, and high abilities taking the Iowa Test of Basic Skills under three 

testing conditions: 1) answering within booklet, 2) answering on a separate sheet with no prior 

practice, and 3) answering on a separate sheet after several practice sessions. They found 

significant differences only in the low ability group and only between the separate sheet, no 

practice and the other two conditions. No significant difference was found between in-booklet 

answering and separate answer sheet with prior practice, suggesting that low-ability third graders 

can overcome format effects with training whereas they are not significant at other ability levels. 

In their investigation into shift errors at Stony Brook University, Skiena and Sumazin 

(2000a) found that between 1-2% of paper-based tests contained shift errors, causing a loss of 

10% of the student’s grade, on average. An extension of the study to the SAT found 1.8% of 

101,265 tests contained unrecognized shift errors, costing examinees up to 210 points, a penalty 

that could be devastating to one’s chance of admission. According to the College Board website, 

over 3 million students sit for the SAT each year. The ACT, also used as a criterion for college 

admission and only administered in paper-and-pencil format, saw over 1.6 million examinees in 

2012. Other high-stakes tests available, at least in part, in a paper-and-pencil format include the 
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Graduate Record Examination (GRE), Test of English as a Foreign Language (TOEFL), Law 

School Admissions Test (LSAT), the Multistate Bar Examination (MBE), and the majority of 

statewide academic assessments (e.g., Massachusetts Comprehensive Assessment System 

(MCAS); Proficiency Assessment for Wyoming Students (PAWS)), including those in which a 

passing score is required for graduation. While studies related to answer sheet format seemed to 

show no significant effect after fifth grade, this specific effect was detected in students of 

high-school and college age. It is logical to conclude that, if young students are more generally 

prone to error based on test format, they will be more prone to this specific form of error as well. 

Matter (1985), in an investigation of answer-changing behavior, observed 633 runs of 3 

or more consecutive answer changes in a dataset expected to produce no more than 20 under an 

assumption of independent errors. Skiena and Sumazin (2000a) extrapolated from this that a 

substantial portion of all tests contain corrected shift errors and that, even if 90% of all shift errors 

are corrected, a significant problem remains concerning undetected shift errors. 

Several articles including student surveys on answer-changing behavior provide further 

evidence of shift error as a source (McMorris & Weideman 1986; McMorris, DeMers, & 

Schwarz, 1987; Shatz & Best, 1987; Schwarz, McMorris & DeMers, 1991; van der Linden & 

Jeon, 2012). Shatz and Best (1987) interviewed 65 students upon their completion of a 62 item 

test and found that 20 changed answers after putting them initially in the wrong space, resulting 

in 70% changes from wrong to right. McMorris and Weideman (1986) found that 8% of all 

answer changes were due to mismarking of answer sheets. McMorris et al. (1987) found 

willingness to change answers based on clerical error was high (1.7 on a 1 to 2 scale) and that 

clerical error accounted for 18% of all changes made within their study. Schwarz et al (1991) 

found results concurrent with McMorris and Weideman, that, based on a series of personal 

interviews, 8% of changes made were due to clerical errors. van der Linden & Jeon (2012) 

discussed the rationale behind erasures and answer changing behavior and found that when 

changes are made to correct clerical error, the majority are from right to wrong. 
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2.4 Probability and Measurement Models  

The shift detection methods proposed in this paper will principally employ item response 

theory (IRT) models, probabilistic models in which response probabilities are calculated based on 

a combination of the latent trait being measured in an examinee and characteristics of an item 

(e.g., item difficulty) (Hambleton, Swaminathan & Rogers, 1991). Methods employed will 

feature the dichotomous 3-parameter logistic (3PL; Birnbaum, 1968) model and the polytomous 

nominal response model (NRM; Bock, 1972). This section discusses each of these models as well 

as concerns that may need to be addressed in using them within the shift detection methods. 

The 3PL model is a dichotomous model for determining the probability of a specific 

result given two possible outcomes (e.g., correct given possibilities of correct/incorrect, true 

given true/false options) on an exam item. The formula for its calculation is given by: 
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where ( )P  is the probability that an examinee with ability ( ) answers the item correctly, a is 

the item discrimination parameter, b is the item difficulty parameter, and c is the pseudo-chance 

parameter, which incorporates the probability of a low-ability examinee guessing the correct 

answer (Hambleton, Swaminathan & Rogers, 1991). This parameter provides a lower asymptote 

for probability of arriving at a correct answer, making the 3PL especially appropriate for use in 

multiple-choice exams in which even an examinee of no ability has a better than zero chance of 

guessing the correct response (de Ayala, 2009). 

 The NRM is a polytomous model that provides probabilities of all available responses for 

a given item, rather than a simple right/wrong. Consider a multiple-choice question with four 

response options. Though only one of those options may be considered correct, there is a 

probability associated with each of the available responses that depends on examinee’s ability in 

the latent trait as well as the item characteristics. Whereas the 3PL requires only one calculation 
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per item, the NRM requires a calculation for each response option, the formula for which is given 

by: 
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in which ( | )P u k  is the probability that response u is in category k given examinee   and 

category slope and intercepts are given by 
ka and 

kc , respectively, for the specific responses and 

given gain for all responses from 1 to i n  by 
ia and 

ic , respectively.

 The potential advantage of the NRM over the 3PL is that it provides probabilities for the 

incorrect responses as well as the correct ones. When employing the 3PL, the probability that the 

response is incorrect is simply 1-P(θ), but this doesn’t tell the probability of the specific incorrect 

response among the options. Instead one must divide the overall probability of an incorrect 

response by the number of incorrect response options: 
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This makes an assumption that all incorrect responses are equally likely, an assumption that is 

unlikely to hold but perhaps adequate for accurate shift error detection. 

Another possible concern employing the 3PL for shift error detection is that shift error 

detection methods must be tested and calibrated in simulation that depends on the NRM for data 

generation. As such, it becomes important that the 3PL is capable of adequately accurate 

parameter recovery of data generated using the NRM. “When data are generated with a particular 

model, scores based on that model will tend to be most accurate” (DeMars, 2008, p. 9). Because 

of differential scoring of incorrect responses, the NRM will tend to provide more information 

than the 3PL in the ability range in which an item is difficult for a given examinee (DeMars, 

2008), but Thissen (1976) found that this does not result in an increase in score reliability because 

this offers no additional information gain for middle- and high-ability examinees. In DeMars’ 
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(2008) study, results showed that overall, the NRM is more reliable than the 3PL in recovering 

parameters from data generated via the NRM, though differences in reliability were .04 across 

several conditions. For ability levels below zero, the NRM took advantage of extra information 

and showed a reliability difference of .1. For ability levels above zero, 3PL outperformed the 

NRM with reliability difference of .02 with large sample size (n=2500) and .06 for small sample 

size (n=250). Lower scores were, overall, more reliable than higher scores, perhaps making the 

increased reliability of the 3PL in the higher range of more value despite the 3PL’s overall 

inferiority. While concluding that use of polytomous models may be large enough to be 

meaningful in certain contexts, DeMars does not conclude that use of the 3PL is inappropriate for 

parameter recovery of data simulated under the NRM. 

2.5 Conclusions Based on a Review of Literature 

When answers on paper and pencil tests are recorded on separate answer sheets rather 

than within test booklets, this can lead to inferior examinee performance, especially but not 

exclusively among children of early primary school age. Clerical errors under such test conditions 

are shown to be a problem for examinees of all ages, and one of the more common and most 

severe forms of clerical error that an examinee can make is to commit a shift error, a mistake in 

which an item is skipped and a series of responses misaligned to their intended items is produced. 

The longer the shift error, the more severely this can bias examinee ability estimates, threating the 

validity of any inferences one might wish to make based on these estimates. Shift errors are 

identified as a source of aberrance in the person-fit literature, but while person-fit statistics, even 

statistically optimal detection methods, are capable of detecting test pattern aberrance caused by 

shift errors, none offers a mechanism for identifying the cause of the misfit as a shift error. 

Absent the ability to identify specific causes of person misfit, the best course of action for 

remedying its presence remains unclear. Algorithms developed for the detection of shift errors 

have shown some capability for accurately detecting shift errors and differentiating them from 

false positives but leave room for improvement. IRT measurement models offer a clear avenue 
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for such improvement, as they are capable of providing accurate probabilities that item responses 

are being given in the correct location or shifted by a specific distance.  

A preliminary study applying the 3PL model to strings of misaligned correct responses 

demonstrated promise for identifying shift errors, but realizing the full potential of IRT models in 

shift error detection requires employing algorithms that incorporate incorrect answers as well as 

correct ones. Further, the 3PL does not differentiate between incorrect responses, assigning equal 

probabilities to all of them within a given item. Employing the NRM, which provides 

probabilities for all response options on an item, could prove even more accurate in its detection 

of shift errors. Determining how sensitively and selectively these IRT-based models can detect 

shift errors, how robust they are to parameter bias, and how they compared to more general 

indices of person-fit offers the potential to identify and remedy this specific and potentially severe 

form of person misfit. Further applying the methods to empirical data will provide answers about 

just how prevalent this form of misfit is within actual tests.  

This dissertation attempts to answer several specific research questions, all of which can 

be expressed more generally as variations on the following research questions:  

1) Which combination of algorithm and model provides the highest shift error detection rates? 

2) How robust is each method/model combination to the parameter bias introduced by the 

presence of shift errors? 

3) Does the given algorithm/model combination outperform an appropriate person-fit statistic in 

identifying a candidate as misfitting the data? 

4) How prevalent is shift error, as detected by the method/model combination, within an 

empirical data set?  
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

With a goal of providing practical knowledge to improve upon the validity of test score 

interpretations through the detection and proper classification of one form of aberrant response 

behavior, namely undetected shift error on paper-and-pencil tests, this dissertation examined a 

small three-dimensional matrix of detection algorithms, probabilistic models, and person 

parameter estimation techniques, testing permutations of these factors for their selectivity and 

sensitivity in detecting shift errors under different simulated and empirical conditions. 

Additionally, these methods were compared to a more traditional person-fit statistic for their 

relative ability to identify, if not classify, this type of misfit.  

The dissertation was broken down into four studies: 1) a simulation study based on 

empirical data, 2) an application of the results of the simulation study to the empirical data on 

which it was based, 3) a simulation study designed to determine if shift error detection methods 

perform differentially based on person parameter levels, and 4) a comparison of shift error 

detection methods and the HT person-fit statistic for detecting shift errors. 

What follows are the specifics of the detection algorithms, probabilistic models, and 

person parameter estimation techniques that make up the shift error detection methods followed 

by a detailed breakdown of the data and methods used in the four studies. 

3.2 Shift Detection Algorithms 

Two algorithms were employed for the error detection step within this study: (1) 

misaligned response detection, and (2) most probable correction detection. Both algorithms 

involve iteration through examinee response strings to detect anomalous patterns that may 

indicate that a shift error has been committed. The specifics of each method and the indices based 

on them are described next. 
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3.2.1 Misaligned Response Detection  

The misaligned response detection algorithm involves comparison of the test answer key 

to a given examinee response string to find strings that correspond with but are misaligned to the 

answer key. For instance, looking for shifts forward in direction with a distance of 1, the 

algorithm will compare answer key item 1 to examinee response 2. If there is no match, the 

algorithm simply moves forward to compare answer key item 2 to examinee response 3. If they 

match, the item is flagged as the beginning of a misaligned response string. Answer key item 2 is 

then compared to examinee response 3 for a potential match. If there is a match, the next 

misaligned pair is compared, a process which continues until a mismatch occurs, at which point 

the examinee number, starting item, shift length, distance, and direction are recorded. The 

algorithm moves through the entire examinee response string recording all such misaligned 

response strings. Figure 2 shows an example of a misaligned response string forward in direction 

with a distance of 1, starting at item 7 and having a length of seven. The algorithm can do this for 

all examinees, shift directions and distances. Figure 3, for example, shows a response string with 

a misalignment that is backward with a distance of 1, starting at item 8 with a length of 6. Once 

the algorithm has processed all examinees, directions and distances, the resultant list can be 

evaluated against the probabilistic models to determine the likelihood of each having occurred in 

the correct position. The resultant probability is called the coincident misalignment probability 

(CMP) because it represents the probability that the misaligned agreement between substrings is 

due to coincidence rather than due to a shift error. Selectivity and sensitivity of CMP at different 

thresholds will be determined by classifying candidate substrings with CMP below the threshold 

as shift errors and candidates with CMP above the threshold as merely coincident, lower 

probabilities of coincidence being indicative of higher probabilities of a shift error. Under 

simulation conditions, shifts will be introduced that are a distance of only one forward or 

backward, and thus detection within the simulation using this algorithm will be limited to a 
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distance of one as well. This reduces the processing workload without undermining the 

investigation into the effectiveness of the shift error methods. 

3.2.2 Most Probable Correction Detection  

The algorithm for most probable correction detection requires no comparisons between 

an examinee’s response string and the answer key, instead making the determination as to 

whether a substring is a shift error solely on changes in response probabilities when items are 

shifted. It does so by calculating three probability vectors for each examinee response string: 1) 

in-place probability: the probabilities associated with the responses in place as they occur on the 

answer sheet, 2) forward-shifted probability: the probabilities associated with the responses if 

each is shifted forward one position, and 3) backward-shifted probability: the probabilities 

associated with the responses if each is shifted backward one position. In practice, these shifts 

could be expanded to include shifts of larger distances, but were limited within this study to 

minimize the processing workload. In-place probability is then subtracted from forward-shifted 

probability for each item within each examinee’s response string to obtain a vector of change in 

probability when responses are shifted forward and then from backward-shifted probability to 

obtain a vector of change in probability when responses are shifted backward. Subvectors of all 

lengths have their changes in probability summed within both the forward and backward 

change-in-probability vectors to find the subvectors with the largest total. The resultant index is 

called summed change in probability (SCIP). Because SCIP is a measure of improvement in 

probability when a shift error candidate is corrected, candidates are classified as true shift errors 

when SCIP is higher than a given threshold but classified as non-shift errors when SCIP is below 

the threshold. For the purposes of this study, because no more than one shift error was introduced 

in simulation within a given examinee response vector, flagging was, in turn, limited to only one 

shift error candidate: the subvector with the largest SCIP for that examinee.  
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3.3 Probability Models 

For determining probabilities of suspicious substrings being in the correct location, two 

IRT models were applied: the 3PL model and the NRM. One problem with applying IRT models 

when there is potential misfit is that the misfit gets built into the parameters themselves, biasing 

the parameter estimates and, therefore, any probabilities calculated based on those estimates. This 

suggests two applications of each of these models: one in which item and person parameters are 

all treated as known (using the known parameters employed in the simulation) and one in which 

they are estimated after simulation. While known parameters are not available in empirical 

situations, by evaluating methods using both known and estimated ability parameters allows us to 

not only see how much bias is introduced to the ability estimates by the shift errors, but to also 

see how that bias impacts the shift error detection. Additionally, when methods are taken to 

control that bias, comparison to the baseline based on the known parameters becomes essential. 

3.3.1 3PL Model  

The 3PL Model for calculating probabilities of response strings incorporates both item 

and person parameters into the calculation. Within the 3PL, described in more detail within the 

literature review, the probability of a correct response is given by: 
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where ( )P  is the probability that an examinee with ability ( ) answers the item correctly, a is 

the item discrimination parameter, b is the item difficulty parameter, and c is the pseudo-chance 

parameter, which incorporates the probability of a low-ability examinee guessing the correct 

answer. Probability of an incorrect response can be expressed as: 
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where ( )wP  is the probability of an incorrect response and n is the number of response options. 

To calculate the probability of a particular response string of length l, one need multiply all of the 

calculated probabilities associated with that string: 
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3.3.2 Nominal Response Model  

The Nominal Response Model (NRM; Bock, 1972), like the 3PL, incorporates person 

and item parameters into calculation of response probabilities. Unlike the 3PL, which only 

calculates the probability of an examinee choosing the correct response, the NRM calculates the 

probabilities of the examinee choosing each response option. Within the NRM, described in more 

detail within the literature review, the probability of each response for an item is given by: 

1

( | )
k k

i i

a c

n
a c

i

e
P u k

e












 

  

in which ( | )P u k  is the probability that response u is in category k given examinee   and 

category slope and intercepts are given by 
ka and 

kc , respectively, for the specific responses and 

given gain for all responses from 1 to i n  by 
ia and 

ic , respectively. Unlike the 3PL, which 

produces only the probability of an incorrect response and, in order to calculate individual 

incorrect response probabilities, requires the unsubstantiated assumption that all distractors are 

equally attractive regardless of examinee ability, application of the NRM to multiple choice items 

results in calculation of unique probabilities for both the correct and incorrect responses that 

consider the measurement properties of each response option. 

As with the 3PL model, to calculate the probability of a particular response string of 

length l using the NRM, one need multiply all of the calculated probabilities associated with that 

string, and may use the same formula. 
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3.4 Person Parameter Estimation Techniques 

Person parameter estimation was performed in three ways within this study: 1) using the 

true parameters, obtained through calibration of the empirical data and treated as truth during 

response simulation, 2) using the parameter estimates obtained during calibration of the simulated 

response sets, and 3) correcting those estimates for bias introduced by the presence of shift error 

candidates. Person parameters were obtained for all technieques using expected a posteriori 

(EAP) estimation. This was determined to be the best compromise between accuracy relative to 

maximum likelihood estimation (MLE), given that large amounts of data were treated as missing 

for bias control, and efficiency relative to maximum a posteriori (MAP) estimation, whose 

iterative procedure proved too time-intensive given the large data set and great number of 

conditions and replications within this series of studies.  

Simulation of the data set used in this study included the use of known person parameters 

estimated from an empirical data set then treated as known. While these would remain unknown 

in empirical studies, we can use this knowledge to evaluate our data for shift errors under an 

assumption that we are able to remove all bias before estimation. This may be an unrealistic 

scenario and is not technically estimation, but provides a sense of the best case scenario and 

allows us to examine the influence of person parameter bias due to shift errors on the process of 

shift error detection.  

Under empirical conditions, item and person parameters are unknown; they are estimated 

through the calibration process. Though person parameters were known under the simulation 

conditions, no such luxury would exist when applying shift error detection methods to empirical 

data. As such, estimates obtained based on the simulated data better represent how these methods 

would necessarily be applied under empirical conditions. By comparing the effectiveness of the 

shift error detection methods using both known and estimated parameters, we can get a sense of 

how well these methods work under realistic conditions as well as how much detection ability is 

lost to the bias created by the shift errors themselves. When person parameter estimates are biased 



44 

 

based on systematic error, such as undetected shift error, use of the parameters in detecting said 

shift error will be less than optimal. Underestimates of ability will, in addition to presenting 

threats to validity, result in less powerful probability calculations, making detection of shift errors 

more difficult.  

Under the assumption that the bias introduced through estimation when shift errors are 

present would noticeably impact the estimation and impair the shift error detection, a purification 

method for reducing that bias was employed under the hope that this would improve shift error 

detection accuracy. The purification method for reducing the bias involved running each shift 

error detection twice, treating shift error candidates identified during the first run based on the 

estimated person parameters as missing, re-estimating item and person parameters, and basing a 

second shift error detection on these bias-corrected parameters for comparison to detection using 

the uncorrected estimated person parameters. The threshold for making the determination of 

which candidates to omit was the threshold at which all true positives were included along with 

any false positives that fell on the correct side of the threshold, while candidates falling on the 

wrong side of the threshold were not treated as missing. 

3.5 Decision Criteria 

Once substrings are flagged as potential shift errors, they must be compared against some 

criterion or criteria in order to classify them as either shift errors or coincident misaligned 

patterns. Three criteria are suggested for possible classification of shift errors: 1) probability 

threshold, 2) person-fit indices, and 3) change in bias of ability estimates. It may be that a simple 

comparison of substring probabilities to a probability threshold may prove adequate in providing 

accurate and inclusive shift error detection, but application of these other criteria could improve 

accuracy and inclusivity or provide additional support for conclusions drawn based on 

probability.  
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3.5.1 Probability Threshold  

The foundation of the proposed detection methods is, in all cases, a probability 

calculation, whether it is a single calculation of probability that a suspicious response substring 

would occur in its place, as per the misaligned response detection method, or it takes two 

calculated probabilities, that of the substring occurring in place to identify it as suspicious and a 

second to evaluate the probability of a proposed corrective shift. Classifying a given substring as 

either a shift error or merely a coincident misalignment depends on the calculated probability or 

probabilities falling on the correct side of a thresholds set to ensure an acceptable level of 

accuracy. In the case of the single calculation method, probabilities would need to fall at or below 

the threshold. In the case in which two calculations are performed, optimal thresholds for both 

flagging substrings as suspicious and for classification as shifts must be determined. Because 

optimal probabilities are dependent on acceptable ratios of true to false positives, ROC curves 

presenting the trade-off between true positive and false discovery rates were used to make this 

determination. Additionally, because some procedures involve making evaluations at specific 

thresholds, these were set based on arbitrarily acceptable false discovery rates of .00, allowing no 

false positives, and .05, allowing 5% of all classified shift errors to be falsely identified negatives. 

3.5.2 Person-Fit Indices  

In addition to meeting the probability criterion, it may be that a person fit statistic or a 

change in person fit may provide a more sensitive and/or selective indicator of a shift error than a 

probability threshold. Rather than setting probability thresholds at levels that optimize selectivity 

and sensitivity, it could be that change in person fit serves as a better index. Rather than varying 

probability thresholds, thresholds of person fit or change in person fit can be assessed in the same 

way, via ROC curves, to determine the tradeoff between Type I and Type II errors. To this end, 

an appropriate person-fit index needed to be selected. Because it was found to be superior under 

all conditions (Karabatsos, 2003), HT (Sijtsma & Miejer, 1992) described in section 2.2.2 above, 

was selected for this purpose. Because HT involves calculation of covariances between all 



46 

 

examinees, a task too large given the scope of the first simulation substudy, comparisons between 

the proposed shift error detection methods and person-fit were conducted in a separate substudy 

using a small subsample of examinees from that first substudy. 

3.5.3 Change in Bias  

When person parameters are known or estimated without shift errors, they may be 

compared against the ability estimates obtained including the response substring identified as a 

possible shift error to see how much bias that potential shift error has produced. Under simulation 

conditions, pre-shift correction and post-shift correction theta estimates may be obtained and 

compared against the known thetas to determine which response pattern biases the estimate less. 

Under empirical conditions (or in an attempt to emulate empirical conditions), ability estimates 

may be obtained with identified candidate substrings shifted, unshifted and removed from 

estimation altogether. Provided that bias-correction methods are effective, comparison of pre-shift 

and post-shift estimates to the estimates with substrings removed would be safe under the 

assumption that those represent the best available estimates for comparison. As will be seen in the 

first study, attempting to correct bias by removing potential shift errors from examinee response 

vectors provided no predictable pattern of improvement in ability estimation or shift error 

detection, so the assumption that bias-corrected estimates were the best available was unsafe and 

this was discarded from the subsequent studies. 

3.6 Study 1: Simulation Study Based on Empirical Data  

The first study was designed to evaluate the accuracy and effectiveness of the proposed 

shift error detection methods as they might be applied under empirical conditions. To that end, 

item and person parameter estimates were estimated from an empirical data set using the NRM 

and treated as true parameters for the sake of simulation. Data was obtained from the 

administration of a paper-and-pencil K-12 proficiency exam with 45 items given to a set of 

approximately 40,000 examinees. In order to build the response sets for each scenario, responses 

were first simulated without shift errors using the NRM. Simulation was performed by calculating 
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probabilities of all response options for each examinee taking each item using the empirical item 

and person parameters under the NRM then comparing a randomly generated number to those 

response probabilities to determine the response for each examinee/item combination. The NRM 

was selected because of its ability to probabilistically differentiate between the different response 

options.  

Four scenarios were simulated, consisting of short, medium, long, and mixed-length shift 

errors. For the short, medium, and long shift error scenarios, shift lengths were set to 3, 7, and 10 

respectively. For the mixed-length scenario, shifts were evenly split between every length from 3 

to 10. These lengths were selected for their comparability to the Skiena and Sumazin (2000a, 

2000b, 2004) series of studies and because they place reasonable bounds on lengths below which 

shift error detection is unlikely to behave reliably and above which shift error detection trends are 

likely to be predictable. For the fixed-length scenarios, rather than look at all lengths between 3 

and 10, as Skeina and Sumazin did, choosing the shortest and longest and a midpoint for 

examination served to inform as to general patterns in regard to the research questions without 

overburdening the studies with time-intensive replications producing nearly similar results. 

Where inconsistencies surfaced could inform future research on other lengths. For all scenarios, 

five percent of examinees received a shift error, shift errors were limited to one per examinee, and 

shifts could occur anywhere within an examinee’s response sequence so long as the starting point 

occurred early enough to leave room for the entire shift before the end of the sequence. While 

five percent is larger than was projected by previous research, it provided a larger sample of shift 

errors within the simulation, allowing larger numbers of shift errors to be examined in fewer 

replications than if Skiena and Sumazin’s two percent was used. For each scenario, 100 

replications of the 45 item by 40,000 examinee matrix were produced and shift errors of the 

appropriate lengths were then introduced. Once data sets were generated, the matrix of IRT 

probability models, person parameter estimation method, and shift detection algorithm were 

applied to obtain lists of candidate substrings and their associated shift detection indices. 
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To classify candidate substrings as shift errors, indices must be compared to thresholds 

that result in acceptable type I and type II error rates. Because of the disproportionate ratio (19 to 

1) of examinees without shift errors to those with them within this simulation, using false positive 

rates, which compare the number of false positives to the maximum number of false positives 

(i.e., actual negatives), could provide misleading results. If, for instance, a false positive rate of 

.05 were deemed acceptable, within this study approximately 2000 false positives would be 

deemed acceptable. If, at the same time, 1000 true positives were found out of 2000 total 

positives, one could conclude that there is a 50% hit rate at an alpha of .05. Meanwhile, for any 

given positive, there is only a one in three chance that it is a true positive. For this reason, this and 

the following studies instead used false discovery rates (Benjamini & Hochberg, 1995) in 

contextualizing type I errors. False discovery rate is the ratio of false positives to total positives. 

In the given example, 2000 of 3000 positives are false, a false discovery rate of .67. This provides 

a much more meaningful indicator of the effectiveness of the shift error detection than the false 

positive rate of .05. Additionally, stating that a false discovery rate of .05 is acceptable would be 

more clearly meaningful, indicating that 1 in 20 positives being false is an acceptable rate for type 

I errors.  

Because acceptable error rates are dependent on application, curves were constructed to 

show the tradeoff between true positive rates and false discovery rates over the entire threshold 

range. These curves are similar to receiver operating characteristic (ROC) curves (Green & 

Swets, 1966), which plot false positive rates on the x axis and true positive rates on the y axis, the 

difference being that false positive rates are replaced by false discovery rates on the x axis. 

Additionally, thresholds with false discovery rates of .00 and .05 were established to determine 

what percent of shift errors were found both without error and at an arbitrary ratio of true to false 

positives. These arbitrary false discovery rates were essential to applying the detection methods 

back to the empirical data in the second study. 
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In addition to determining true positive rates at the thresholds with false discovery rates 

of .00 and .05, calculation of the effect of correcting detected shift errors on person parameter 

bias was performed. Bias is simply the difference between the examinee’s true ability and the 

examinee’s estimated ability: 

ˆ ˆBias( )     

For change in bias for a set of examinees, mean change in absolute bias (MCAB) and mean 

change in signed error (MCSE)were calculated. MCAB is given by the following formula: 
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where n is the number of examinees, ˆBias( )i pre is the value of ˆBias( )  for examinee i based on 

the ability estimates made prior to shift error detection and ˆBias( )i post  is the value of ˆBias( )  

for examinee i after re-estimating thetas after shift error detection and correction has been 

performed. MCAB is a reasonable calculation of change in bias in this study because, whereas we 

expect the bias introduced by shift errors to be negative, our goal in correcting shift errors is 

reducing the overall magnitude of the bias to the ability estimates. Strictly measuring change is 

not as meaningful since large changes may not be indicative of improvement if they merely swing 

underestimates to equally large overestimates, for instance. Since MCAB is calculated for each of 

the 100 replications, the average MCAB over all replications is obtained by summing them and 

dividing by 100 and one figure for MCAB is reported for a given scenario. 

 MCSE is given by the following formula: 
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where individual terms are the same as for MCAB. MCSE gives an indication as to the direction 

in which bias moves. In conjunction with MCAB, this helps to understand the effect of shift error 
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correction. One would expect correction of shift errors to increase scores (resulting in positive 

MCSE) while reducing the magnitude of bias (resulting in negative MCAB). Since MCSE is 

calculated for each of the 100 replications, the average MCSE over all replications is obtained by 

summing them and dividing by 100 and one figure for MCSE is reported for a given scenario. 

3.7 Study 2: Empirical Application of Simulation Study Results 

The second study was an application of the simulation results to the empirical data from 

which the item and person parameters were derived. Should any of the shift error methods prove 

useful operationally, these are logical first and second steps for conducting such an application: 

performing a study based on the test you wish to investigate for shift errors, introducing shift 

errors in simulation to determine thresholds for their detection at reasonable type I and type II 

error rates, then applying the results back to the empirical data to find real shift errors within that 

data.  

Within this study, a two-dimensional matrix of detection algorithms and probability 

models was employed. Person parameter estimation method was discarded as a factor since true 

person parameters remain unknown and bias control methods proved unsatisfactory in study one, 

leaving uncorrected person parameter estimates as the only working measure of ability. The four 

algorithm/model combinations were applied using these uncorrected person parameters to 

calculate the shift detection indices, which were then compared to the thresholds from the fixed 

and mixed-length shift error scenarios of the simulation study at false discovery rates of zero and 

.05 in order to obtain true and false positive counts within the empirical data. Additionally, based 

on the true positive rates found in the simulation and the empirical true positive counts, 

projections of total positive counts were calculated at those thresholds and, for the mixed-length 

scenarios, across the false discovery range in order to determine the consistency of projections 

across the full range.  

As in the simulation study, it is interesting to know the benefit of correcting the shift 

errors in terms of change in bias for those whose shift errors were corrected. Unfortunately, bias 
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is incalculable because, whereas in simulation calculations are straightforward because 

examinee’s true ability (θ) is known, with empirical data, examinee’s true ability is unknown. 

Because simulation conditions are modeled after the empirical data, MCAB obtained through 

simulation can be used as an indicator of expected benefit when applied empirically, but to get a 

sense of the actual impact of shift errors on ability estimates in empirical data, a change in ability 

estimate is a sensible alternative. For change in ability, Mean Absolute Difference (MAD) and 

Mean Signed Difference (MSD) statistics were calculated. MAD is given by the formula: 
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where n is the number of examinees, ˆ
ipre is the ability estimate for examinee shift error detection 

and ˆ
ipost  is the ability estimate for examinee i re-estimated after shift error detection and 

correction has been performed. Note that whereas MCAB represents an improvement, MAD 

represents change. Given that the majority of changes made to response strings were presumed to 

be on true shift errors and only a small percentage were adjustments to false positives, it was 

assumed that this change was an improvement, but this remains unknown. 

MSD is given by the formula: 

1

ˆ ˆ

ˆ( )

n

ipost ipre

iMSD
n

 

 






 

where notation is the same as for MAD. Whereas MAD gives a measurement of the magnitude of 

movement in person parameter estimates, MSD gives a measurement of the direction of that 

movement. 

3.8 Study 3: Simulation Study Based on Stratified Ability Levels  

Shift error detection is likely to behave differentially dependent on examinee ability. 

Because shifted correct responses are more likely to appear as incorrect responses and lower 
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examinees are more likely to answer items incorrectly, the higher probabilities associated with 

incorrect responses in low ability examinees should also result in higher probabilities associated 

with misaligned response strings. In the case of the misaligned substring detection method, which 

looks only for coincident correct responses, stopping at the first disagreement between misaligned 

responses, an incorrect response within a true shift error will shorten the detected misalignment, 

further inflating the probability of their occurrence and reducing the likelihood that they will be 

properly identified as shift errors. As such, it becomes interesting to see how the methods work at 

different ability levels. This study will look at the methods at different examinee ability levels. 

In order to determine whether the proposed shift error methods function differentially 

dependent on examinee ability, the third study replicates the procedure from study one using 

smaller samples and fixed, stratified person parameters. Three samples of 2000 examinees were 

simulated, the first having person parameter fixed at negative one, the second having a person 

parameter fixed at zero, and the last having a person parameter fixed at one. Item parameters were 

the 45 items taken from the same paper-and-pencil K-12 proficiency exam and treated as true 

parameters for the purpose of simulating responses. In order to build the response sets for each 

scenario, responses were first simulated without shift errors using the NRM.  

Four shift error length scenarios were simulated, consisting of short, medium, long, and 

mixed-length shift errors. For the short, medium, and long shift error scenarios, shift lengths were 

set to 3, 7, and 10 respectively. For the mixed-length scenario, shifts were evenly split between 

every length from 3 to 10. For all scenarios, five percent of examinees received a shift error, shift 

errors were limited to one per examinee, and shifts could occur anywhere within an examinee’s 

response sequence so long as the starting point occurred early enough to leave room for the entire 

shift before the end of the sequence. For each person-parameter/shift-length combination, 100 

replications of the 45 item by 2000 examinee matrix were produced and shift errors of the 

appropriate lengths were then introduced. Once data sets were generated, the matrix of IRT 



53 

 

probability models, person parameter estimation method, and shift detection algorithm were 

applied to obtain lists of candidate substrings and their associated shift detection indices. 

Results were reported as for study one, using false discovery rates rather than false 

positive rates, building modified ROC curves, and reporting the true positive rates and thresholds 

with zero false positives and at the false discovery rate of .05. Change in mean absolute bias was 

also calculated based on shift errors detected at those false discovery rates. 

3.9 Comparison of Shift Error Detection Methods to the H
T
 Person-Fit Statistic 

The proposed shift detection indices, SCIP and CMP, are both person-fit statistics 

directed toward one specific form of person-misfit: shift errors. While more general person-fit 

statistics may lack the capability to identify the specific location of misfit within an examinee’s 

response string or the specific nature of the misfit, it is possible that it may do a better job of 

identifying the misfitting individuals who have committed a shift error. This study compares 

SCIP and CMP to HT, the person-fit statistic found in Karabatsos’ (2003) analysis to perform 

superiorly to all other person-fit statistics across test lengths, sample sizes, misfit types, and misfit 

saturations. Additionally, because the shift-error detection methods stand to improve person fit, 

this study will investigate the change in the HT statistic based on correcting the detected shift 

errors at certain thresholds. 

In order to evaluate the relative performances of SCIP, CMP, and HT, this study uses the 

simulated responses from the first study and calculates the HT person-fit index in order to 

determine its misfit detection rate for comparison to the shift error detection rates of the shift 

error detection methods. This was done for each of the four shift error length scenarios: short, 

medium, long, and mixed-length shift errors. Results were reported as for study one, using false 

discovery rates rather than false positive rates, building modified ROC curves for all three indices 

in all scenarios, and reporting the true positive rates and thresholds with zero false positives and 

at the false discovery rate of .05. Additionally, corrections to the response strings were made 

based on shift errors detected at those false discovery rates and HT was recalculated in order to 
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determine what effect, if any, correcting shift errors has on person fit. Calculation of changes in 

person-fit allow for evaluation of the benefit realized by applying a given shift error detection 

method. Overall change in person-fit can be expressed by the formula: 

1
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where N is the number of examinees, 
T

i preH is the value of HT for examinee i prior to correction 

based on the shift error detection result and 
T

i postH  is the value of HT for examinee i after 

correction of a detected shift error, if any. Overall change in person fit was calculated for all 

examinees in each scenario as well as only for those who had shift errors. 

3.10 Calibration  

Calibration in all studies was performed using the FlexMIRT software package (Cai, L., 

2012) using the 3PL and NRM as appropriate to each scenario’s selected probability model. 

Where the 3PL model was used, c-parameters were held fixed at .25, a reasonable estimate of 

each item’s guessability that stabilized the calibration process, a necessity given the study size 

and the lack of stability of the c-parameters that was found when they were allowed to be 

estimated freely. In study three, which detected shift errors at fixed person parameter levels, all 

item parameters were fixed for both the 3PL and NRM in estimating the person-parameters after 

responses were simulated.  
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CHAPTER 4 

RESULTS 

4.1 Overview  

The dissertation was broken down into four studies: 1) a simulation study based on 

empirical data, 2) an application of the results of the simulation study to the empirical data on 

which it was based, 3) a simulation study designed to determine if shift error detection methods 

perform differentially based on person parameter levels, and 4) a comparison of shift error 

detection methods and the HT person-fit statistic for detecting shift errors. Results for each of the 

four studies will be reported separately. For all studies, index thresholds for given scenarios and 

false discovery rates are set based on the mean index value across the replications for the given 

scenario. Devations in false positive counts at this mean index were small enough at all false 

discovery rates as to be considered insignificantly different from the expected counts at those 

rates.  

4.2 Study 1: Simulation Study Based on Empirical Data  

The first study was designed to evaluate the accuracy and effectiveness of the proposed 

shift error detection methods as they might be applied under empirical conditions. Results of the 

study are broken down into sections by shift length, and within those sections, results from the 

probability model, parameter estimation method, and shift detection algorithm matrix are 

reported. 

4.2.1 Short Shifts  

Short shift errors were of length 3. Figures 4 to 7 show ROC curves separated by scoring 

algorithm and probability model while Figures 8 to 10 shows all algorithm/model combinations 

using the true, estimated, and bias-corrected person parameters. A comparison of the ROC curves 

shows that for these short shifts, CMP is more sensitive to true positives than SCIP at the lowest 

false discovery rates but at false discovery rates of .04 and higher, SCIP surpassed CMP using the 

NRM, and at the false discovery rates of .07 and higher, SCIP surpassed CMP using the 3PL. For 
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both SCIP and CMP, the NRM was consistently more sensitive to true positives than the 3PL. 

Loss in sensitivity due to estimation bias is greater using CMP at these short lengths, though it is 

also consistent along most of the ROC curves for 3PL misaligned detection. For SCIP, there is 

little loss of sensitivity due to bias and at some points the estimated person parameters even 

outperform the true person parameters. Controlling for bias hindered the detection methods at this 

short length for all algorithm/model combinations except for CMP using the NRM, which saw it 

recover most of the loss due to estimation bias. For the SCIP index, bias control rendered shift 

errors undetectable or nearly so below false discovery rates of .05. 

Table 5 shows detection rates of all method combinations for the short shifts at the false 

discovery rate of .00 and Table 6 shows detection rates with a false discovery rate of .05. These 

confirm what the ROC curves tell us: When allowing no false positives, CMP outperformed 

SCIP, with the NRM detecting 10.0% of the true shift errors using true person parameters, 2.8% 

using uncorrected estimates, and 4.6% using bias-corrected estimates, while the 3PL detected 

shift errors at rates of 7.8%, 5.0% and 4.4%, respectively. For both IRT models, SCIP detected 

approximately 2% of true shift errors using both true and estimated thetas and detected nearly 

zero shift errors when employing the bias-control method. At the false discovery rate of .05, SCIP 

outperformed CMP and NRM continues to outperform 3PL. SCIP using NRM detected 23.2% of 

shift errors of length 3 using true person parameters and barely dropped off when using estimated 

person parameters, detecting 22.4% of shift errors, though attempting to correct for bias yielded 

only minimally better results than when attempting to do when no false positives were allowed. 

Also of interest at the .05 false discovery rate is that estimated person parameters had higher shift 

error detection rate than true person parameters for SCIP using the 3PL , with a true positive rate 

of 18.1% compared to 13.5%.  

Tables 7 and 8 give the MCAB and MCSE for shifts of length 3 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of .00. Applying the 3PL model gave an MCAB for all 
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examinees of slightly more than 0.020 across all models and person parameters while MCAB for 

shifted examinees showed a reduction in absolute bias, with values between -0.020 and -0.041 

using CMP and between -0.009 and -0.017 using SCIP. MCSE is 0.000 across models and person 

parameters when all examinees are considered while those with shift errors had an MCSE 

between 0.041 to 0.083. Applying the NRM produced superior results using the CMP algorithm, 

reducing absolute bias in all examinees by 0.001 to 0.003 and improving on reduction in absolute 

bias using true and bias-corrected parameters while losing some reductive power using estimated 

person parameters. SCIP resulted in either no change in magnitude bias or a decrease of 0.001 for 

all examinees and showed slight bias reduction using true and estimated person parameters but 

attempts at bias correction were ineffective. MSE under all algorithms and person parameters was 

0.000 for all examinees, showing no directional tendency to at least three decimal places. For the 

shifted group, attempts to correct the shift showed a tendency to moved signed errors toward the 

positive, indicating that shift error correction was tending to raise scores. 

Tables 9 and 10 give the MCAB and MCSE for shifts of length 3 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of .05. Results were nearly identical to when the false 

discovery rate is zero with a slight reduction in magnitudes across the board, making the positive 

MCAB slightly less damaging under the 3PL at this threshold and the negative MCAB slightly 

more favorable under the NRM. MCSE also behaved similarly to the lower false discovery rate, 

showing no tendency either way when applied to all examinees but a positive tendency when 

applied to the shifted examinees. 

The result of introducing shift errors of length 3 into the data was an MCAB of 0.007 

compared to the unshifted data. While attempts to correct shift errors using the 3PL at the false 

discovery rates of .00 and .05 increased the MCAB, applying the NRM cut the amount of bias 

introduced by the shift errors by between 14% and 57%. 
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4.2.2 Medium Shifts  

Medium shift errors were of length 7. Figures 11 to 14 show ROC curves separated by 

scoring algorithm and probability model while Figures 15 to 17 show all algorithm/model 

combinations for true, estimated, and bias-controlled person parameters, respectively. A 

comparison of the ROC curves shows that, for medium shifts, behavior is much more predictable 

across detection algorithms, probability models, and person parameter estimation methods than it 

was for the short shifts. Along the false discovery rate range, SCIP proves more sensitive to shift 

errors than CMP and the NRM is more sensitive than the 3PL. Bias caused by using estimated 

rather than true person parameters consistently reduces selectivity, though SCIP using NRM 

proves most robust to this bias. The bias control effort proves minimally effective, except for 

CMP using NRM, which showed considerable improvement under bias-controlled conditions at 

very low false discovery rates and, less usefully, bias control was very effective for the SCIP 

algorithm using the 3PL model at false discovery rates greater than .20. Across the board, true 

positive rates were higher for medium length shifts than for short shifts at comparable false 

discovery rates. 

Table 11 shows detection rates of all scenarios for the medium shifts without false 

positives and Table 12 shows detection rates with a false discovery rate of .05. Again, these 

support what the ROC curves tell us: that SCIP outperformed CMP and NRM outperformed 3PL. 

When no false positives were allowed, SCIP using NRM detected shifts of length 7 at rates of 

49.2%, 44.6% and 37.9% using true, estimated, and bias-corrected person parameters 

respectively. SCIP using 3PL yielded true positive rates of 43.2%, 40.0%, and 33.4%, CMP using 

NRM had rates of 39.0%, 28.6%, and 33.1% and CMP using 3PL had rates of 34.2%, 26.7%, and 

25.0%. At a false discovery rate of .05, SCIP using NRM continued to outperform the other 

algorithm/model combinations for all ability estimation methods, with rates of 70.0% using true 

person parameters, 66.7% estimated, and 65.8% bias-corrected. SCIP using 3PL had true positive 
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rates of 64.7%, 59.7%, and 60.5%, CMP using NRM had rates of 54.4%, 45.8%, and 49.3% and 

CMP using 3PL had rates of 48.5%, 42.3%, and 38.2%. 

Tables 13 and 14 give the  MCAB and MCSE for shifts of length 7 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of zero. Applying the 3PL model resulted in an MCAB for all 

examinees of around 0.010 across all models and person parameters while MCAB was negative 

for the shifted examinees. Results were slightly better using SCIP compared to CMP. MCSE was 

0.000 across models and person parameters when all examinees were considered while those with 

shift errors had MCSE that was systematically positive with values between 0.262 and 0.378. 

Applying the NRM reduced the MCAB across algorithms and person parameters. When the CMP 

algorithm was employed, MCAB  was - 0.010 to -0.013 while SCIP results in an MCAB between 

-0.012 and -0.015. Shifted examinees saw larger reductions that were similar but slightly better 

than those using the 3PL. MCSE under all algorithms and person parameters was 0.000 under the 

NRM, showing no directional tendency, while MCSE for the shifted examinees was positive, 

showing the tendency to raise scores when correcting shift errors. 

Tables 15 and 16 give the  MCAB and MCSE for shifts of length 7 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of .05. The more permissive threshold shows all of the same 

trends between algorithms and models as when zero false positives are allowed but was uniformly 

better at reducing the magnitude of bias while raising scores for the shifted examinees. 

The result of introducing shift errors of length 7 into the data was an MCAB of 0.018. 

While attempts to correct shift errors using the 3PL at the false discovery rates of .00 and .05 

increased the absolute bias, applying the NRM cut the amount of bias introduced by the shifts by 

between 61% and 94%. 
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4.2.3 Long Shifts  

Long shift errors were of length 10. Figures 18 to 21 show ROC curves separated by 

scoring algorithm and probability model while Figures 22 to 24 show all algorithm/model 

combinations using true, estimated, and bias-corrected person parameters, respectively. A 

comparison of the ROC curves shows that, for long shifts, as for medium, behavior was much 

more predictable across detection, person parameter estimation methods, and probability models 

algorithms than for the short shifts. Along the full selectivity range, SCIP proved more sensitive 

to shift errors than CMP and the NRM was more sensitive than the 3PL. Sensitivity for detecting 

long shifts continued the trend of improvement across probability models, detection algorithms, 

and person parameter estimation methods as length increases. Bias caused by using estimated 

rather than true person parameters consistently reduces selectivity, though once again, SCIP using 

the NRM proved most robust to this bias. At this shift error length, bias correction yielded 

consistently better results for the SCIP algorithm, was minimally effective at small false 

discovery rates for the CMP algorithm using the NRM, and performed worse than the estimated 

person parameters for the CMP using the 3PL model. 

Table 17 shows true positive rates of all scenarios for the long shifts without false 

positives and Table 18 shows true positive rates with a false discovery rate of .05. Once again, 

these support what the ROC curves tell us and they present a very similar message to what they 

did for the medium length shifts in terms of how methods performed relative to one another while 

continuing the trend of improved sensitivity as shift errors get longer. When no false positives 

were allowed, SCIP using the NRM detected shifts of length 10 at true positive rates of 65.7%, 

58.2% and 58.3% using true, estimated, and bias-corrected person parameters, respectively. SCIP 

using the 3PL yielded rates of 60.2%, 51.6% and 53.6%, CMP using the NRM had rates of 

49.3%, 36.5%, and 38.9%, and CMP using the 3PL had rates of 42.9%, 31.2%, and 30.6%. At the 

false discovery rate of .05, SCIP/NRM continued to outperform the other algorithm/model 

combinations for all ability estimation methods, with sensitivity rates of 81.3% using true person 
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parameters, 77.8% estimated, and 79.1% bias-corrected. SCIP/3PL was almost as good, with rates 

of 77.6%, 70.0%, and 75.5% respectively. CMP sensitivity was considerably worse for both of 

the probability models, with true positive rates of 65.8%/55.3%/57.0% for the NRM and 

59.9%/48.8%/45.5% for the 3PL model. 

Tables 19 and 20 give the  MCAB and MCSE for shifts of length 10 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of zero. Applying the 3PL model and the CMP algorithm 

resulted in an MCAB for all examinees of 0.008 when using estimated or bias-corrected person 

parameters and 0.005 with true person parameters. For shifted examinees, reductions in bias were 

substantial, with MCAB ranging from -0.236 to -0.300. The 3PL with the SCIP algorithm showed 

even more favorable results, increasing bias in all examinees with MCAB between 0.000 and 

0.030 while decreasing bias in shifted examinees with MCAB between -0.337 and -0.392. 

Applying the NRM showed further improvements on MCAB, even showing small decreases 

when applied to all examinees. When the CMP algorithm is employed, MCAB shows a reduction 

in absolute bias, with values between -0.015 and -0.018 while SCIP results in further decreases, 

with MCAB between -0.021 and -0.023 for all examinees. For the shifted examinees only, CMP 

had MCAB between -0.256 and -0.313 while SCIP decreased absolute bias by even more, having 

an MCAB between -0.376 and -0.410. MCSE under all conditions was 0.000 for the all 

examinees group but continued the trend of moving toward the positive when correcting 

examinees with shift errors. 

Tables 21 and 22 give the  MCAB and MCSE for shifts of length 10 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of .05. As for shifts of length 7, improvement over the zero 

false positive rate is uniform across conditions while trends between those conditions are 

consistent with those at the more restrictive rate. 



62 

 

The result of introducing shift errors of length 10 into the data was an increase in MCAB 

of 0.025. While attempts to correct shift errors using the 3PL at the false discovery rates of .00 

and .05 increased or only minimally reduced the magnitude of bias, applying the NRM cut the 

amount of shift-induced bias by between 86% and 98%. 

4.2.4 Mixed Length Shifts  

Mixed length shifts included an equal number of shifts of every length from 3 to 10. 

Figures 25 to 28 show ROC curves separated by scoring algorithm and probability model while 

Figures 29 to 31 show all algorithm/model combinations using the true, estimated, and 

bias-corrected person parameters, respectively. A comparison of the ROC curves show a 

continuation of the trends established in the fixed-length shift scenarios and are especially 

reminiscent of the medium-length shift error ROC’s. SCIP continued to prove more sensitive to 

shift errors than CMP and the NRM was again more sensitive than the 3PL model. Bias caused by 

using estimated rather than true person parameters consistently reduced sensitivity, though once 

again, SCIP using NRM proved most robust to this bias. The bias control performed well for 

CMP using the NRM at all false discovery rates and for SCIP using 3PL at false discovery rates 

over .3. 

Table 23 shows detection rates of all scenarios for the mixed length shifts without false 

positives and Table 24 shows detection rates with a false discovery rate of .05. Detection rates 

were similar but slightly smaller than for the medium shifts. When no false positives were 

allowed, SCIP with the NRM detected shifts at rates of 39.9%, 35.7% and 30.0% using true, 

estimated, and bias-corrected person parameters, respectively. SCIP using the 3PL model yielded 

rates of 35.2%, 32.3% and 26.7%, CMP with NRM had rates of 33.6%, 22.3%, and 27.1%, and 

CMP with the 3PL had rates of 29.1%, 21.4% and 21.1%. At the false discovery rate of .05, 

SCIP/NRM continued to outperform the other algorithm/model combinations for all ability 

estimation methods, with sensitivity rates of 60.7% using true person parameters, 57.4% 

estimated, and 55.1% bias-corrected. SCIP/3PL was nearly as good, with rates of 56.0%, 51.5%, 
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and 50.6% respectively. CMP did not perform as well, with rates of 47.9%, 39.2% and 41.2% 

using the NRM, and rates of 41.1%, 35.0%, and 32.1% using the 3PL. 

Tables 25 and 26 give the  MCAB and MCSE for shifts of mixed length when shift errors 

are corrected for all model/algorithm combinations using true, estimated, and bias-corrected 

person parameters at a false discovery rate of .00. Applying the 3PL model and the CMP 

algorithm increased the mean magnitude of bias for all examinees with MCAB between 0.011 

and 0.014 while reducing absolute bias, MCAB being between -0.135 and -0.178 for the shifted 

examinees. SCIP improved slightly on those results, MCAB being between 0.010 and 0.013 for 

all examinees group and between -0.156 and -0.204 for the shifted examinees group. Applying 

the NRM decreased the magnitudes of bias across the board. When the CMP algorithm was 

employed, MCAB was between -0.008 and -0.011 for all examinees while SCIP resulted in an 

MCAB between -0.010 and -0.012. Shifted examinees improved slightly on MCAB values when 

the NRM was used instead of the 3PL except when CMP was applied to estimated person 

parameters. MCSE continued to demonstrate the trend of not tending toward the positive or 

negative when applied to all examinees, but showing a positive tendency in shifted examinees. 

Tables 27 and 28 give the  MCAB and MCSE for shifts of mixed length when shift errors 

are corrected for all model/algorithm combinations using true, estimated, and bias-corrected 

person parameters at a false discovery rate of .05. As with the medium and long shift scenarios, 

improvement over the zero false discovery rate is uniform across conditions while trends between 

those conditions are consistent with those at the more restrictive rate. 

The result of introducing shift errors of mixed length into the data was an increase in 

mean absolute bias of 0.017. While attempts to correct shift errors using the 3PL at the false 

discovery rates of .00 and .05 increased the magnitude of bias, applying the NRM cut the amount 

of shift error-induced bias by between 47% and 76%. 
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4.3 Study 2: Empirical Application of Simulation Study Results 

The second study was an application of the simulation results to the empirical data from 

which the item and person parameters were derived. Results of the study are broken down into 

sections by shift length, and within those sections, results from the algorithm/model matrix are 

reported. 

4.3.1 Short Shifts  

Short shifts were of length 3. Table 29 gives the counts and projected counts of shifts of 

length 3 or less that are detectable at the thresholds associated with each model, algorithm, and 

false discovery rate obtained in simulation using estimated thetas. When no false discoveries were 

allowed, only the CMP index using the 3PL detected any shift errors, finding 3, which projected 

to 60 total positives. When the false discovery rate was raised to .05, all methods detected at least 

some shift errors, with CMP using 3PL detecting 17, projecting to 145 total positives, CMP using 

NRM detecting only 2, projecting to 20 total, SCIP using 3PL detecting 11, projecting to 58 total, 

and SCIP using NRM detecting 7, projecting to 34. 

4.3.2 Medium Shifts  

Medium shifts were of length 7. Table 30 gives the counts and projected counts of shifts 

of length 7 or less, which was inclusive of shift errors detected when looking only for short length 

shifts, that were detectable at the thresholds associated with each model, algorithm, and false 

discovery rate obtained in simulation using estimated thetas. When no false discoveries were 

allowed, the CMP index using the 3PL continued to detect at a higher rate than the other methods, 

finding 6 shift errors, which would project to 22 total shift errors while the others detect 1 or 2 

shift errors each, projecting to between 2 and 7 total shift errors. When the false discovery rate is 

raised to .05, again the CMP index using the 3PL model detected more shift errors at a nominally 

lower detection rate, leading to more extreme projections, detecting 118 shift errors which 

projects to 265 total. CMP using NRM detected 70, projecting to 174 total, SCIP using 3PL 
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detected 81, projecting to 129 total, and SCIP using NRM detected 86, which projects to 122 

total. 

4.3.3 Long Shifts  

Long shifts were of length 10. Table 31 gives the counts and projected counts of shifts of 

length 10 or less detectable at the thresholds associated with each model, algorithm, and false 

discovery rate obtained in simulation using estimated thetas. Again, this is inclusive of the shifts 

of shorter length counted using those thresholds. When no false discoveries are allowed, all 

model/algorithm combinations yielded identical counts but because they should be capturing a 

higher percentage of true positives, this suggests lower projected numbers of shift errors, though 

only minimally lower. When the false discovery rate is raised to .05, the count obtained by CMP 

using 3PL is more in line with the other model/algorithm combinations, detecting 115 shift errors 

as compared to 101 using CMP with the NRM, 106 using SCIP with the 3PL and 108 using SCIP 

with the NRM, projecting to 174, 149, and 136 total positives, respectively. 

4.3.4 Mixed Length Shifts  

Table 32 gives the counts and projected counts of shift errors of all lengths that are 

detectable at the thresholds associated with each model, algorithm, and false discovery rate 

obtained in simulation using estimated thetas from the mixed-length scenario. When no false 

discoveries are allowed, results and projections are minimally different from the medium and 

long shift error lengths. When the false discovery rate is raised to .05, counts for all models are 

fairly similar for all method/model combinations, with 86 shift errors detected by CMP with the 

3PL, 63 by CMP with the NRM, 79 by SCIP with the 3PL, and 88 by SCIP with the NRM. Based 

on true positive rates, three of the four combinations yield very similar projected counts. CMP 

using the 3PL continues to produce larger projections than the rest, with 233 shift errors projected 

while CMP using the NRM projects 153 shift errors and both models under the SCIP index 

project 146. 
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Table 33 shows agreement rates between detections under the mixed-length thresholds 

and shows that agreement between SCIP methods was high, having 77.2% of detected shift errors 

in common. CMP methods agreed on only 34.9% of shift errors. All four indices agreed on only 

7.9% of the identified shift errors, largely due to differences between CMP and SCIP, which had 

very little crossover.  

Using the thresholds for no false positives and for the false discovery rate of .05 from the 

mixed-length simulation, candidates classified as shift errors were corrected and person 

parameters were re-estimated. Mean absolute difference (MAD) and mean signed difference 

(MSD) were calculated for all conditions. Tables 34 and 35 show the results using the thresholds 

based on person parameters estimated in simulation. Results for all 3PL conditions are identical, 

with MAD of 0.112 and MSD of 0.000 while all NRM conditions are nearly identical with MAD 

of 0.000 or 0.001 and MSD of 0.000. 

4.4 Study 3: Simulation Study Based on Stratified Ability Levels  

In order to determine whether the proposed shift error methods function differentially 

dependent on examinee ability, the third study replicated the procedure from study one using 

smaller samples and stratified person parameters fixed at negative one, zero, and one, each then 

subjected to the same procedure as in the first study. Results are reported here by shift error 

length, showing how the different algorithm/model combinations perform for examinees at 

different person parameter levels. Although the study performed shift error analyses based on 

true, estimated, and bias-corrected person parameters, trends between ability levels were 

consistent independent of parameter estimation method, so the results reported herein will include 

only the true person parameters.  

4.4.1 Short Shifts  

Short shift errors were of length 3. Figures 32 to 35 show ROC curves at the three person 

parameter levels for each of the four scoring algorithm/probability model calculations while 

Figures 36 to 38 show how the algorithm/model combinations differ at each of the three levels. A 
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comparison of the ROC curves shows that for these short shift errors, ability level was a huge 

determinant factor in the effectiveness of all four of the algorithm/model combinations. When the 

person parameter was negative one, shift errors were undetectable via any of the combinations 

until false discovery rates were above .3, failed to detect even 10% of true positives until at or 

close to a false discovery rate of 0.9 and reached maximum detection rates of near 30% for CMP 

and 60% for SCIP. When the person parameter was one, on the other hand, all four 

algorithm/model combinations were capable of detecting some shift errors without false positives 

and peaked between 85% and 98%. SCIP using the 3PL model had the lowest true positive rate 

when false discovery rate was zero and person parameters were one. When person parameters 

were zero, detection rates were little better at low false discovery rates than when person 

parameters were negative one, NRM using CMP being the best at around 10%, but for the most 

part they split the difference between the higher and lower ability groups fairly evenly along the 

whole false discovery range.  

Table 36 shows detection rates of all method combinations for the short shifts at the false 

discovery rate of .00 and Table 37 shows detection rates with a false discovery rate of .05. These 

confirm what the ROC curves tell us: when allowing no false positives, shift errors are nearly 

undetectable for people with low person parameters, ranging from 0.1% using CMP with the 

NRM up to 0.5% with SCIP using the 3PL model. For middle and high person parameters, the 

trend reverses, with 12.8% and 45.9% of shift errors detected at those levels using the CMP/NRM 

combination, 5.7% and 36.2% detected for SCIP using NRM, 6.4% and 33.9% using CMP with 

the 3PL, and 3.6% and 7.6% using SCIP with the 3PL. When the false discovery rate was 

increased to .05, person parameters of zero saw no gains in detection rate. Person parameter zero 

increased slightly, with a detection rate of 13.8% for CMP using NRM, 10.0% for SCIP using 

NRM, 7.8% for CMP using the 3PL, and 5.8% for SCIP using the 3PL. Person parameter one 

shift error detection rates increased by at least 10% for all models, with CMP using NRM 

detecting 55.7% of shift errors of length 3, SCIP using NRM detecting 52.6%, CMP using 3PL 
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detecting 45.2%, and SCIP using 3PL, which only detected 7.6% at false positive rate zero 

detecting 45.0% at false discovery rate of .05. 

Tables 38 and 39 give the  MCAB and MCSE for shifts of length 3 using estimated 

person parameters when shift errors are corrected for all model/algorithm combinations for each 

of the three person parameter groups at false discovery rates of .00. For examinees with a person 

parameter of negative one, using the 3PL resulted in increased magnitudes of bias for the all 

examinees group and little difference between algorithms, having MCAB of 0.059 for the all-

examinees group and near 0.050 for the shifted-only examinees group. MCSE also trended 

toward the positive, suggesting that the increased magnitudes of bias tended toward 

overestimation. Using the NRM had such low detection rates that it produced few corrections and 

no meaningful changes in bias.  

Examinees with a person parameter of zero showed decreases in the overall magnitude of 

bias using the 3PL with minimal differences between CMP and SCIP. For all examinees, MCAB 

was - 0.001 while for the shifted examinees, it was - 0.030. MCSE was 0.061 for the all 

examinees group and approximately 0.130 for the shifted examinees, showing that changes in 

bias tended to the positive direction. Using the NRM, attempts to correct these short shift errors 

increased MCAB, though only slightly. The all-examinees group had an MCAB of 0.001 while 

shifted examinees had an MCAB of 0.015 when NRM was used with CMP and 0.009 when used 

with SCIP. MCSE using NRM was 0.002 for all examinees and 0.031 to 0.035 for the shifted 

group.  

Examinees with a person parameter of one showed decreased magnitude of bias (i.e., 

negative MCAB) across all models and algorithms but showed the greatest improvements when 

using the 3PL. The all-examinees group had an MCAB around -0.020 using the 3PL but less than 

-0.010 using the NRM. The shifted examinees saw a reduction in absolute bias of -0.137 using 

CMP and -0.152 using SCIP while using the 3PL. Using the NRM, CMP reduced absolute bias 

by -0.144, the only case where NRM performed superiorly to the 3PL, and by -0.125 using the 
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SCIP algorithm. MCSE tended toward the negative for the all-examinees group but the positive 

for the shifted examinees when using the 3PL but was positive for both groups when using the 

NRM. 

Tables 40 and 41 give the  MCAB and MCSE for shifts of length 3 when shift errors are 

corrected for all model/algorithm combinations using true, estimated, and bias-corrected person 

parameters at a false discovery rate of .05. For examinees with a person parameter of -1, results 

were identical to those for the false discovery rate of .00. For examinees with person parameters 

of zero and one, differences were very small and tended toward larger negative MCAB values, 

smaller negative tendencies in MCSE for the all-examinees group, and larger positive tendencies 

in MCSE for the shifted examinees. 

4.4.2 Medium Shifts  

Medium shift errors were of length 7. Figures 39 to 42 show ROC curves at the three 

person parameter levels for each of the four scoring-algorithm/probability-model calculations 

while Figures 43 to 45 show how the algorithm/model combinations differ at each of the three 

levels. A comparison of the ROC curves shows that, as with the short shift errors, ability level 

was a large determinant factor in the effectiveness of all four of the algorithm/model 

combinations for shifts errors of length 7. When the person parameter was negative one, true 

positive rates were between 0% and 10% at low false discovery rates and peaked near 60% for 

the CMP algorithm and 80% for the SCIP algorithm for both probability models, though only 

achieving those higher detection rates once false discovery rates were over .90. For the group 

with a person parameter of one, only CMP using the 3PL model ever dipped below a true positive 

rate of 90% and then only at false discovery rates at or very close to zero. For the SCIP algorithm, 

using NRM or 3PL, true positive rates approached but not quite reached 100% even at low false 

discovery rates. When person parameters were zero, detection rates were closer to the high-ability 

group than the low- ability group across the false discovery range for all algorithms and 
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probability models, nearly reaching the same rate as for the high-ability group at higher false 

discovery rates using SCIP.  

Table 42 shows detection rates of all method combinations for the medium shifts at the 

false discovery rate of .00 and Table 43 shows detection rates with a false discovery rate of .05. 

Once again, these are confirmatory of what the ROC curves tell us: when allowing no false 

positives, shift errors for people with low person parameters range from 2.3% to 8.5%. For person 

parameter of zero, the lowest true positive rate was 47.3% for CMP using the 3PL model and the 

highest was 73.3% for SCIP using the NRM. At person parameter of one, the low was 86.7% and 

the high was 96.1%. At the false discovery rate of .05, person parameters of zero saw no gains in 

detection rate using CMP and only minimal gains using SCIP, from 5.0% to 5.1% using the 3PL 

model and from 8.5% to 10.3% with the NRM. Person parameter zero saw the largest increases 

using SCIP, with detection rates of 80.1% using the 3PL and 86.2% using NRM. CMP detection 

rates also increased at theta of zero, with detection rates of 56.1% and 64.0% for the 3PL and 

NRM, respectively. Person parameter one shift error detection rates, already high when no false 

detections were allowed, increased under all model/algorithm combinations, the lowest being 

93.4% for CMP using 3PL and the highest being 98.8% for SCIP using the NRM. Regardless of 

person parameter level an false discovery rate, all detection rates favored SCIP over CMP and 

NRM over 3PL. 

Tables 44 and 45 give the  MCAB and MCSE for shifts of length 7 using estimated 

person parameters when shift errors are corrected for all model/algorithm combinations for each 

of the three person parameter groups at false discovery rates of .00. For examinees with a person 

parameter of -1, using the 3PL resulted in positive MCAB with little difference between SCIP 

and CMP, both algorithms having MCAB of approximately 0.060 for the all-examinees group 

and approximately 0.070 for the shifted-only examinees group. MCSE using the 3PL showed a 

trend for bias changing toward the positive for the all-examinees group with a change in MCSE 

of 0.032 while trending negatively for the shifted examinees with rates of -0.014 using CMP 
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and -0.010 using SCIP. Using the NRM on these low-ability examinees again produced low 

detection rates and, consequently had small impact on bias, though it did inflate it rather than 

reduce it. NRM using CMP showed no change in absolute bias for the all-examinees group while 

using SCIP had an MCAB of only 0.001. For the shifted examinees, NRM with CMP and SCIP 

had MCAB of 0.004 and 0.011, respectively.  

Examinees with a person parameter of zero showed decreases in the overall magnitude of 

bias using the 3PL with small differences between CMP and SCIP. For all examinees, MCAB 

was between -0.005 and -0.007 for the two respective algorithms. For the shifted examinees, 

MCAB was -0.113 using CMP and -0.152 using SCIP. Using CMP, MCSE was 0.069 for the 

all-examinees group and 0.302 for the shifted examinees compared to MCSE of 0.075 and 0.409 

using SCIP, showing that changes in bias tended to the positive direction, especially when 

focusing on the group with shift errors. The NRM performed similarly but not quite as well as the 

3PL in reducing the MCAB and in its tendency to raise MCSE.  

Examinees with a person parameter of one had negative MCAB across all models and 

algorithms, showing the greatest improvements when using the 3PL. The all-examinees group 

saw MCAB of around -0.050 using the 3PL and closer to -0.030 using the NRM. The shifted 

examinees had MCAB of -0.580 with 3PL/CMP, -0.663 using 3PL/SCIP, -0.551 with 

NRM/CMP, and -0.657 with NRM/SCIP. MCSE for the all-examinees group had opposite 

tendencies for the 3PL and NRM models but with little difference between algorithms. The 3PL 

had an MCSE that tended to the negative with values near -0.040 while the NRM tended toward 

the positive with MCSE near 0.040. For shifted examinees, MCSE had a positive tendency across 

conditions, ranging from 0.719 for 3PL/CMP to 0.871 for NRM/SCIP. 

Tables 46 and 47 give the  MCAB and MCSE for shifts of length 7 when shift errors are 

corrected for all model/algorithm combinations for examinees of all three ability levels at a false 

discovery rate of .05. These tables show that at this more permissive false discovery rate, there is 

a uniform trend across all conditions toward reduction in absolute bias and increase in MSE. 
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4.4.3 Long Shifts  

Long shift errors were of length 10. Figures 46 to 49 show ROC curves at the three 

person parameter levels for each of the four scoring-algorithm/probability-model calculations 

while Figures 50 to 52 show how the algorithm/model combinations differ at each of the three 

levels. Once again, the ROC curves shows that for these shift errors, ability level was a great 

factor in the effectiveness of all four of the algorithm/model combinations. For person parameter 

of negative one, detection rates were better than for the short and medium shifts, though still well 

below the middle- and high-ability groups. For the CMP algorithm, detection rates at low false 

discovery rates weren’t much better than for the medium-length shifts, though the peak at the 

other end of the false discovery range were higher. For the SCIP algorithm, detection rates were 

higher, starting at over 20% when combined with the NRM even at the lowest false discovery 

rates. When the person parameter was one, all four algorithm/model combinations started very 

close to 100% detection at the bottom of the false discovery range and reached 100% very 

quickly. When person parameters were zero, the SCIP algorithm started detection close to 90% 

and eventually reached nearly 100% while the CMP method did not perform as well.  

Table 48 shows detection rates of all method combinations for the medium shifts at the 

false discovery rate of .00 and Table 49 shows detection rates with a false discovery rate of .05. 

These again reflect what the ROC curves tell us. When allowing no false positives, shift error 

detection rates for people with low person parameters were 3.3% and 3.7% for CMP using the 

3PL and NRM, respectively and did not improve when false discovery rate was raised to .05. 

Using SCIP, rates were better, starting at 11.3% and 23.5% using 3PL and NRM, respectively, 

increasing to 14.1% and 33.0% when the false discovery rate was raised to .05. For person 

parameter of zero, CMP had detection rates of 64.3% and 71.7% using 3PL and NRM without 

allowing false positives and climbed to 75.3% and 82.6% at the false discovery rate of .05. SCIP 

performed even better, starting at 90.4% and 92.9% without allowing false positives and climbed 

to 96.3% and 97.7%. At the person parameter of one, CMP using 3PL and NRM, respectively, 
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had rates of 96.6% and 97.7% without false positives, climbing to 98.7% and 99.4% at false 

discovery rate of .05. SCIP using 3PL and NRM had detection rates of 99.05 and 99.2% without 

allowing false positives and, at the false discovery rate of .05, reached 99.8% and 99.9%. 

Tables 50 and 51 give the  MCAB and MCSE for shifts of length 10 using estimated 

person parameters when shift errors are corrected for all model/algorithm combinations for each 

of the three person parameter groups at false discovery rates of zero. For examinees with a person 

parameter of negative one, using the 3PL resulted in positive MCAB for the all-examinees group 

and little difference between algorithms, both algorithms having mean MCAB of approximately 

0.063 for the all examinees group and 0.085 or 0.095 for the shifted-only examinees group. 

MCSE using the 3PL showed a trend for bias changing toward the positive for the all examinees 

group with a MCSE of 0.031 while MCSE for the shifted examinees trended negatively with rates 

of -0.035 using CMP and -0.031 using SCIP. Using the NRM on these low-ability examinees 

again produced low detection rates with little to no impact on bias, inflating it rather than 

reducing it where it was impactful. NRM using CMP showed no change in absolute bias for the 

all-examinees group while using SCIP had an MCAB of only 0.001. For the shifted examinees, 

NRM with CMP and SCIP had MCAB of 0.001 and 0.017, respectively. MCSE when using 

NRM trended upward as well with values of 0.001 and 0.003 for the all-examinees group using 

CMP and SCIP, respectively, and 0.014 and 0.048 for CMP and SCIP with the shifted examinees.  

Examinees with a person parameter of zero showed decreases in the overall magnitude of 

bias for all model/algorithm combinations. For all examinees, 3PL/CMP produced an MCAB 

of -0.010, 3PL/SCIP produced an MCAB of -0.016, NRM/CMP had an MCAB of -0.008, and 

NRM/SCIP’s MCAB was -0.016. For the shifted examinees, MCAB for 3PL/CMP was -0.185, 

for 3PL/SCIP was -0.291, for NRM/CMP was -0.173, and for NRM/SCIP was -0.321. Across all 

conditions, MCSE tended toward the positive, with values between 0.016 and 0.087, NRM/CMP 

being the lowest and 3PL/SCIP being the highest. For the shifted examinees, positive change in 

MCSE was quite large, ranging from 0.315 for NRM/CMP to 0.624 for 3PL/SCIP.  
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Examinees with a person parameter of one also had negative MCAB across all models 

and algorithms, showing the greatest improvements when using SCIP and with 3PL slightly 

outperforming the NRM. The all-examinees group saw an MCAB of between -0.038 for 

NRM/CMP and -0.065 using 3PL/SCIP. The shifted examinees had their absolute bias reduced, 

with MCAB of -0.767 with NRM/CMP to -0.973 using 3PL/SCIP. MCSE for the all examinees 

group again had opposite tendencies for the 3PL and NRM models. The 3PL had an MSE that 

tended to the negative with values near -0.030 while the NRM tended toward the positive with 

MCSE near 0.050. For shifted examinees, MCSE had a positive tendency across conditions, 

ranging from 0.915 for 3PL/CMP to 1.151 for NRM/SCIP. 

Tables 52 and 53 give the  MCAB and MCSE for shifts of length 10 when shift errors are 

corrected for all model/algorithm combinations for examinees of all three ability levels at a false 

discovery rate of .05. These tables show that at this more permissive false discovery rate, there is 

a uniform trend across all conditions toward reduction in absolute bias and increase in MSE. 

4.4.4 Mixed Length Shifts  

Mixed length shifts included an equal number of shifts of every length from 3 to 10. 

Figures 53 to 56 show ROC curves at the three person parameter levels for each of the four 

scoring-algorithm/probability-model calculations while Figures 57 to 59 show how the 

algorithm/model combinations differ at each of the three levels. Ability level was a huge 

determinant factor in the effectiveness of all four of the algorithm/model combinations. When the 

person parameter was negative one, shift errors were between 1% and 10% at low false discovery 

rates for all algorithm/model combinations with the CMP algorithm showing little separation 

between the NRM and 3PL until false discovery rates reached .7. The SCIP algorithm 

consistently outdetected the CMP and SCIP using the NRM consistently outperformed SCIP 

using the 3PL. Differences between models and algorithms were minor for examinees with a 

person parameter of one, all of them having detection rates between 75% and 85% when false 

discovery rates were below .05 and all of them plateauing very close to 90%. For examinees with 
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person parameters of zero, differences between models and algorithms were fairly evenly spaced, 

showing preference for the SCIP algorithm over CMP and for the NRM over the 3PL. Detection 

rates for person parameter zero was consistently between the detection rates for negative one and 

one, but was closer to the higher ability group and grew even closer at the higher end of the false 

discovery range.  

Table 54 shows detection rates of all method combinations for the short shifts at the false 

discovery rate of .00 and Table 55 shows detection rates with a false discovery rate of .05. The 

trends here are similar to those of the medium-length shift errors. When allowing no false 

positives, shift error detection rates are low for examinees with person parameter negative one, 

ranging from 1.5% using CMP with the 3PL up to 9.0% with SCIP using the NRM model. AT 

false discovery rate of .05, only the SCIP/NRM combination improved and only slightly, to 

10.1%. When person parameter was zero, detection rates without false positives ranged from 

38.6% for CMP using the 3PL up to 56.9% for the SCIP algorithm using the NRM and increased 

when the false discovery rate was raised to .05, with the CMP/3PL combination detecting 45.9% 

and SCIP/NRM detecting 68.1%. For person parameters set to one, differences between 

algorithm/model combinations were smaller and the order changed slightly when no false 

positives were allowed, the SCIP/3PL combination being the lowest at 71.5% of shift errors 

detected while the SCIP/NRM combination remained the best, detecting 80.5%. At the false 

discovery rate of .05, detection rates all improved slightly and the more typical order was 

restored, with CMP/3PL having the lowest detection rate at 81.4% and SCIP using the NRM 

detecting 86.9% of the shift errors. 

Tables 56 and 57 give the  MCAB and MCSE for shifts of length 10 using estimated 

person parameters when shift errors are corrected for all model/algorithm combinations for each 

of the three person parameter groups at false discovery rates of zero. For examinees with a person 

parameter of negative one, using the 3PL resulted in increased magnitudes of bias for the all 

examinees group and little difference between algorithms, both algorithms having MCAB of 
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approximately 0.061 for the all-examinees group and 0.076 or 0.079 for the shifted-only 

examinees group. MCSE using the 3PL showed a trend for bias changing toward the positive for 

the all examinees group with an MCSE of 0.032 while MCSE for the shifted examinees trended 

negatively with rates of -0.006. Using the NRM on these low-ability examinees again produced 

low detection rates with little impact on bias, inflating it rather than reducing it where it was 

impactful. NRM/CMP showed no MCAB for the all-examinees group while using SCIP had an 

MCAB of only 0.001. For the shifted examinees, NRM with CMP and SCIP had MCAB of 0.004 

and 0.012. MCSE when using NRM trended upward as well with values of 0.001 for the 

all-examinees group using both algorithms and 0.010 and 0.016 using CMP and SCIP for the 

shifted examinees.  

Examinees with a person parameter of zero showed decreases in the overall magnitude of 

bias for all model/algorithm combinations. For all examinees, 3PL/CMP produced an MCAB 

of -0.004, 3PL/SCIP had an MCAB of -0.007, NRM/CMP’s MCAB was of -0.003, and 

NRM/SCIP produced an MCAB of -0.006. For the shifted examinees, MCAB using 3PL/CMP 

was -0.092, using 3PL/SCIP was -0.128,  for NRM/CMP was -0.056, and for NRM/SCIP 

was -0.121. Across all conditions, MCSE tended toward the positive, with values between 0.010 

and 0.068, NRM/CMP being the lowest and 3PL/SCIP being the highest. For the shifted 

examinees, positive change in MCSE was larger, ranging from 0.194 for NRM/CMP to 0.364 for 

3PL/SCIP.  

Examinees with a person parameter of one also showed decreased bias magnitudes across 

all models and algorithms, showing the greatest improvements when using SCIP and with 3PL 

slightly outperforming the NRM. The all-examinees group saw an MCAB of between -0.025 for 

NRM/CMP and -0.045 using 3PL/SCIP. The shifted examinees had their absolute bias reduced, 

with an MCAB of -0.526 with NRM/CMP to -0.602 using 3PL/SCIP. MCSE for the all 

examinees group again had opposite tendencies for the 3PL and NRM models. The 3PL had an 

MSE that tended to the negative with values near -0.050 while the NRM tended toward the 
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positive with MCSE’s near 0.035. For shifted examinees, MCSE had a positive tendency across 

conditions, ranging from 0.633 for 3PL/CMP to 0.765 for NRM/SCIP.  

Tables 58 and 59 give the  MCAB and MCSE for shifts of length 10 when shift errors are 

corrected for all model/algorithm combinations for examinees of all three ability levels at a false 

discovery rate of .05. These tables show that at this more permissive false discovery rate, there is 

a uniform trend across all conditions toward reduction in absolute bias and increase in MSE. 

4.4.5 Other Results  

Though not elaborated upon here, estimated and bias-corrected person parameters 

exhibited the same trends in shift error detection rates as the true person parameters and the 

results from those simulations are represented in Figures 60 to 115 and Tables 60 to 75. 

4.5 Study 4: Comparison of Shift Error Detection Methods to the H
T
 Person-Fit Statistic 

In order to evaluate the relative performances of SCIP, CMP, and HT, study four 

compared the SCIP and CMP results from study one to results obtained by calculating true 

positive and false discovery rates using HT. Figure 116 shows the ROC curves for all shift length 

scenarios when using HT as a threshold for detecting examinees with shift errors. HT performs 

similarly for all shift error length scenarios, with little to no detection power at false discovery 

rates below .7, showing some detection power between .7 and .8, then spiking sharply at .95. True 

positive rates were zero or nearly non-zero at the thresholds where false discovery rates are zero 

or .05.  
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CHAPTER 5 

DISCUSSION 

5.1 Overview 

The purpose of this dissertation was to provide practical knowledge for improving upon 

the validity of test score interpretations through detection and classification of shift errors on 

paper-and-pencil tests. To that end, a small three-dimensional matrix of detection algorithms, IRT 

models, and person parameter techniques were developed and implemented in a series of four 

studies, testing permutations of these elements for their sensitivity and selectivity relative to one 

another and to a more traditional person-fit statistic under different simulated conditions and for 

their power to detect shift errors within empirical data. This section will begin with a discussion 

of each of the four studies, the specific questions each was designed to answer, and what 

information the results of each study provide in helping to answer those questions. Following that 

will be a summary of overarching conclusions obtained from the studies, a look at some of the 

limitations in the scope of the dissertations and ideas for improvement, ideas for applying and 

broadening the concepts explored within it, and more specific ideas for continuing with this line 

of research. 

5.2 Study 1: Simulation Study Based on Empirical Data 

The first study was designed to evaluate the accuracy and effectiveness of the proposed 

shift error detection methods as they might be applied under empirical conditions. By using 

parameter estimates from the administration of a representative paper-and-pencil K-12 

proficiency exam, a realistic scenario on which to base simulation was provided and simulation 

results would, if methods were effective, be calibrated for application back to the empirical data 

set. Effectiveness of the detection techniques, measured by true positive detection rates, false 

discovery rates, and the change in bias when corrective measures were implemented, was 

dependent on all four of the investigated factors: the model, algorithm, and person parameter 

estimation method employed in detecting the shift errors as well as the length of the shift errors 
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simulated in each scenario. A look at how each of these elements impacted shift error detection 

will be discussed as will any interactions between methods as each is introduced into the 

discussion.  

5.2.1 Shift Error Length  

The relationship between shift error length and shift error detection was both clear and 

predictable: longer shift errors are easier to detect. Tables 74 and 75, representing differences 

between algorithms at different shift lengths based on estimated person parameters, illustrate the 

increasing power of all of the shift error detection methods as shift error length increases. While 

short shifts are detectable in only low single digit rates with any strictness in false discovery rates, 

over half of long shifts can be detected with the same error levels. Mixed length shifts had a mean 

shift length of 6.5 and its detection rates fell in just below those of shift length 7. This 

phenomenon, detection rates of shifts of mean length being similar to detection rates of shifts of a 

similar fixed length, may or may not hold depending on how shift error lengths are distributed. 

Tables 9, 15, and 21 show MCAB at lengths 3, 7, and 10 at false discovery rate .05. It can be seen 

that correcting larger shifts results in greater reductions in bias. This is in part because the larger 

shifts introduce more bias to be corrected but it is reassuring that the methods are capable of 

correcting the bias proportionally to how much is introduced by the shifts. Tables 10, 16, and 22 

show MCSE at lengths 3, 7, and 10 at false discovery rate .05. When looking at MCAB and 

MCSE together, as shift error length increases, it can be seen that correcting the errors results in 

larger MCSE and increasingly negative MCAB for the shift-error group, meaning that shift error 

correction tends to raise scores for those examinees and, in so doing, more accurately reflect their 

ability. 

5.2.2 Shift Detection Algorithms  

Of the two shift error algorithms, the most probable correction method, which produces 

the SCIP index, consistently, though not exclusively, outperformed the misaligned response 

detection method, which produced the CMP index. Table 76 shows the differences in 
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performance of the two algorithms using each IRT model at all lengths using estimated person 

parameters and allowing no false positives. For shift errors of lengths 7 and 10, and for the 

mixed-length scenarios, SCIP outperformed CMP, with the gap growing as the shifts get longer. 

Conversely, CMP caught up to SCIP as the shift errors got shorter and, for the shift errors of 

length 3, CMP outperformed SCIP when no false positives were allowed. The shift error length at 

which this reversal is likely to happen was not determined by this study, but the differences are so 

small at shift error length 3, SCIP may already be superior to CMP by shift length 4 in this data 

set. Table 77 shows the differences in performance of the two algorithms using each IRT model 

at all lengths using estimated person parameters with a false discovery rate of .05. At this error 

rate, SCIP provided higher detection rates for all shift error lengths studied. Again, the general 

trend was that the difference between methods grows as shift error length grows, but shift lengths 

7 and 10 were nearly identical using the NRM, even slightly favoring the shorter errors.  

Figures 8 to 10, 15 to 17, 22 to 24, and 29 to 31 illustrate the differences between 

algorithm/model combinations across the entire range of false discovery rates. Focusing on the 

differences in algorithm, you can see that the difference between them is established at fairly low 

false discovery rates and remains nearly uniform throughout the entire false discovery rate range. 

Figures 8 to 10 highlight the exception to this tendency, showing the SCIP methods to be inferior 

to the CMP methods when false discovery rates are very low, but surpassing it fairly quickly and 

moving parallel to it, making another leap in true positive detections near the middle of the false 

discovery range, then continuing in parallel to CMP. 

MCAB and MCSE showed the same tendencies in detection ability for the two detection 

algorithms. Tables 7 to 10, 13 to 16, and 19 to 22 show MCAB and MCSE for shift error lengths 

3, 7 and 10. For short shifts, CMP has slightly better MCAB compared to SCIP but this reverses 

slightly for the medium and long shifts.  Whether or not a high MCSE is favorable depends on 

whether one is moving toward the mean or away from it. Under the premise that shifted 

examinees have under-representative scores (i.e., negative bias) and that correcting the shift 
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errors should raise those scores, higher changes in MSE that coincide with reductions in absolute 

bias in the shifted group provide some evidence that shift error correction is doing its job. The 

trends displayed by MCSE were completely consistent with all of the other evidence, being 

higher for CMP than for SCIP when shifts are of length 3 but higher for SCIP than for CMP at 

shift lengths 7 and 10. While some of the gain may have been inflation beyond examinees’ true 

ability, most of the positive MCSE coincided with negative MCAB. 

5.2.3 Probability Models  

Of the two IRT models employed to make probability calculations within these methods, 

the NRM, with minimal exceptions, outperformed the 3PL model in detecting shift errors. Table 

78 shows the differences in performance of the two models used within each detection algorithm 

at all lengths using estimated person parameters and allowing no false positives. Differences 

between the models tended to be smaller for CMP than for SCIP and at shorter shift error lengths. 

3PL outperformed NRM using CMP and performed almost as well as NRM using SCIP when no 

false positives were allowed, suggesting that the NRM may be more likely to promote false 

positives at these shorter lengths. Table 79 shows the differences in performance of the two 

models used within each detection algorithm at all lengths using estimated person parameters 

with a false discovery rate of .05. At this error rate, the trends of between-model differences were 

the same as at the no-error rate, but with more favoritism toward the NRM at all levels. Though 

3PL still outperformed the NRM at short error lengths using CMP, the difference was smaller at 

this higher error rate.  

Figures 8 to 10, 15 to 17, 22 to 24, and 29 to 31 illustrate the differences between 

algorithm/model combinations across the entire range of false discovery rates. Focusing on the 

differences between models, you can see that the differences between them were smallest at the 

lowest false discovery rates, separate fairly quickly, then kept a fairly uniform distance as they 

false discovery rates increased before moving slightly closer together at the highest false 

discovery rates, once all detectable true positives had been found. For the shift errors of length 3, 
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looking at Figures 8 to 10 reveals that it was only the estimated person parameters that were 

producing superior detection rates using the 3PL. True person parameters favored the NRM 

across the whole range of false discovery rates as did the bias-controlled estimates. The estimated 

person parameters only favored the 3PL at very low false discovery rates. Given that only the 

estimated person parameters exhibited this tendency, a possible explanation is that it is estimation 

bias having a more profound effect on the more precise NRM model, causing it to produce more 

false positives at these lower false discovery rates than the 3PL, which doesn’t differentiate 

between wrong answers. Consider that very few false positives are necessary to produce those 

low false discovery rates. If a decrease in ability for one examinee provides a profound difference 

in the probability of one incorrect response, a very improbable false positive could result, 

weakening the threshold at which error-free would take place. Only a few such incidents would 

need to occur for this to affect other low-error detection levels. If such occurrences were 

consistently present but at low frequencies, this would explain the curves obtained under these 

circumstances.  

MCAB and MCSE were consistent with the conclusion that NRM outperforms 3PL only 

more so. When it comes to MCAB, at no point did 3PL outperform NRM. Tables 7 to 10, 13 to 

16, and 19 to 22 show MCAB and MCSE at lengths 3, 7, and 10. NRM showed consistently 

lower MCAB compared to the 3PL when looking at all examinees. When shifted examinees were 

evaluated, MCAB showed the same tendencies. MCSE had higher positive tendencies for the 3PL 

compared to the NRM when shifts were length 3 and at all lengths using SCIP but since this 

outpaced the gains in reducing absolute bias, it is unclear whether how much of this additional 

gain represented improvement. 

5.2.4 Person Parameter Estimation Methods  

Person parameters were obtained in three ways: using the estimates obtained from the 

empirical data and treating them as true parameters, taking the estimates obtained from 

calibration after shift errors were introduced into the data, and taking estimates obtained after a 
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second calibration that treated shift error candidates as missing. Shift error candidates were 

defined liberally such that only false positives at a threshold worse than the worst true positive 

failed to meet this classification. Differences between shift error detection rates using true person 

parameters and estimated provide a sense of how the bias in shift error estimation caused by the 

shift errors themselves impairs their detection. Differences between detection rates using 

estimated and bias-corrected person parameters give an indication of the effectiveness of the bias 

control method. Tables 80 to 83 show the differences in performance between these estimation 

methods for each algorithm/model combination while allowing no false positives. Independent of 

model and algorithm, the difference between true and estimated parameters in detection rate got 

worse as shift error length increased. This makes sense as a shift of 10 is going to severely impact 

person parameter estimate and make a string of incorrect answers more probable, whereas a shift 

of 3, while more difficult to detect, has less of an impact on the person parameter estimate and so 

using an estimate doesn’t hurt the detection as much. Additionally, when detection rates are 

smaller overall, there are fewer detections to lose to parameter bias. Dropping from 50% detected 

to 40% and dropping from 10% detected to 8% due to bias would both represent losing 10% of 

your detections to bias – the same relative impact though one is much greater in magnitude. 

Looking at detection algorithms, SCIP was more robust to estimation bias than CMP 

when no false positives were allowed, with estimated parameters even outperforming the true 

parameters for the very short shift errors. Situations in which biased estimates could improve 

accuracy of detection over the true person parameters seem counterintuitive, but reasonable 

explanations are possible. Two of the features of the SCIP algorithm are that it allows incorrect 

answers within the shift error candidate and that it looks at changes in probability. When ability is 

high, an incorrect answer is highly improbable and, thus, will lead to a smaller change in 

probability. Underestimating ability, then, softens the impact of that incorrect answer, leading to 

easier identification of shift errors, true or false, when they are short and contain an unlikely 
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incorrect response. If the impact of the underestimation is stronger on true positive identification 

than false positive identification, a result as seen here would make sense. 

For probability models, 3PL was more robust to estimation bias than the NRM. This is 

both logical and misleading. It is logical because the 3PL does not treat incorrect responses as 

precisely as the NRM. The NRM is going to lose more of its power when using less accurate 

person parameters. On the other hand, one should not be misled into thinking this means that the 

3PL was better than the NRM when using estimated parameters. While the NRM lost more 

power, it had more power to lose and still maintained higher detection rates when using estimated 

person parameters.  

Turning to differences between detection rates using estimated parameters and 

bias-corrected person parameters, a broad analysis would be that the bias-correction did not work. 

When no false positives were allowed, only six of sixteen algorithm/model/shift length scenarios 

showed improvement under bias correction. Specifically, bias correction was effective with the 

SCIP algorithm only at shift length 10. Bias correction of CMP using the NRM was effective at 

all lengths, though least so at shift length 10. One might expect bias correction to be most 

effective when shift error lengths are long, and thus most impactful on the person parameter 

estimates, and looking at SCIP, this would appear to be the case. Looking at CMP, however, one 

might conclude the opposite. The reality of what is happening using CMP may be that, because it 

is dependent on a long string of misaligned correct answers, incorrect answers shorten the 

detected string, something perhaps more impactful on detectability than the associated 

probability, but also something of potentially great impact on the bias correction, which can only 

use a portion of the shift error in correcting the bias. It could also simply be that one test with one 

answer key pattern may yield unpredictable results and that the bias control was generally 

ineffective. 

Tables 84 to 87 show the differences in performance between these estimation methods 

for each algorithm/model combination at a false discovery rate of .05. Trends in the difference 
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between true parameters and estimated parameters are generally the same as when no false 

positives are allowed, except larger. A few of the results are notable, either in confirming these 

trends or as exceptions. The most notable exceptions were when using SCIP with the NRM. At 

shift error length 3, estimates no longer outperformed true parameters. Differences between true 

and estimated parameters at longer shift error lengths shrunk rather than grew at the higher false 

discovery rate. The most notable reinforcement of the trends was the estimated person parameters 

outperforming the true parameters with SCIP with the 3PL at shift error length 3, detecting nearly 

5% more of the shift errors using estimated instead of true persom parameters. Bias correction 

appeared to be no more effective in improving detection rates at the false discovery rate of .05 as 

it was at the rate of .00. 

The only clear story that MCAB tells in regard to the person parameter estimation 

methods is that the estimated and bias-corrected methods were not doing as good a job as when 

truth was known. Figures 7 to 10, 13 to 16, and 19 to 22 show MCAB and MCSE at lengths 3, 7, 

and 10. Across all length, model, and algorithm combinations, at no point did bias-controlled or 

estimated person parameters produce favorable bias results relative to the true parameters, an 

unsurprising result since true person parameters ignored some of the bias created by the shift 

errors. Bias control did not consistently or predictably improve the bias results suggesting that it 

may have been inflating the bias as often as it was reducing it but close examination of the change 

in bias results provides no evidence of a particular trend in when it inflated and when it reduced 

the bias. 

5.3 Study 2: Empirical Application of Simulation Study Results 

The purposes of the second study were to determine, through the application of shift error 

methods at thresholds determined in the simulation study, the effectiveness of the shift error 

methods in an empirical situation and the extent to which shift errors may be present within the 

empirical data set on which the simulation study was based. Two different approaches were 

taken. In the first, the short, medium, and long shift error detection thresholds were applied 
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progressively, each only allowed to detect shift errors up to the length at which those thresholds 

were determined to function in simulation at the desired false discovery rate. In the second, the 

thresholds from the mixed application were applied to detect shift errors of all lengths from 3 to 

10 simultaneously. 

5.3.1 The Progressive Approach  

The progressive approach counted shifts of specific lengths at appropriate thresholds, first 

using the thresholds obtained for shifts of length 3 to detect shifts of that length or shorter, then 

used the thresholds obtained for shifts of length 7 to detect shifts of that length or shorter, then 

used the thresholds obtained the thresholds obtained for shifts of length 10 to detect shifts of that 

length or shorter. Tables 29 to 31 give the counts and projected total shift errors in the empirical 

data based on the simulation thresholds and true positive rates from the simulation of the 

progressively longer shift error detections. When no false positives were allowed, detections of 

all lengths were minimal, with the SCIP methods never finding more than 1, CMP using NRM 

finding 2 of length 10 or shorter, and CMP detecting 3 of length 3 or shorter and 6 of length 10 or 

shorter. In simulation, CMP with the 3PL was shown to be superior in detection of short-length 

shifts when no false positives were allowed, but not for longer shift errors. Its higher detection 

levels at all lengths suggest that either CMP with 3PL is more prone to type I errors than was 

discovered in simulation, the other methods are more prone to type II errors, or both of those 

issues were present simultaneously. When the thresholds associated with a false discovery rate of 

.05 were used, again CMP using 3PL detected more shift errors than the other methods, especially 

relative to its percentages in simulation, which suggest it should have found fewer than the other 

methods. Projected total positives show good consistency between the other three methods, 

though the inconsistency as false discovery rate increases points to a different problem with the 

simulation method employed in these studies.  
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5.3.2 The Mixed-Length Approach  

The mixed-length approach took the thresholds obtained in the mixed-length simulation 

scenario and applied them to detect all shifts between 3 and 10 in length simultaneously. Table 32 

gives the counts and projected total shift errors in the empirical data based on the simulation 

thresholds and true positive rates from the mixed-length simulation. Results are similar to the 

progressive scenario, with CMP using the 3PL giving higher counts and projections. Again, the 

other methods are consistent in their projected total shift errors at the two false discovery rates. 

Further evidence of consistency between methods can be obtained by looking at agreement rates 

between the methods. Table 33 gives those agreement rates for the mixed length shift thresholds 

applied at the false discovery rate of .05. The two SCIP algorithms agreed on 77.2% of the shift 

errors they detected at that rate while the CMP algorithms only agreed on 34.9%. Agreement 

across algorithms was low, indicating that they are looking for and finding different things. MAD 

and MSD were calculated after correcting shift errors for the mixed-length approach and showed 

that the 3PL was tending to move examinee scores but with no direction tendency, MSD being 

very close to zero. Shift error correction based on NRM showed no real movement in examinee 

scores.  

5.3.3 Lack of Simulation Applicability  

As can be seen in Tables 29 to 32, the projected total positives are not consistent as the 

false discovery threshold is raised from zero to .05. Looking only at those thresholds, one might 

be able to conclude that this is a byproduct of the error-free detection level not really working on 

empirical data so the projections at that level cannot be trusted. Table 88 shows the simulated true 

positive rate and empirical detections and totals as the false discovery rate is increased from .05 

to .94 for the mixed-length scenario using SCIP and the NRM. It can be seen that projected shift 

error totals continue to grow, approaching the number that were simulated in the first study. 

Whether that is coincident or systematic, the inconsistency in projections points to a need for a 

different approach to better understand the nature of shift errors within empirical data. 
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5.4 Study 3: Simulation Study Based on Stratified Ability Levels  

In order to determine whether the proposed shift error methods function differentially 

dependent on examinee ability, the third study replicated the procedure from study one using 

smaller samples and stratified person parameters fixed at negative one, zero, and one, each then 

subjected to the same procedure as in the first study. Tables 36 to 75 illustrate the differences in 

detection rates and changes in bias dependent on person parameter for all algorithms, probability 

models, person parameter estimation methods, and shift error lengths. The results were striking, 

showing that the accuracy of all of the shift error methods is highly dependent on examinee 

ability. This holds for all shift error lengths, detection algorithms, and scoring models. For shift 

errors of length 10, for instance, one might expect them to be so easy to detect that the person 

parameter might not have a meaningful impact on detection, but the results do not bear this out. 

Using the best of the methods, SCIP with NRM, less than 15% of the shift errors in the low-

ability group were found compared to 99.9% in the high-ability group. That is a huge disparity. 

For short shifts, a good number can be detected when the person parameter is one while detection 

is nearly useless when it is negative one. For the middle group, with person parameter zero, short 

shift errors were difficult to find but not altogether undetectable while longer shifts had detection 

rates that started to approach those for the high-ability group. An investigation of the MCAB and 

MCSE tables demonstrated a striking improvement in results as person parameters increase 

across all scenarios. They also suggested some implications on fairness, discussed in section 

5.7.4. 

5.5 Study 4: Comparison of Shift Error Detection Methods to the H
T
 Person-Fit Statistic 

In order to determine the relative effectiveness of SCIP and CMP compared to HT, this 

study involved calculation of HT and using it as an index for detecting examinees who committed 

shift errors. Use of a person fit statistic has a couple of disadvantages independent of the results, 

the first being that it is not designed to target a specific form of misfit and could detect any form 

of misfit, not just shift errors in the data. The second disadvantage is that, even if the person-fit 
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statistic does an excellent job of detecting the people who have committed shift errors, it provides 

no mechanism for pinpointing the shift error within an examinee’s response string. However, if 

person-fit proved more capable of detecting the individuals who committed the shift error than a 

shift-error, it would likely serve as the best screener at which point the nature of the misfit could 

be determined. Results from this study showed a complete failure of HT in detecting examinees 

with shift errors. The near inability to detect any shift errors before the .95 false discovery rate, at 

which point detections spike to 100% is indicative of the fact that HT is not differentiating at all 

between the positives and negatives. With 5% of the data shifted, a random drawing would have a 

false discovery rate of .95, indicating that HT is really operating no better than chance. 

5.6 Summary of Findings 

Results from the four studies reveal some interesting findings that can inform operational 

practice and future studies into better detection of shift errors. Firstly and foremostly, these 

studies demonstrated that shift errors were detectable with methods designed specifically for their 

identification. Even with low false discovery rates, some portion of shift errors as short as three in 

length were detectable at rates as high as 20%. For longer shifts, detection rates as high as 75% 

were attainable. While some methods inflated bias, especially at short lengths, for the most part, 

decisions to correct shift errors resulted in decreased magnitudes of bias. The method that stood 

out above the others was the SCIP algorithm making use of the NRM for its probability 

calculations. With the exception of short shifts with no false positives allowed, it consistently 

provided the best rates of detection. Examinee ability was a great determinant of shift error 

detection. Using SCIP with the NRM, which was most robust to differences in person parameter, 

at the false discovery rate of .05, short shift errors were nearly undetectable in low ability 

examinees while reaching a detection rate of over 50% for high-ability examinees. For long shift 

errors, roughly one-third were detected in low ability examinees while nearly 100% were detected 

in high ability examinees. Application to empirical data proved tricky. While all of the methods 

proved capable of detecting shift-error behavior within the empirical responses, CMP using the 
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3PL did so at the highest rates, a result that contradicted the simulation findings. The other three 

methods were in much better agreement as to detection levels and in terms of agreement on which 

candidates were flagged as shift errors. CMP using the 3PL showed little agreement with the 

other methods, agreeing only 34% of the time with CMP using NRM. At the same time, SCIP 

using the 3PL and NRM had agreement between 77% of the candidates that they flagged for shift 

errors. Attempting to project total shift error counts based on the true positive percentages yielded 

inconsistent results, with projected counts rising as false discovery rate rose. Using HT as a shift 

detection index proved completely ineffective, having a detection rate little better than would be 

achieved by selecting examinees at random. 

5.7 Implications 

The results of these studies have the potential to meaningfully inform measurement 

practices. This dissertation was not designed to solve the problem of shift errors on 

paper-and-pencil tests all at once but to explore methods that improve upon current practices, 

both in shift error detection and in subject areas with similar applications. This section will 

examine how the findings may be applied to empirical shift error detection, further simulations 

for improving on shift error detection methods, and person-fit research, both general and as 

targeted toward specific sources of aberrance. 

5.7.1 Empirical Application of Shift Error Detection Methods  

The methods explored in this study have some limited but important application 

empirically. Primarily, they are capable of discovering shift errors within empirical data. While 

the methods lacked the consistency one might want if one wishes to correct shift errors with 

certainty that false positives were not also being falsely corrected, as a flagging tool for further 

examination or retest, they proved capable of detection within the empirical data set. The attempt 

to understand how shift errors occur within the empirical data fell short. To better understand this 

and to increase the certainty of the results of the shift error detection, the algorithms and models 

themselves may need no adjustment, but the simulation that is performed for calibration of 
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thresholds to the empirical data needs to better reflect the shift errors within the empirical data, 

challenging given that the nature of such errors is unknown prior to detection. 

5.7.2 Simulation Studies of Shift Error Detection Methods  

Some shortcomings of the simulation study were made clear in the empirical application 

of the thresholds obtained through those simulations. While the simulation demonstrated the 

effectiveness of the shift error detection methods that were developed, it was unclear how 

replicable the results would be for those detection methods given different shift error lengths or 

levels of saturation within the data set. Given the lack of consistency in results in the empirical 

data , an attempt to better reflect the nature of the empirical shift errors in the simulation may be 

desirable. This presents a Catch-22 for shift error research, one in which simulation must reflect 

empirical data for its accurate application while accurate application requires that the simulation 

reflect the empirical data. One possible solution to this conundrum may be found by addressing 

the lack of consistent projected shift error counts in the empirical data. Perhaps by varying the 

nature of the shift errors in simulation, finding a scenario that produces thresholds that, in turn, 

lead to consistent projections in the empirical data, this could produce evidence that the simulated 

shift errors match the empirical shift errors. Even if it does not accomplish this, it would answer 

an important question regarding the extent to which the indices and false discovery rate 

thresholds are dependent on the lengths and saturation levels of the shift errors. Another approach 

would be to introduce a shift error into each examinee response string in simulation and do a 

before/after detection in order to see what detection rates are like with no shift errors and all shift 

errors. As the threshold is moved, true positive and false discovery rates would be determined by 

the counts in the shifted and unshifted data. 

Other logical extensions for simulation studies would be to simulate shifts of varying 

distance from their correct location and simulating different shift error lengths. Especially of 

interest are those lengths between 3 and 7. Shift error length 3 had quite different characteristics 

than the longer shifts in terms of which methods were most accurate and how the bias control 
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measure worked. Finding the shift error length at which detection behaves the same as at the 

longer shift error lengths would be of interest.  

5.7.3 Person Fit Research  

In the fourth study, the HT person fit statistic proved incapable of differentiating between 

examinees with shift errors and examinees simulated without misfit. It could be that other person 

fit statistics may be better suited to detection of shift errors, but as is suggested by Drasgow and 

Levine’s (1986) optimal detection methods, modeling specific forms of person-misfit may prove 

a more suitable approach for any type of misfit that may be present within a test. Alternately, 

given that response order is inherent in the shift error problem, Armstrong and Shi’s (2009) 

CUSUM approach, summing differences between expected and observed responses as they occur 

sequentially, may be more suitable than the preponderance of person fit statistics that rely on 

Guttman ordering rather than the actual item sequence. In some ways, the SCIP method for shift 

detection is a variant on the CUSUM approach, summing changes in probability and finding the 

largest sum within a response string in the order the test was administered. That a person-fit 

statistic relying on Guttman ordering proved ineffective at detecting shift errors is unsurprising, 

because shift errors do not exclusively occur in an area of specific item difficulty. Cheating 

behavior, which may largely occur on more difficult items, or creative behavior, which may lead 

to underperformance on easy items, would be more susceptible to detection by a Guttman-based 

person-fit statistic. Shift errors fall into blocks of sequential items that could be of any difficulty 

level, most likely a mix of difficulties. As such, failure to align to a Guttman ordering of the items 

may fall within normal variance and not appear as misfit. 

One thing made clear in these studies is that the way in which most person-fit research is 

conceptualizing these indices is not adequate for empirical application. A reliance on false 

positive rates rather than false discovery rates says little about how useful a person-fit statistic 

may be in application. In the simulations within this dissertation, 95% of examinees had no shift 

errors introduced. At a false positive rate of .05, that would allow as many false positives as there 
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were actual shift errors simulated into the data. Similarly, when investigating the effectiveness of 

a person-fit statistic, misfit is something that, by its nature, will not affect most examinees. If all 

examinees are misfitting, a test can’t really be measuring anything. When one expects a small 

minority of examinees to exhibit misfitting behavior, most of the population being made up of 

negatives requires a miniscule false positive rate in order to distinguish true positives from false 

positives. Much of the analysis of person-fit statistics, including Karabatsos’ (2003) comparison 

of 36 person-fit statistics, based their analyses on false positive rates, obscuring the likelihood 

that a detection is a true positive rather than a false positive. By focusing instead on false 

discovery rates, one can instantly recognize the ratio of true to false positives, which would lead 

to clearer decision-making when applying person-fit indices. This is likely also true in many areas 

that require statistical analysis. 

5.7.4 Fairness of Shift Error Detection and Correction  

These shift error detection methods proved much more effective in accurately detecting 

shift errors as examinee ability increased. It is worth considering whether implementing methods 

that will differentially help those who need the help the least is fair. The flipside of the fairness 

coin would be to consider whether a procedure that improves the validity of some scores should 

not be performed because it will not improve the validity of other scores. It may be that despite 

the large difference in detection rates between high ability and low ability examinees, the fairness 

issue is not as extreme as it seems. Shift error detection is weakened by the existence of wrong 

answers within the shifted response substrings. With CMP, the shift error string is broken up and 

only part of it is detected. With SCIP, the probability difference of a wrong-to-wrong shift is 

generally smaller than a wrong-to-right, the exception being examinees of low enough ability that 

specific incorrect responses are more probable than correct responses.  

In the case of both methods, but much more when SCIP is used, the same thing that 

makes the shift errors more difficult to detect – incorrect responses within the substrings – 

minimizes the value of being able to detect them. Consider shifts of length 10. In a high ability 
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examinee, if nine of ten responses were correct but because of a shift error, only three were 

marked as correct, the benefit of shifting to the correct location would be an improvement of six 

more correct items. Take a lower-ability examinee who only responded correctly to five of the ten 

items in the shifted substring. It could be that the shift error still results in five of the ten being 

correct, making a correction of minimal value. Even if the correction would be beneficial to the 

examinee’s score, it is unlikely to be as meaningful as for the high-ability examinee.  

Interestingly, an examination of mean changes in bias suggest that the 3PL may unfairly 

reward low-ability examinees rather than those of high-ability. When using the 3PL, at all lengths 

the all examinee group shows both positive changes in MCAB and in MCSE, suggesting that 

scores are becoming more biased and in the positive direction, artificially inflating scores for 

those low ability examinees. In other words, the 3PL is more likely to produce false positives in 

low ability examinees. Meanwhile, the 3PL tends to reduce the magnitude of bias in the 

high-ability examinees, a good thing, but does so by tending to reduce their scores as well, even 

while profoundly improving the scores of those high-ability examinees who committed shift 

errors. Effects on examinees who did not commit shift errors is small, whether trending positive 

or negative, but it does call into question the fairness of the 3PL in a minor way. 

The issue of fairness or at least the differential performance of shift error detection 

methods that is dependent on ability presents an interesting avenue for further study. Beyond 

investigating the differences in detection rates as performed in study three of this dissertation, an 

understanding of how this affects the scores at these different ability levels and how it affects 

scores in empirical data near cut scores would be especially interesting. 

5.7.5 Other Applications  

The effectiveness of the proposed methods in detecting shift errors, especially as 

compared to more general person-fit statistics, suggests that type-specific person-misfit indices 

may be better suited to dealing with the problem of person misfit. Whether it is cheating behavior, 

lack of effort, or a sudden streak of spuriously low or high behavior in an adaptive situation, 
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modeling the expected behavior and comparing it probabilistically to the observed as was done 

with the SCIP algorithm could detect any form of misfit that can be posited and modeled. 

Additionally, some simple shift error detection may eliminate other sources of misfit. Consider 

cheating behavior that is detectable through erasure analysis. Large blocks of erasures resulting in 

wrong-to-right corrections are typically regarded as evidence of cheating behaviors. However, 

using shift error detection on the erasure pattern and the corrected pattern may determine that the 

change was not a cheat, but instead a correction of a shift error. 

Shift error detection may also be applicable in detecting cheating behavior. Methods 

developed in this series of studies focus on finding improbable substrings and evaluating a 

proposed alternative in which the improbable substring is shifted. Success of the methods depend, 

at least in part, on recognition that the proposed alternative is more probable than leaving the 

substring in place. But, in some cases, it could be that correcting a substring to better align to the 

answer key results in a highly improbable solution given the examinee’s unshifted responses. An 

examinee who is performing poorly, for instance, suddenly has several correct answers in a row, 

but in misalignment with the answer key. This could provide evidence of cheating behavior and 

such a response string could be flagged for comparison to neighboring examinees’ test forms.  

5.8 Limitations 

Limitations of the studies within this dissertation have been mentioned within specific 

parts of the discussion, but they are worth enumerating in one place. This section will underscore 

the limitations of the study, their impact, and how they might be addressed in the future.  

5.8.1 Empirical Data  

These studies centered around only one empirical data set, simulating item and person 

parameters based on this data set and applying the thresholds that were obtained only to that 

empirical data. It stands to reason that different data sets, based on different answer sheet types, 

taken by examinees of different backgrounds and experience levels, with different numbers of 

responses and other test characteristics will contain different types and amounts of shift errors. 
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Whether or not the methods developed in this series of studies will prove equally effective under 

different conditions requires that those conditions specifically be investigated. Additionally, given 

the lack of consistency in projecting the true number of shift errors, this underscores the need for 

simulation methods that can determine and properly reflect the nature of the shifts within any 

given data set. Once this is done for any one data set, the validation of the methods on other, 

different sets of data will be critical to their viability as generally applicable methods. 

5.8.2 Shift Error Lengths  

Outside of the mixed-length scenario, simulated shift error lengths within the study were 

limited to only three lengths, 3, 7 and 10. While it is reasonable to surmise that shifts of the 

intermediate lengths will behave similarly to the lengths studied, the exact nature of how 

detection changes at each length is of interest and may prove valuable in application to empirical 

data. Additionally, shift error detection methods behaved differently at the shortest length in the 

studies, suggesting that at some point between length 3 and length 7, these methods stabilize and 

behave more predictably. Choosing the best methods for certain lengths will depend on 

understanding at exactly which lengths those methods perform at their best. Lastly, shift errors 

may be longer than 10 or shorter than 3 and, while shift errors of length 3 are already taxing the 

shift error detection methods, understanding how well they detect those shorter lengths would still 

be of interest and refining methods to perform better on all shift error lengths would be of 

interest. Presumably, longer shift errors will be easier to detect to the point that method and 

ability level become less important in detecting them. Understanding the nature of shift errors of 

all lengths and their prevalence within empirical data would be of value. 

5.8.3 Bias Correction  

Only one method for correcting bias caused by the shift errors was implemented. The 

method involved setting a permissive threshold for shift error classification and treating all 

candidates that met the threshold as missing data for recalibration. This method proved too 

permissive, and resulted in worse detection rates under many of the scenarios. Based on the 
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successful bias reduction of actual corrections in simulation, something that less permissively 

targets shift error candidates for correction might prove better suited in getting person parameter 

estimates closer to truth, thereby getting shift error detection rates closer to those obtainable with 

the true person parameters. 

5.8.4 Person Fit Comparison  

Only one person-fit statistic was looked at: HT . None of the more advanced person-fit 

methods, such as statistically optimal measures of person fit or CUSUM, were used. Although 

some aspects of the SCIP index were similar to aspects of statistically optimal detection and 

CUSUM, there were also distinct differences in the methods. It would be interesting to see how 

these methods compare to the shift error methods developed in this dissertation. Additionally, 

though the nature of shift errors not locating in specific item difficulty areas may make traditional 

person-fit statistics insufficient for their detection, assuming this based on testing only one 

person-fit statistic is unsafe. Comparison to other person-fit statistics would serve to rule them out 

or determine which ones are effective in detecting shift errors. 

5.8.5 Unfairness  

The methods in this study all used methods that were IRT-based, which make 

probabilistic determinations based on examinee ability. Given that the methods clearly favored 

higher ability examinees who commited shift errors and the 3PL falsely rewarded low ability 

examinees who did not commit shift errors, it may be that IRT models are unfair for application 

to shift error detection. Comparison to methods that do not depend on examinee ability may prove 

that more fair methods are available. It seems unlikely, given that shift error detection requires 

some form of alignment to the answer key and that such alignment is unlikely to be recognizable 

without some correct responses, that even a method that doesn’t depend directly on examinee 

ability will be doing so indirectly and any method will favor higher ability examinees in detecting 

their shift errors. Still, methods within this dissertation exclusively used probabilities based on 

examinee ability and the alternative is worth consideration. 
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5.8.6 Simulation Methods  

As previously discussed, shift error saturation levels within the simulations were not set 

to reflect a known empirical situation. The result was that, while the shift error detection methods 

proved effective and capable of finding shift errors within both simulated and empirical data, the 

true positive rates in simulation did not accurately reflect the true positive rates in the empirical 

data, as evidenced by the fact that projected shift error totals were not consistent as false 

discovery rates were increased. Simulation conditions that vary saturation levels or that calculate 

true and false positive rates from shifted and unshifted data, respectively, may stabilize projected 

shift error totals and better pinpoint the nature of the shift errors within the empirical data. 

5.9 Future Directions  

While some aspects of these studies are, as highlighted in the implications section, 

extensible beyond their application to shift error detection, this section will focus on the future 

directions to be taken in improving upon shift error detection methods. Within this section, future 

studies based on ideas for building off of the current studies or that address some of the 

implications and limitations previously discussed will be suggested. 

5.9.1 The Multiple Choice Model  

The 3PL is a good dichotomous model for multiple choice items because it incorporates a 

guessing parameter. The NRM is a good polytomous model for multiple choice items because it 

provides different probabilities for the different response options without making prior 

assumptions as to ability levels associated with the distractors. The Multiple Choice Model 

(MCM; Thissen, 1989) model incorporates both of these elements, parameterizing the relative 

difficulties and discriminations of the different response options like the NRM while 

incorporating a guessing parameter like the 3PL. As such, the MCM may provide improvements 

over the two models employed in this study. Its implementation would require no modification to 

any of the detection algorithms except for the use of the MCM model for probability calculations, 

making it a straightforward extension of the studies contained herein. 
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5.9.2 Shift Error Lengths  

In order to determine how shift error detection methods work in detecting shift errors of 

lengths not specifically investigated within these studies, simulations with shift errors greater than 

10 in length, shorter than 3, and at lengths in between those covered in the studies should be 

performed. Due to a difference in how the methods performed with the shifts of length 3 and the 

longer shift lengths in the study, shift error detection rates on shifts of length 4, 5 and 6 would all 

be of interest. 

5.9.3 Shift Error Saturation Analysis  

As discussed in the study limitations and the discussion of study two, the saturation of 

shift errors into the simulated data was unlikely to have accurately reflected the quantity and 

lengths of shift errors in the empirical data set. Additionally, those are factors that are 

unknowable ahead of time without an arduous manual identification process that would render 

automatic detection unnecessary. Studies that vary the shift saturations or simulate and compare 

unshifted data sets and data sets with 100% of examinees committing a shift error may prove 

better in finding shift error rates more consistent with the empirical data and therefore would be 

more appropriate for detecting shift errors within the empirical data and projecting total shift error 

counts. 

5.9.4 Shift Quantities and Distances  

This series of studies assumed shift errors were limited to one per examinee and were 

never committed more than one item away from their correct location. Neither of these are safe 

assumptions, but were suitable for testing the proposed methods. It seems unlikely that shift 

errors of different distances from their correct locations would be handled differently by shift 

error detection methods, but a study that varies these distances would confirm that assumption. It 

may also be unlikely that examinees are committing multiple shift errors within one test form, but 

it is possible that this could occur or that some patterns for correcting shift errors when the 

examinees catch them compound the problem in an equally destructive way. Simulating multiple 
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shifts within an examinee could reflect some of these patterns and successful detection of them in 

simulation could lead to their detection in empirical data. 

5.9.5 Bias Control Measures  

As discussed, the bias control measure within this series of studies was generally no 

better than using estimated person parameters for detecting shift errors. Given that true person 

parameters provided the best detection rates in simulation, a bias control method that brings 

estimates as close to truth would be desirable. Treating shift error candidates as missing was 

largely ineffective in these studies because it was too permissive, treating too many false 

positives as true positives, omitting them in recalibration, and biasing person parameters to be 

higher than the true parameters. A more restrictive criterion for treating a candidate as missing 

could prove more effective in improving person parameter estimates and the resultant shift error 

detections. A study that picks several thresholds of varying degrees of permissiveness to 

determine if they reduce person parameter bias and improve shift error detection rates would be a 

logical next step along these lines. 

5.9.6 Other Person Fit Measures  

HT was used as the measure of person-fit within this study because it was determined to 

be the most effective in detecting all types of misfit under most testing conditions (Karabatsos, 

2003). It proved completely ineffective in finding shift errors within these studies. A study that 

analyzes other measures of person-fit to see if any are more suitable for detecting shift errors 

would be worthwhile, especially should one prove more effective than the shift-error-specific 

methods proposed within these studies.  

Additionally, CUSUM and statistically optimal person-fit detection show more potential 

as detectors of shift error than the more traditional person-fit measures. The methods examined 

within this series of studies were, in some ways, hybrids of these two person-fit methodologies. 

Application of them specifically may prove as or more effective than the shift error methods that 

were studied here.  
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5.9.7 Fairness Analysis  

The study that investigated shift error detection rates in examinees of different ability 

levels reached a clear conclusion that though shift error detection was far more effective on 

high-ability examinees than low-ability examinees, this is not inherently unfair. It may be that 

shift errors are far more damaging to high-ability examinees and only minimally damaging or 

having no overall effect on lower-ability examinees. That is to say, because shift errors are most 

detectable when they are moving the most right answers into wrong positions, their detectability 

may be proportional to the damage they cause. As such, it may be that the most damaging shift 

errors are found for examinees of all abilities and the methods may not discriminate based on 

ability except in finding shift errors that are of less concern because they contained few correct 

responses when located properly. On the other hand, low-ability examinees may have their shift 

errors go undetected purely because the probabilities associated with correct answers is not 

sufficiently higher than probabilities associated with incorrect answers and their scores are 

under-representing their ability. If shift errors are more prominent in low ability examinees and if 

this is affecting scores near cut points, even small under-representations of ability could be quite 

harmful. An extension of the current studies could include closer scrutiny of the relative benefits 

of shift error detection for different ability groups, looking not just at detection rates but on the 

gains provided by their correction, not just correcting found errors but also undetected errors to 

see what is lost through their non-detection. 

5.9.8 Application to Other Empirical Data  

Once successful refinements are implemented in the simulation studies, replication of the 

studies on empirical data sets with different characteristics is essential to the generalizability of 

the methods. Empirical data sets for examinees of different age groups, given the studies that 

determined younger examinees struggle more with separated forms, would be an obvious target, 

but how these methods perform when there are different numbers of response options, numbers of 

items, subject matter, answer form types, or really any variation in test administration where shift 
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errors can occur would be of interest. Ultimately, any operational implementation of these shift 

error detection methods will require calibration of thresholds to the specific operational data set. 

There may be some generalizability across tests, but it may very well be that any operational 

application will first require a simulation study based on the operational parameters.  

5.10 Conclusion  

This series of studies set out to determine the effectiveness of a matrix of detection 

algorithms, probability models, and person parameter estimation techniques in detecting shift 

errors, a potentially serious threat to the validity of test score interpretations. The proposed 

methods, particularly that which used the SCIP algorithm and the NRM, proved to be particularly 

effective at finding shift errors within simulated data. While concerns remain regarding 

differences in detection for different ability examinees and application to empirical data pointed 

out need for refinement in simulation methods, the initial evidence within these studies is that 

shift error detection with SCIP and, to a lesser extent, with CMP, is effective, whereas traditional 

person-fit statistics are not. Correcting shift errors detected at conservative false discovery rates 

resulted in large reductions in bias among those who committed shift errors and removed most of 

the bias created by the simulation of these shift errors. With further refinements in probability 

model, simulation technique, and bias control method, the methods developed and tested within 

this series of studies show great potential for removing a source of person misfit and improving 

validity of interpretations based on paper-and-pencil tests. 
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APPENDIX I 

TABLES 

Table 1: Quotes on Invalidity of Aberrant Response Patterns (Petridou & Williams, 2010) 

Reise 2000 All person-fit indices are based on the premise that 

inconsistencies between IRT model and observed data are a 

sign that an individual’s model derived trait score is likely 

invalid because factors beyond the individual’s standing on 

the latent trait may be influencing their responses. (p. 552) 

Nering & Meijer 1998 ... several methods have been proposed to detect item score 

patterns that are not in agreement with the item score pattern 

expected based on a particular test model. These item score 

patterns should be detected because scores of such persons 

may not be adequate descriptions of their trait level (p. 53). 

Reise & Flannery 1996 Among educational psychologists, interest in person-fit 

assessment and associated scalability indexes developed out 

of three major concerns. The first was and remains the general 

need to identify invalid test protocols (p. 10). 

Drasgow, Levine, & 

Zickar 

1996 Optimal appropriateness measurement statistically provides 

the most powerful methods for identifying individuals who are 

mismeasured by a standardized psychological test or scale (p. 

47). 

Wright 1995 

 

... if the fit statistic for a person’s performance is acceptable, 

then that person’s test performances are interpreted as a 

"valid" basis for inferring a measure of that person’s ability. 

To the extent that a person’s test performances do not 

approximate the model, the validity of that person’s ability is 

in doubt (p. 96). 

Meijer, Molenaar, & 

Sijtsma 

1994 For people who respond aberrantly to a test, it is questionable 

whether the test score is an appropriate measure of the trait 

that is being measured (p. 111). 

Meijer & deLeeuw 1993 For persons detected as aberrant the total score does not 

adequately reflect the attribute that is being measured... (p. 

235). 

Drasgow & Guertler 1987 Item response theory provides a model-based approach to the 

identification of individuals for whom total test scores are not 

representative measures of their abilities (p. 11). 

Drasgow, Levine, & 

Williams 

1985 The test scores of some examinees on a multiple choice test 

may not provide satisfactory measures of their abilities. The 

goal of appropriateness measurement is to identify such 

individuals (p. 67). 

Levine & Rubin 1979 A student can be so unlike other examinees that the resulting 

test score cannot be regarded as an appropriate ability 

measure (p. 269). 
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Table 2: Person Fit Statistics (Meijer & Sijtsma, 2001) 

Group-Based (CTT) 

rpbis, rbis (Donlon & Fischer, 1968) 

C (Sato, 1975) 

U (van der Flier, 1980, Meijer, 1994) 

Ai, Di, Ei (Kane & Brennan, 1980) 

C* (Harnisch & Linn, 1981) 

ZU3 (van der Flier, 1982) 

NCI, ICI (Tatsuoka & Tatsuoka, 1983) 

Hi
T (Sijtsma, 1986; Sijtsma & Meijer, 1992) 

 

Rasch Model 

U (Wright & Stone, 1979) 

W (Wright & Masters, 1982) 

UB, UW (Smith, 1985) 

M (Molenaar & Hoijtink, 1990) 

Χ2
sc (Klauer & Rettig, 1990) 

T(X) (Klauer, 1991, 1995) 

 

2PL and 3PL 

l0 (Levine & Rubin, 1979) 

D(θ) (Weiss, 1973; Trabin & Weiss, 1983) 

ECI statistics (Tatsuoka, 1984) 

lz (Drasgow, Levine & Williams, 1985) 

JK, O/E (Drasgow, Levine & McLaughlin, 1987) 

lzm (Drasgow, Levine & McLaughlin, 1991) 

c (Levine & Drasgow, 1988) 

 

Computer Adaptive 

K (Bradlow, Weiss & Cho, 1998) 

T statistics(van Krimpen-Stoop & Meijer, 2000) 

Zc (McLeod & Lewis, 1999) 

 

 

Table 3: Results for Single Scan Detection of Shift Errors (Skiena & Sumazin, 2000a) 

Shift Length Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 

0 .019 .000 .010 .015 .019 

3 .429 .171 .209 .127 .128 

4 .638 .321 .342 .258 .233 

5 .743 .453 .463 .376 .353 

6 .836 .611 .584 .498 .470 

7 .883 .696 .674 .587 .566 

8 .911 .766 .739 .702 .650 

9 .929 .809 .789 .752 .713 

10 .943 .842 .817 .797 .750 
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Table 4: Thresholds for 100% shift classification accuracy (Cook & Foster, 2012) 

Length 
3PL 

 

Equal Probability 

threshold 

percent 

detected threshold 

percent 

detected 

3 1E-08 1.0% n/a n/a 

4 0.0000001 6.8% n/a n/a 

5 0.0000001 13.0% n/a n/a 

6 0.0000001 19.4% n/a n/a 

7 0.0000001 24.2% 0.000001 0.1% 

8 0.0000001 28.0% 0.00001 4.4% 

9 0.0000001 31.0% 0.00001 16.1% 

10 0.000001 40.7% 0.00001 18.0% 

mixed 1E-08 15.3% 0.0000001 0.1% 

 

 

Table 5: Shift error detection rates and thresholds, false discovery rate = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 7.8% 1.0*10-8 1.6% 3.82 10.0% 1.3*10-6 2.2% 3.37 

Estimated 5.0% 1.6*10-7 2.1% 3.26 2.4% 2.8*10-6 2.3% 3.03 

Corrected 4.4% 3.3*10-11 0.1% 4.44 7.9% 4.6*10-8 0.2% 4.00 

 

 

Table 6: Shift error detection rates and thresholds, false discovery rate = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 15.8% 5.2*10-7 13.5% 2.93 19.8% 2.9*10-5 21.9% 2.50 

Estimated 11.1% 2.4*10-6 18.1% 2.60 9.5% 2.6*10-5 19.6% 2.35 

Corrected 8.3% 1.6*10-9 0.2% 4.20 16.7% 1.8*10-6 1.0% 3.66 

 

Table 7: Mean Change in Absolute Bias, false discovery rate = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.020 -0.041 0.021 -0.017 -0.003 -0.048 -0.001 -0.010 

Estimated 0.021 -0.021 0.022 -0.014 -0.001 -0.010 0.000 -0.007 

Corrected 0.021 -0.020 0.022 -0.009 -0.002 -0.028 0.000 0.000 
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Table 8: Mean Change in Signed Error, false discovery rate = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.083 0.000 0.054 0.000 0.067 0.000 0.016 

Estimated 0.000 0.069 0.000 0.053 0.000 0.021 0.000 0.015 

Corrected 0.000 0.067 0.000 0.041 0.000 0.058 0.000 0.000 

 

 

Table 9: Mean Change in Absolute Bias, false discovery rate = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.019 -0.052 0.020 -0.041 -0.004 -0.063 -0.003 -0.043 

Estimated 0.020 -0.028 0.020 -0.029 -0.002 -0.026 -0.002 -0.029 

Corrected 0.020 -0.025 0.022 -0.009 -0.003 -0.041 0.000 -0.002 

 

Table 10: Mean Change in Signed Error, false discovery rate = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.103 0.000 0.100 0.000 0.098 0.000 0.074 

Estimated 0.000 0.087 0.000 0.091 0.000 0.050 0.000 0.068 

Corrected 0.000 0.079 0.000 0.042 0.000 0.088 0.000 0.005 

 

Table 11: Shift error detection rates and thresholds, false discovery rate = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 34.2% 9.4*10-9 43.2% 3.82 39.0% 1.3*10-6 49.2% 3.36 

Estimated 26.7% 2.1*10-7 40.0% 3.28 28.6% 3.4*10-6 44.6% 3.04 

Corrected 25.0% 3.6*10-11 33.4% 4.33 33.1% 6.7*10-8 37.9% 3.93 

 

Table 12: Shift error detection rates and thresholds, false discovery rate = .05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 48.5% 2.7*10-6 64.7% 2.53 54.4% 7.8*10-5 70.0% 2.23 

Estimated 42.3% 1.4*10-5 59.7% 2.33 45.8% 1.1*10-4 66.7% 2.10 

Corrected 38.2% 4.3*10-8 60.5% 2.82 49.3% 9.1*10-6 65.8% 2.55 
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Table 13: Mean Change in Absolute Bias, false discovery rate = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.010 -0.214 0.008 -0.249 -0.013 -0.213 -0.015 -0.255 

Estimated 0.012 -0.172 0.010 -0.210 -0.010 -0.164 -0.014 -0.225 

Corrected 0.012 -0.166 0.011 -0.197 -0.011 -0.181 -0.012 -0.205 

 

 

Table 14: Mean Change in Signed Error, false discovery rate = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.311 0.000 0.378 0.000 0.318 0.000 0.372 

Estimated 0.000 0.273 0.000 0.333 0.000 0.266 0.000 0.348 

Corrected 0.000 0.262 0.000 0.304 0.000 0.292 0.000 0.315 

 

 

Table 15: Mean Change in Absolute Bias, false discovery rate = .05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.008 -0.237 0.007 -0.261 -0.014 -0.240 -0.016 -0.273 

Estimated 0.010 -0.202 0.009 -0.235 -0.012 -0.202 -0.015 -0.253 

Corrected 0.011 -0.195 0.009 -0.232 -0.013 -0.215 -0.014 -0.243 

 

Table 16: Mean Change in Signed Error, false discovery rate = .05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.353 0.000 0.421 0.000 0.359 0.000 0.413 

Estimated 0.000 0.321 0.000 0.384 0.000 0.317 0.000 0.397 

Corrected 0.000 0.308 0.000 0.374 0.000 0.336 0.000 0.381 

 

Table 17: Shift detection rates and thresholds, false discovery rate = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 42.9% 9.0*10-9 60.2% 3.81 49.3% 1.4*10-6 65.7% 3.34 

Estimated 31.2% 1.9*10
-7

 51.6% 3.31 36.5% 4.2*10
-6

 58.2% 3.08 

Corrected 30.6% 5.8*10-11 53.6% 4.33 38.9% 7.7*10-8 58.3% 3.95 
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Table 8: Shift detection rates and thresholds, false discovery rate = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 57.8% 3.5*10-6 74.9% 2.48 64.3% 9.2*10-5 79.6% 2.19 

Estimated 47.2% 1.3*10-5 67.8% 2.29 55.0% 1.4*10-4 75.7% 2.08 

Corrected 43.7% 7.0*10-8 72.1% 2.78 55.6% 1.2*10-5 77.1% 2.52 

 

 

Table 19: Mean Change in Absolute Bias, false discovery rate = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.005 -0.300 0.000 -0.392 -0.018 -0.313 -0.023 -0.410 

Estimated 0.008 -0.239 0.003 -0.337 -0.015 -0.256 -0.022 -0.376 

Corrected 0.008 -0.236 0.002 -0.348 -0.016 -0.266 -0.022 -0.378 

 

 

Table 20: Mean Change in Signed Error, false discovery rate = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.393 0.000 0.555 0.000 0.407 0.000 0.558 

Estimated 0.000 0.331 0.000 0.477 0.000 0.350 0.000 0.521 

Corrected 0.000 0.325 0.000 0.495 0.000 0.362 0.000 0.523 

 

 

Table 21: Mean Change in Absolute Bias, false discovery rate = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.003 -0.330 -0.001 -0.406 -0.019 -0.339 -0.024 -0.425 

Estimated 0.006 -0.279 0.001 -0.366 -0.017 -0.298 -0.023 -0.401 

Corrected 0.006 -0.271 0.001 -0.377 -0.017 -0.302 -0.023 -0.404 

 

 

Table 22: Mean Change in Signed Error, false discovery rate = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.435 0.000 0.590 0.000 0.441 0.000 0.587 

Estimated 0.000 0.383 0.000 0.527 0.000 0.399 0.000 0.562 

Corrected 0.000 0.371 0.000 0.548 0.000 0.405 0.000 0.567 
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Table 23: Shift detection rates and thresholds, false discovery rate = .00, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 29.1% 1.1*10-8 35.2% 3.78 33.6% 1.5*10-6 39.9% 3.32 

Estimated 21.4% 1.8*10-7 32.3% 3.27 22.3% 2.9*10-6 35.7% 3.03 

Corrected 21.1% 6.9*10-11 26.7% 4.32 27.1% 5.5*10-8 30.0% 3.93 

 

 

Table 24: Shift detection rates and thresholds, false discovery rate = .05, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

True 41.1% 1.5*10-6 56.0% 2.57 47.9% 6.8*10-5 60.7% 2.26 

Estimated 35.0% 9.3*10-6 51.5% 2.37 39.2% 9.6*10-5 57.4% 2.14 

Corrected 32.1% 3.2*10-8 50.6% 2.88 41.2% 7.4*10-6 55.1% 2.62 

 

 

Table 25: Mean Change in Absolute Bias, false discovery rate = .00, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.011 -0.178 0.010 -0.204 -0.011 -0.184 -0.012 -0.209 

Estimated 0.014 -0.135 0.012 -0.172 -0.008 -0.129 -0.011 -0.185 

Corrected 0.013 -0.135 0.013 -0.156 -0.009 -0.148 -0.010 -0.165 

 

 

Table 26: Mean Change in Signed Error, false discovery rate = .00, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.265 0.000 0.323 0.000 0.269 0.000 0.310 

Estimated 0.000 0.224 0.000 0.285 0.000 0.205 0.000 0.289 

Corrected 0.000 0.222 0.000 0.256 0.000 0.239 0.000 0.255 

 

Table 27: Mean Change in Absolute Bias, false discovery rate = .05, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.010 -0.197 0.009 -0.218 -0.012 -0.205 -0.013 -0.231 

Estimated 0.012 -0.161 0.011 -0.195 -0.010 -0.167 -0.012 -0.213 

Corrected 0.013 -0.157 0.011 -0.190 -0.010 -0.178 -0.012 -0.203 
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Table 28: Mean Change in Signed Error, false discovery rate = .05, mixed length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

True 0.000 0.302 0.000 0.368 0.000 0.307 0.000 0.358 

Estimated 0.000 0.269 0.000 0.335 0.000 0.263 0.000 0.343 

Corrected 0.000 0.260 0.000 0.324 0.000 0.285 0.000 0.324 

 

Table 29: Empirical true positives at simulation thresholds, shift lengths of 3 or less 

Model/FDR 
CMP SCIP 

threshold percent count projected threshold percent count projected 

3PL/.00 1.6*10-7 5.0% 3 60 3.26 2.1% 0 0 

3PL/.05 2.4*10-6 11.1% 17 145 2.60 18.1% 11 58 

NRM/.00 2.8*10-6 2.4% 0 0 3.03 2.3% 0 0 

NRM/.05 2.6*10-5 9.5% 2 20 2.35 19.6% 7 34 

 

 

Table 30: Empirical true positives at simulation thresholds, shift lengths of 7 or less 

Model/FDR 
CMP SCIP 

threshold percent count projected threshold percent count projected 

3PL/.00 2.1*10-7 26.7% 6 22 3.28 40.0% 1 3 

3PL/.05 1.4*10-5 42.3% 118 265 2.33 59.7% 81 129 

NRM/.00 3.4*10
-6

 28.6% 2 7 3.04 44.6% 1 2 

NRM/.05 1.1*10-4 45.8% 70 145 2.10 66.7% 86 122 

 

Table 31: Empirical true positives at simulation thresholds, shift lengths of 10 or less 

Model/FDR 
CMP SCIP 

threshold percent count projected threshold percent count projected 

3PL/.00 1.9*10-7 31.2% 6 19 3.31 51.6% 1 2 

3PL/.05 1.3*10-5 47.2% 115 231 2.29 67.8% 106 149 

NRM/.00 4.2*10-6 36.5% 2 5 3.08 58.2% 1 2 

NRM/.05 1.4*10-4 55.0% 101 174 2.08 75.7% 108 136 

 

Table 32: Empirical true positives at simulation thresholds, mixed shift lengths 

Model/FDR 
CMP SCIP 

threshold percent count projected threshold percent count projected 

3PL/.00 1.8*10-7 21.4% 6 28 3.27 32.3% 1 3 

3PL/.05 9.3*10-6 35.0% 86 233 2.37 51.5% 79 146 

NRM/.00 2.9*10-6 22.3% 1 4 3.03 35.7% 1 3 

NRM/.05 9.6*10-5 39.2% 63 153 2.14 57.4% 88 146 
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Table 33: Agreement rates between methods, false discovery rate = .05, mixed length shifts 

Model/Algorithm 

Combination 
count percent 

SCIP 61 77.2% 

CMP 22 34.9% 

NRM 13 16.5% 

3PL 9 14.3% 

All 5 7.9% 

Any 3 14 22.2% 

 

 

Table 34: Mean Absolute Difference, empirical data, mixed length shifts 

False Discovery 

Rate 

3PL NRM 

CMP SCIP CMP SCIP 

0% 0.112 0.112 0.000 0.000 

5% 0.112 0.112 0.001 0.000 

 

Table 35: Mean Signed Difference, empirical data, mixed length shifts 

False Discovery 

Rate 

3PL NRM 

CMP SCIP CMP SCIP 

0% 0.000 0.000 0.000 0.000 

5% 0.000 0.000 0.000 0.000 

 

 

Table 36: Shift error detection rates with true person parameters, FDR = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.2% 1.7*10-5 0.5% 2.63 0.1% 2.6*10-5 0.4% 2.55 

0 6.4% 2.2*10-6 3.6% 2.98 12.8% 2.3*10-5 5.7% 2.81 

1 33.9% 2.6*10-7 7.6% 3.10 45.9% 3.4*10-5 36.2% 2.67 

 

 

Table 37: Shift error detection rates with true person parameters, FDR = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.2% 1.7*10-5 0.5% 2.63 0.1% 2.6*10-5 0.4% 2.55 

0 7.8% 3.0*10
-6

 5.8% 2.88 13.8% 3.3*10
-5

 10.0% 2.67 

1 45.2% 1.2*10-6 45.0% 2.77 55.7% 1.2*10-4 52.6% 2.28 
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Table 38: Mean Change in Absolute Bias, estimated parameters, FDR = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.059 0.052 0.059 0.054 0.000 0.000 0.000 0.000 

0 -0.001 -0.029 -0.001 -0.026 0.001 0.015 0.001 0.009 

1 -0.022 -0.137 -0.023 -0.152 -0.007 -0.144 -0.006 -0.125 

 

 

Table 39: Mean Change in Signed Error, estimated parameters, FDR = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.033 0.018 0.033 0.020 0.000 0.000 0.000 0.000 

0 0.061 0.126 0.061 0.128 0.002 0.035 0.002 0.031 

1 -0.072 0.212 -0.072 0.225 0.015 0.295 0.012 0.244 

 

 

Table 40: Mean Change in Absolute Bias, estimated parameters, FDR =.05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.059 0.052 0.059 0.054 0.000 0.000 0.001 0.000 

0 -0.005 -0.029 -0.001 -0.025 0.001 0.016 0.001 0.012 

1 -0.023 -0.154 -0.025 -0.180 -0.008 -0.156 -0.008 -0.152 

 

Table 41: Mean Change in Signed Error, estimated parameters, FDR =.05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.033 0.018 0.033 0.020 0.000 0.000 0.001 0.000 

0 0.061 0.126 0.061 0.131 0.002 0.037 0.002 0.044 

1 -0.071 0.239 -0.070 0.254 0.017 0.325 0.014 0.281 

 

Table 42: Shift error detection rates with true person parameters, FDR = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 2.3% 6.0*10-6 5.0% 2.79 2.4% 1.5*10-5 8.5% 2.68 

0 47.3% 2.5*10-6 66.0% 2.97 54.9% 2.5*10-5 73.3% 2.78 

1 86.7% 1.7*10
-7

 93.1% 3.14 90.3% 2.8*10
-5

 96.1% 2.77 
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Table 43: Shift error detection rates with true person parameters, FDR = .05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 2.3% 6.0*10-6 5.1% 2.77 2.4% 1.5*10-5 10.3% 2.60 

0 56.1% 1.1*10-5 80.1% 2.49 64.0% 1.0*10-4 86.2% 2.31 

1 93.4% 3.0*10-6 98.1% 2.46 95.4% 2.0*10-4 98.8% 2.11 

 

 

Table 44: Mean Change in Absolute Bias, estimated parameters, FDR =.00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.060 0.071 0.061 0.074 0.000 0.004 0.001 0.011 

0 -0.005 -0.113 -0.007 -0.152 -0.004 -0.090 -0.007 -0.148 

1 -0.045 -0.580 -0.050 -0.663 -0.027 -0.551 -0.033 -0.657 

 

 

Table 45: Mean Change in Signed Error, estimated parameters, FDR =.00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.032 -0.014 0.032 -0.010 0.001 0.010 0.001 0.018 

0 0.069 0.302 0.075 0.409 0.013 0.261 0.019 0.379 

1 -0.044 0.719 -0.040 0.802 0.038 0.759 0.043 0.871 

 

 

Table 46: Mean Change in Absolute Bias, estimated parameters, FDR =.05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.060 0.072 0.061 0.074 0.000 0.004 0.001 0.011 

0 -0.005 -0.118 -0.008 -0.166 -0.005 -0.107 -0.008 -0.162 

1 -0.047 -0.604 -0.051 -0.676 -0.029 -0.572 -0.033 -0.660 

 

Table 47: Mean Change in Signed Error, estimated parameters, FDR =.05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.032 -0.014 0.032 -0.010 0.000 0.010 0.001 0.019 

0 0.070 0.320 0.077 0.445 0.015 0.288 0.021 0.408 

1 -0.043 0.743 -0.039 0.814 0.040 0.782 0.045 0.874 
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Table 48: Shift detection rates with true person parameters, FDR = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 3.3% 4.2*10-6 11.3% 2.79 3.7% 1.2*10-5 23.5% 2.62 

0 64.3% 2.8*10-6 90.4% 2.97 71.7% 2.4*10-5 92.9% 2.83 

1 96.6% 1.4*10-7 99.0% 2.11 97.7% 1.7*10-5 99.2% 3.34 

 

 

Table 49: Shift detection rates with true person parameters, FDR = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 3.3% 4.2*10-6 14.1% 2.62 3.7% 1.2*10-5 33.0% 2.38 

0 75.3% 1.6*10-5 96.3% 2.42 82.6% 1.3*10-4 97.7% 2.24 

1 98.7% 3.7*10-6 99.8% 2.47 99.4% 2.0*10-4 99.9% 2.12 

 

 

Table 50: Mean Change in Absolute Bias, estimated parameters, FDR =.00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.063 0.085 0.063 0.095 0.000 0.001 0.001 0.017 

0 -0.010 -0.185 -0.016 -0.291 -0.008 -0.173 -0.016 -0.321 

1 -0.056 -0.789 -0.065 -0.973 -0.038 -0.767 -0.048 -0.961 

 

 

Table 51: Mean Change in Signed Error, estimated parameters, FDR =.00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.031 -0.035 0.031 -0.031 0.001 0.014 0.003 0.048 

0 0.073 0.353 0.087 0.624 0.016 0.315 0.031 0.609 

1 -0.036 0.915 -0.028 1.085 0.048 0.954 0.058 1.151 

 

 

Table 52: Mean Change in Absolute Bias, estimated parameters, FDR =.05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.063 0.085 0.063 0.095 0.000 0.001 0.001 0.015 

0 -0.011 -0.202 -0.017 -0.319 -0.010 -0.202 -0.016 -0.338 

1 -0.058 -0.818 -0.066 -0.977 -0.039 -0.774 -0.048 -0.963 
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Table 53: Mean Change in Signed Error, estimated parameters, FDR =.05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.031 -0.035 0.031 -0.031 0.001 0.014 0.003 0.059 

0 0.075 0.377 0.089 0.658 0.018 0.001 0.033 0.629 

1 -0.034 0.943 -0.027 1.089 0.049 0.961 0.058 1.152 

 

Table 9: Shift detection rates with true person parameters, FDR = .00, mixed-length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.5% 4.9*10-6 4.6% 2.81 1.9% 1.4*10-5 9.0% 2.65 

0 38.6% 2.4*10-6 51.2% 2.99 46.1% 2.5*10-5 56.9% 2.77 

1 74.4% 2.3*10-7 71.5% 3.10 78.1% 2.8*10-5 80.5% 2.69 

 

 

Table 55: Shift detection rates with true person parameters, FDR = .05, mixed-length shifts 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.5% 4.9*10-6 4.6% 2.81 1.9% 1.4*10-5 10.1% 2.60 

0 45.9% 8.8*10
-6

 63.9% 2.56 52.6% 8.4*10
-5

 68.1% 2.36 

1 81.4% 2.8*10-6 85.8% 2.50 84.3% 1.7*10-4 86.9% 2.14 

 

 

Table 56: Mean Change in Absolute Bias, estimated parameters, FDR =.00, mixed lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.061 0.076 0.061 0.079 0.000 0.004 0.001 0.012 

0 -0.004 -0.092 -0.007 -0.128 -0.003 -0.056 -0.006 -0.121 

1 -0.041 -0.527 -0.045 -0.602 -0.025 -0.526 -0.028 -0.586 

 

 

Table 57: Mean Change in Signed Error, estimated parameters, FDR =.00, mixed lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.032 -0.006 0.032 -0.006 0.001 0.010 0.001 0.016 

0 0.068 0.264 0.072 0.364 0.010 0.194 0.016 0.325 

1 -0.052 0.633 -0.048 0.714 0.033 0.693 0.037 0.765 
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Table 58: Mean Change in Absolute Bias, estimated parameters, FDR =.05, mixed lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.061 0.076 0.061 0.079 0.000 0.004 0.001 0.012 

0 -0.005 -0.097 -0.007 -0.141 -0.003 -0.068 -0.006 -0.135 

1 -0.042 -0.553 -0.046 -0.618 -0.026 -0.550 -0.029 -0.600 

 

Table 59: Mean Change in Signed Error, estimated parameters, FDR =.05, mixed lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

All Shifted All Shifted All Shifted All Shifted 

-1 0.032 -0.006 0.032 -0.006 0.001 0.010 0.001 0.016 

0 0.068 0.275 0.074 0.399 0.011 0.217 0.018 0.356 

1 -0.050 0.658 -0.047 0.731 0.036 0.719 0.038 0.781 

 

Table 60: Shift detection rates with estimated person parameters, FDR = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.1% 4.6*10-6 0.3% 2.63 0.1% 1.9*10-5 0.4% 2.52 

0 5.9% 1.8*10
-6

 7.9% 2.81 7.8% 4.1*10
-5

 7.4% 2.59 

1 27.3% 2.1*10-6 37.4% 2.61 41.7% 1.2*10-4 41.3% 2.33 

 

Table 61: Shift detection rates with estimated person parameters, FDR = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.1% 4.6*10-6 0.3% 2.63 0.1% 1.9*10-5 0.4% 2.52 

0 6.0% 1.9*10-6 9.6% 2.77 8.3% 4.4*10-5 12.7% 2.46 

1 36.1% 6.9*10-6 49.3% 2.25 50.6% 3.2*10-4 53.8% 2.01 

 

Table 62: Shift detection rates with estimated person parameters, FDR = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.9% 5.1*10-6 2.5% 2.64 1.9% 1.6*10-5 5.6% 2.56 

0 30.4% 2.0*10-6 53.5% 2.86 42.0% 3.9*10-5 64.6% 2.61 

1 74.3% 1.8*10-6 93.1% 2.67 84.6% 1.0*10-4 95.5% 2.42 
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Table 63: Shift detection rates with estimated person parameters, FDR = .05, shift length 7. 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.9% 5.1*10-6 2.5% 2.64 1.9% 1.6*10-5 5.8% 2.55 

0 37.4% 6.0*10-6 69.6% 2.44 51.2% 1.2*10-4 80.9% 2.17 

1 82.5% 1.4*10-5 97.7% 2.05 90.5% 4.5*10-4 98.6% 1.88 

 

 

Table 64: Shift detection rates, estimated person parameters, FDR = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.6% 4.9*10-6 3.2% 2.65 2.7% 1.4*10-5 10.9% 2.54 

0 37.2% 2.1*10-6 74.3% 2.89 54.5% 4.3*10-5 86.5% 2.65 

1 83.5% 2.4*10-6 98.4% 2.90 93.7% 9.8*10-5 98.8% 2.77 

 

Table 65: Shift detection rates, estimated person parameters, FDR = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.6% 4.9*10-6 3.2% 2.65 2.7% 1.4*10-5 14.2% 2.43 

0 45.0% 7.7*10-6 88.6% 2.35 66.6% 1.6*10-4 95.3% 2.12 

1 91.4% 1.5*10-5 99.8% 2.06 97.2% 5.0*10-4 99.9% 1.88 

 

 

Table 66: Shift detection rates with estimated person parameters, FDR = .00, mixed-lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.8% 3.9*10-6 1.7% 2.72 1.3% 1.6*10-5 4.7% 2.59 

0 26.4% 5.8*10-6 43.8% 2.84 34.7% 3.9*10-5 52.3% 2.58 

1 62.8% 2.2*10-6 78.1% 2.64 72.9% 9.6*10-5 80.6% 2.36 

 

 

Table 67: Shift detection rates with estimated person parameters, FDR = .05, mixed-lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.8% 3.9*10-6 1.7% 2.72 1.3% 1.6*10-5 4.7% 2.59 

0 31.1% 5.8*10-6 56.0% 2.50 42.8% 1.1*10-4 64.5% 2.24 

1 71.0% 4.1*10-5 85.1% 2.06 80.1% 4.5*10-5 87.4% 1.89 

 



118 

 

Table 68: Shift detection rates with bias-corrected parameters, FDR = .00, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.2% 4*10-7 0.3% 3.27 0.1% 1.2*10-5 0.1% 5.03 

0 7.0% 2.6*10-7 2.6% 3.48 9.7% 9.6*10-6 1.8% 3.70 

1 26.4% 1.2*10-7 7.2% 3.07 42.2% 2.6*10-5 32.5% 2.76 

 

Table 69: Shift detection rates with bias-corrected parameters, FDR = .05, shift length 3 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 0.2% 4*10-7 0.3% 3.27 0.1% 1.2*10-5 0.1% 5.03 

0 7.0% 2.7*10-7 2.6% 3.48 11.1% 1.3*10-5 1.8% 3.70 

1 33.9% 5.1*10-7 45.1% 2.69 51.5% 9.8*10-5 51.4% 2.36 

 

Table 70: Shift detection rates with bias-corrected parameters, FDR = .00, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.3% 2.7*10-7 2.7% 3.58 2.3% 6.8*10-6 3.0% 5.05 

0 34.7% 2.3*10-7 53.0% 3.52 43.3% 8.8*10-6 62.3% 3.65 

1 75.7% 9.2*10-8 92.2% 3.10 84.5% 2.0*10-5 95.3% 2.86 

 

Table 71: Shift detection rates with bias-corrected parameters, FDR = .05, shift length 7 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.3% 2.7*10-7 2.7% 3.58 2.3% 6.8*10-6 3.0% 5.05 

0 42.4% 1.1*10-6 71.1% 2.87 53.4% 1.0*10-4 77.1% 3.03 

1 83.3% 1.4*10-6 97.9% 2.29 90.3% 1.5*10-4 98.7% 2.14 

 

Table 72: Shift detection rates with bias-corrected parameters, FDR = .00, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 2.1% 2.8*10-7 7.7% 3.50 3.4% 6.9*10-6 10.1% 5.03 

0 43.6% 3.0*10-7 79.9% 3.60 55.5% 1.1*10-5 87.4% 3.69 

1 85.1% 1.5*10-7 98.5% 3.20 93.7% 2.3*10-5 99.2% 3.35 
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Table 73: Shift detection rates with bias-corrected parameters, FDR = .05, shift length 10 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 2.1% 2.8*10-7 8.0% 3.46 3.4% 6.9*10-6 12.6% 4.84 

0 50.5% 1.3*10-6 91.6% 2.81 67.0% 5.5*10-5 94.7% 2.97 

1 92.0% 1.5*10-6 99.8% 2.11 96.9% 1.6*10-4 99.9% 2.10 

 

Table 74: Shift detection rates with bias-corrected parameters, FDR = .00, mixed-lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.2% 2.4*10-7 2.5% 3.63 1.8% 6.5*10-6 3.3% 5.05 

0 30.2% 3.4*10-7 43.0% 3.48 35.8% 8.9*10-6 48.2% 3.64 

1 64.5% 1.3*10-7 71.0% 3.04 73.4% 2.2*10-5 79.5% 2.76 

 

Table 75: Shift detection rates with bias-corrected parameters, FDR = .05, mixed-lengths 

Person 

Parameter 

3PL NRM 

CMP SCIP CMP SCIP 

percent threshold percent threshold percent threshold percent threshold 

-1 1.2% 2.4*10-7 2.5% 3.63 1.8% 6.5*10-6 3.3% 5.05 

0 34.1% 9.4*10-7 53.8% 2.96 44.0% 3.4*10-5 58.2% 3.12 

1 71.9% 1.2*10-6 84.9% 2.36 80.5% 1.5*10-5 86.5% 2.19 

 

 

Table 76: Detection rate differences between algorithms, estimated parameters, FDR = .00 

Shift 

Length 

3PL NRM 

CMP SCIP Difference CMP SCIP Difference 

3 5.0% 2.1% -2.9% 2.4% 2.3% -0.1% 

7 26.7% 40.0% 13.3% 28.6% 44.6% 16.0% 

10 31.2% 51.6% 20.4% 36.5% 58.2% 21.7% 

mixed 21.4% 32.3% 10.9% 22.3% 35.7% 13.4% 

 

Table 77: Detection rate differences between algorithms, estimated parameters, FDR = .05 

Shift 

Length 

3PL NRM 

CMP SCIP Difference CMP SCIP Difference 

3 11.1% 18.1% 7.0% 9.5% 19.6% 10.1% 

7 42.3% 59.7% 17.4% 45.8% 66.7% 20.9% 

10 47.2% 67.8% 20.6% 55.0% 75.7% 20.7% 

mixed 35.0% 51.5% 16.5% 39.2% 57.4% 18.2% 
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Table 78: Detection rate differences between IRT models, estimated parameters, FDR = .00 

Shift 

Length 

CMP SCIP 

3PL NRM Difference 3PL NRM Difference 

3 5.0% 2.4% -2.6% 2.1% 2.3% 0.2% 

7 26.7% 28.6% 1.9% 40.0% 44.6% 4.6% 

10 31.2% 36.5% 5.3% 51.6% 58.2% 6.6% 

mixed 21.4% 22.3% 0.9% 32.3% 35.7% 3.4% 

 

Table 79: Detection rate differences between IRT models, estimated parameters, FDR = .05 

Shift 

Length 

CMP SCIP 

3PL NRM Difference 3PL NRM Difference 

3 11.1% 9.5% -1.6% 18.1% 19.6% 1.5% 

7 42.3% 45.8% 3.5% 59.7% 66.7% 7.0% 

10 47.2% 55.0% 7.8% 67.8% 75.7% 7.9% 

mixed 35.0% 39.2% 4.2% 51.5% 57.4% 5.9% 

 

Table 80: Differences between parameter estimation methods, CMP/3PL, FDR = .00 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 7.8% 5.0% 4.4% -2.8% -0.6% 

7 34.2% 26.7% 25.0% -7.5% -1.7% 

10 42.9% 31.2% 30.6% -11.7% -0.6% 

mixed 29.1% 21.4% 21.1% -7.7% -0.3% 

 

Table 81: Differences between parameter estimation methods, CMP/NRM, FDR = .00 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 10.0% 2.4% 7.9% -7.6% 5.5% 

7 39.0% 28.6% 33.1% -10.4% 4.5% 

10 49.3% 36.5% 38.9% -12.8% 2.4% 

mixed 33.6% 22.3% 27.1% -11.3% 4.8% 

 

Table 82: Differences between parameter estimation methods, SCIP/3PL, FDR = .00 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 1.6% 2.1% 0.1% 0.5% -2.0% 

7 43.2% 40.0% 33.4% -3.2% -6.6% 

10 60.2% 51.6% 53.6% -8.6% 2.0% 

mixed 35.2% 32.3% 26.7% -2.9% -5.6% 
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Table 83: Differences between parameter estimation methods, SCIP/NRM, FDR = .00 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 2.2% 2.3% 0.2% 0.1% -2.1% 

7 49.2% 44.6% 37.9% -4.6% -6.7% 

10 65.7% 58.2% 58.3% -7.5% 0.1% 

mixed 39.9% 35.7% 30.0% -4.2% -5.7% 

 

Table 84: Differences between parameter estimation methods, CMP/3PL, FDR = .05 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 15.8% 11.1% 8.3% -4.7% -2.8% 

7 48.5% 42.3% 38.2% -6.2% -4.1% 

10 57.8% 47.2% 43.7% -10.6% -3.5% 

mixed 41.1% 35.0% 32.1% -6.1% -2.9% 

 

Table 85: Differences between parameter estimation methods, CMP/NRM, FDR = .05 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 19.8% 9.5% 16.7% -10.3% 7.2% 

7 54.4% 45.8% 49.3% -8.6% 3.5% 

10 64.3% 55.0% 55.6% -9.3% 0.6% 

mixed 47.9% 39.2% 41.2% -8.7% 2.0% 

 

Table 86: Differences between parameter estimation methods, SCIP/3PL, FDR = .05 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 13.5% 18.1% 0.2% 4.6% -17.9% 

7 64.7% 59.7% 60.5% -5.0% 0.8% 

10 74.9% 67.8% 72.1% -7.1% 4.3% 

mixed 56.0% 51.5% 50.6% -4.5% -0.9% 

 

Table 87: Differences between parameter estimation methods, SCIP/NRM, FDR = .05 

Shift 

Length True Estimated Corrected E-T Diff C-E Diff 

3 21.9% 19.6% 1.0% -2.3% -18.6% 

7 70.0% 66.7% 65.8% -3.3% -0.9% 

10 79.6% 75.7% 77.1% -3.9% 1.4% 

mixed 60.7% 57.4% 55.1% -3.3% -2.3% 
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Table 88: Counts and projected total shift errors in empirical data, mixed length shifts 

Simulated 

FDR 
Threshold 

Simulated 

TPR 
Count 

Projected 

Total 

0.05 2.14 57.4% 88 146 

0.25 1.65 67.3% 530 591 

0.5 1.37 75.9% 1554 1024 

0.75 1.01 83.7% 5234 1563 

0.94 0.11 92.3% 29021 1887 
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APPENDIX II 

FIGURES 

 
Figure 1: ROC curve using false discovery rate 

 

 
Figure 2: Misaligned response string, misaligned 1 forward starting at item 7 

 

 
Figure 3: Misaligned response string, misaligned 1 backward starting at item 8 
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Figure 4: ROC Curves, CMP/3PL, all person parameter methods, shift length 3 

 

 
Figure 5: ROC Curves, CMP/NRM, all person parameter methods, shift length 3 
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Figure 6: ROC Curves, SCIP/3PL, all person parameter methods, shift length 3 

 

 
Figure 7: ROC Curves, SCIP/NRM, all person parameter methods, shift length 3 
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Figure 8: ROC Curves, all methods, true person parameters, shift length 3 

 

 
Figure 9: ROC Curves, all methods, estimated person parameters, shift length 3 
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Figure 10: ROC Curves, all methods , bias-corrected person parameters, shift length 3 

 

 
Figure 11: ROC Curves, CMP/3PL, all person parameter methods, shift length 7 
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Figure 12: ROC Curves, CMP/NRM, all person parameter methods, shift length 7 

 

 
Figure 13: ROC Curves, SCIP/3PL, all person parameter methods, shift length 7 
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Figure 14: ROC Curves, SCIP/NRM, all person parameter methods, shift length 7 

 

 
Figure 15: ROC Curves, all methods, true person parameters, shift length 7 
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Figure 16: ROC Curves, all methods, estimated person parameters, shift length 7 

 

 
Figure 17: ROC Curves, all methods , bias-corrected person parameters, shift length 7 
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Figure 18: ROC Curves, CMP/3PL, all person parameter methods, shift length 10 

 

 
Figure 19: ROC Curves, CMP/NRM, all person parameter methods, shift length 10 
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Figure 20: ROC Curves, SCIP/3PL, all person parameter methods, shift length 10 

 

 
Figure 21: ROC Curves, SCIP/NRM, all person parameter methods, shift length 10 
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Figure 22: ROC Curves, all methods, true person parameters, shift length 10 

 

 
Figure 23: ROC Curves, all methods, estimated person parameters, shift length 10 
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Figure 24: ROC Curves, all methods , bias-corrected person parameters, shift length 10 

 

 
Figure 25: ROC Curves, CMP/3PL, all person parameter methods, mixed-length shifts 
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Figure 26: ROC Curves, CMP/NRM, all person parameter methods, mixed-length shifts 

 

 
Figure 27: ROC Curves, SCIP/3PL, all person parameter methods, mixed-length shifts 
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Figure 28: ROC Curves, SCIP/NRM, all person parameter methods, mixed-length shifts 

 

 
Figure 29: ROC Curves, all methods, true person parameters, mixed-length shifts 
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Figure 30: ROC Curves, all methods, estimated person parameters, mixed-length shifts 

 

 
Figure 31: ROC Curves, all methods , bias-corrected person parameters, mixed shifts 
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Figure 32: ROC Curves, CMP/3PL, true person parameters, shift error length 3 

 

 
Figure 33: ROC Curves, CMP/NRM, true person parameters, shift error length 3 
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Figure 34: ROC Curves, SCIP/3PL, true person parameters, shift error length 3 

 

 
Figure 35: ROC Curves, SCIP/NRM, true person parameters, shift error length 3 
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Figure 36: ROC Curves, all methods, true person parameters = -1, shift error length 3 

 

 
Figure 37: ROC Curves, all methods, true person parameters = 0, shift error length 3 
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Figure 38: ROC Curves, all methods , true person parameters = 1, shift error length 3 

 

 
Figure 39: ROC Curves, CMP/3PL, true person parameters, shift error length 7 
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Figure 40: ROC Curves, CMP/NRM, true person parameters, shift error length 7 

 

 
Figure 41: ROC Curves, SCIP/3PL, true person parameters, shift error length 7 
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Figure 42: ROC Curves, SCIP/NRM, true person parameters, shift error length 7 

 

 
Figure 43: ROC Curves, all methods, true person parameters = -1, shift error length 7 
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Figure 44: ROC Curves, all methods, true person parameters = 0, shift error length 7 

 

 
Figure 45: ROC Curves, all methods , true person parameters = 1, shift error length 7 
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Figure 46: ROC Curves, CMP/3PL, true person parameters, shift error length 10 

 

 
Figure 47: ROC Curves, CMP/NRM, true person parameters, shift error length 10 
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Figure 48: ROC Curves, SCIP/3PL, true person parameters, shift error length 10 

 

 
Figure 49: ROC Curves, SCIP/NRM, true person parameters, shift error length 10 
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Figure 50: ROC Curves, all methods, true person parameters = -1, shift error length 10 

 

 
Figure 51: ROC Curves, all methods, true person parameters = 0, shift error length 10 
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Figure 52: ROC Curves, all methods , true person parameters = 1, shift error length 10 

 

 
Figure 53: ROC Curves, CMP/3PL, true person parameters, mixed-length shifts 
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Figure 54: ROC Curves, CMP/NRM, true person parameters, mixed-length shifts 

 

 
Figure 55: ROC Curves, SCIP/3PL, true person parameters, mixed-length shifts 
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Figure 56: ROC Curves, SCIP/NRM, true person parameters, mixed-length shifts 

 

 
Figure 57: ROC Curves, all methods, true person parameters = -1, mixed-length shifts 
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Figure 58: ROC Curves, all methods, true person parameters = 0, mixed-length shifts 

 

 
Figure 59: ROC Curves, all methods , true person parameters = 1, mixed-length shifts 
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Figure 60: ROC Curves, CMP/3PL, estimated person parameters, shift length 3 

 

 
Figure 61: ROC Curves, CMP/NRM, estimated person parameters, shift length 3 
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Figure 62: ROC Curves, SCIP/3PL, estimated person parameters, shift length 3 

 

 
Figure 63: ROC Curves, SCIP/NRM, estimated person parameters, shift length 3 
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Figure 64: ROC Curves, all methods, estimated person parameters = -1, shift length 3 

 

 
Figure 65: ROC Curves, all methods, estimated person parameters = 0, shift length 3 



155 

 

 
Figure 66: ROC Curves, all methods , estimated person parameters = 1, shift length 3 

 

 
Figure 67: ROC Curves, CMP/3PL, estimated person parameters, shift length 7 
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Figure 68: ROC Curves, CMP/NRM, estimated person parameters, shift length 7 

 

 
Figure 69: ROC Curves, SCIP/3PL, estimated person parameters, shift length 7 
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Figure 70: ROC Curves, SCIP/NRM, estimated person parameters, shift length 7 

 

 
Figure 71: ROC Curves, all methods, estimated person parameters = -1, shift length 7 
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Figure 72: ROC Curves, all methods, estimated person parameters = 0, shift length 7 

 

 
Figure 73: ROC Curves, all methods , estimated person parameters = 1, shift length 7 
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Figure 74: ROC Curves, CMP/3PL, estimated person parameters, shift length 10 

 

 
Figure 75: ROC Curves, CMP/NRM, estimated person parameters, shift length 10 
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Figure 76: ROC Curves, SCIP/3PL, estimated person parameters, shift length 10 

 

 
Figure 77: ROC Curves, SCIP/NRM, estimated person parameter levels, shift length 10 
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Figure 78: ROC Curves, all methods, estimated person parameters = -1, shift length 10 

 

 
Figure 79: ROC Curves, all methods, estimated person parameters = 0, shift length 10 
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Figure 80: ROC Curves, all methods , estimated person parameters = 1, shift length 10 

 

 
Figure 81: ROC Curves, CMP/3PL, estimated person parameters, mixed shifts 



163 

 

 
Figure 82: ROC Curves, CMP/NRM, estimated person parameters, mixed shifts 

 

 
Figure 83: ROC Curves, SCIP/3PL, estimated person parameter levels, mixed shifts 
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Figure 84: ROC Curves, SCIP/NRM, estimated person parameters, mixed shifts 

 

 
Figure 85: ROC Curves, all methods, estimated person parameters = -1, mixed shifts 
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Figure 86: ROC Curves for all methods for estimated person parameters = 0, mixed shifts 

 

 
Figure 87: ROC Curves for all methods for estimated person parameters = 1, mixed shifts 
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Figure 88: ROC Curves, CMP/3PL, bias-controlled person parameters, shift length 3 

 

 
Figure 89: ROC Curves, CMP/NRM, bias-controlled person parameters, shift length 3 
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Figure 90: ROC Curves, SCIP/3PL, bias-controlled person parameters, shift length 3 

 

 
Figure 91: ROC Curves, SCIP/NRM, bias-controlled person parameters, shift length 3 
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Figure 92: ROC Curves, all methods, bias-controlled parameters = -1, shift length 3 

 

 
Figure 93: ROC Curves, all methods, bias-controlled person parameters = 0, shift length 3 
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Figure 94: ROC Curves, all methods , bias-controlled person parameters = 1, shift length 3 

 

 
Figure 95: ROC Curves, CMP/3PL, bias-controlled person parameters, shift length 7 
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Figure 96: ROC Curves, CMP/NRM, bias-controlled person parameters, shift length 7 

 

 
Figure 97: ROC Curves, SCIP/3PL, bias-controlled person parameters, shift length 7 
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Figure 98: ROC Curves, SCIP/NRM, bias-controlled person parameters, shift length 7 

 

 
Figure 99: ROC Curves, all methods, bias-controlled parameters = -1, shift length 7 
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Figure 100: ROC Curves, all methods, bias-controlled parameters = 0, shift length 7 

 

 
Figure 101: ROC Curves, all methods, bias-controlled parameters = 1, shift length 7 
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Figure 102: ROC Curves, CMP/3PL, bias-controlled parameters, shift length 10 

 

 
Figure 103: ROC Curves, CMP/NRM ,bias-controlled parameters, shift length 10 
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Figure 104: ROC Curves, SCIP/3PL, bias-controlled parameters, shift length 10 

 

 
Figure 105: ROC Curves, SCIP/NRM, bias-controlled parameters, shift length 10 
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Figure 106: ROC Curves, all methods, bias-controlled parameters = -1, shift length 10 

 

 
Figure 107: ROC Curves, all methods, bias-controlled parameters = 0, shift length 10 
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Figure 108: ROC Curves, all methods, bias-controlled parameters = 1, shift length 10 

 

 
Figure 109: ROC Curves, CMP/3PL, bias-controlled person parameters, mixed shifts 
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Figure 110: ROC Curves, CMP/NRM, bias-controlled person parameters, mixed shifts 

 

 
Figure 111: ROC Curves, SCIP/3PL, bias-controlled person parameters, mixed shifts 
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Figure 112: ROC Curves, SCIP/NRM, bias-controlled person parameters, mixed shifts 

 

 
Figure 113: ROC Curves, all methods, bias-controlled parameters = -1, mixed shifts 
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Figure 114: ROC Curves, all methods, bias-controlled parameters = 0, mixed shifts 

 

 
Figure 115: ROC Curves, all methods, bias-controlled parameters = 1, mixed shifts 
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Figure 116: ROC Curves using H

T
 for all shift error length scenarios 
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