








xviii 

 

 Page 

25. ROC Curves, CMP/3PL, all person parameter methods, mixed-length shifts ....................... 134 

26. ROC Curves, CMP/NRM, all person parameter methods, mixed-length shifts .................... 135 

27. ROC Curves, SCIP/3PL, all person parameter methods, mixed-length shifts ....................... 135 

28. ROC Curves, SCIP/NRM, all person parameter methods, mixed-length shifts .................... 136 

29. ROC Curves, all methods, true person parameters, mixed-length shifts ............................... 136 

30. ROC Curves, all methods, estimated person parameters, mixed-length shifts ...................... 137 

31. ROC Curves, all methods , bias-corrected person parameters, mixed shifts ......................... 137 

32. ROC Curves, CMP/3PL, true person parameters, shift error length 3 ................................... 138 

33. ROC Curves, CMP/NRM, true person parameters, shift error length 3 ................................ 138 

34. ROC Curves, SCIP/3PL, true person parameters, shift error length 3 ................................... 139 

35. ROC Curves, SCIP/NRM, true person parameters, shift error length 3 ................................ 139 

36. ROC Curves, all methods, true person parameters = -1, shift error length 3 ......................... 140 

37. ROC Curves, all methods, true person parameters = 0, shift error length 3 .......................... 140 

38. ROC Curves, all methods , true person parameters = 1, shift error length 3 ......................... 141 

39. ROC Curves, CMP/3PL, true person parameters, shift error length 7 ................................... 141 

40. ROC Curves, CMP/NRM, true person parameters, shift error length 7 ................................ 142 

41. ROC Curves, SCIP/3PL, true person parameters, shift error length 7 ................................... 142 

42. ROC Curves, SCIP/NRM, true person parameters, shift error length 7 ................................ 143 

43. ROC Curves, all methods, true person parameters = -1, shift error length 7 ......................... 143 

44. ROC Curves, all methods, true person parameters = 0, shift error length 7 .......................... 144 

45. ROC Curves, all methods , true person parameters = 1, shift error length 7 ......................... 144 

46. ROC Curves, CMP/3PL, true person parameters, shift error length 10 ................................. 145 

 47. ROC Curves, CMP/NRM, true person parameters, shift error length 10 ............................. 145 

48. ROC Curves, SCIP/3PL, true person parameters, shift error length 10 ................................. 146 

49. ROC Curves, SCIP/NRM, true person parameters, shift error length 10 .............................. 146 



xx 

 

 Page 

75. ROC Curves, CMP/NRM, estimated person parameters, shift length 10 .............................. 159 

76. ROC Curves, SCIP/3PL, estimated person parameters, shift length 10 ................................ 160 

77. ROC Curves, SCIP/NRM, estimated person parameter levels, shift length 10 ..................... 160 

78. ROC Curves, all methods, estimated person parameters = -1, shift length 10....................... 161 

79. ROC Curves, all methods, estimated person parameters = 0, shift length 10 ........................ 161 

80. ROC Curves, all methods , estimated person parameters = 1, shift length 10 ....................... 162 

81. ROC Curves, CMP/3PL, estimated person parameters, mixed shifts .................................... 162 

82. ROC Curves, CMP/NRM, estimated person parameters, mixed shifts ................................. 163 

83. ROC Curves, SCIP/3PL, estimated person parameter levels, mixed shifts ........................... 163 

84. ROC Curves, SCIP/NRM, estimated person parameters, mixed shifts ................................. 164 

85. ROC Curves, all methods, estimated person parameters = -1, mixed shifts .......................... 164 

86. ROC Curves for all methods for estimated person parameters = 0, mixed shifts .................. 165 

87. ROC Curves for all methods for estimated person parameters = 1, mixed shifts .................. 165 

88. ROC Curves, CMP/3PL, bias-controlled person parameters, shift length 3 .......................... 166 

89. ROC Curves, CMP/NRM, bias-controlled person parameters, shift length 3 ....................... 166 

90. ROC Curves, SCIP/3PL, bias-controlled person parameters, shift length 3 .......................... 167 

91. ROC Curves, SCIP/NRM, bias-controlled person parameters, shift length 3 ....................... 167 

92. ROC Curves, all methods, bias-controlled parameters = -1, shift length 3 ........................... 168 

93. ROC Curves, all methods, bias-controlled person parameters = 0, shift length 3 ................. 168 

94. ROC Curves, all methods , bias-controlled person parameters = 1, shift length 3 ................ 169 

95. ROC Curves, CMP/3PL, bias-controlled person parameters, shift length 7 .......................... 169 

96. ROC Curves, CMP/NRM, bias-controlled person parameters, shift length 7 ....................... 170 

97. ROC Curves, SCIP/3PL, bias-controlled person parameters, shift length 7 .......................... 170 

98. ROC Curves, SCIP/NRM, bias-controlled person parameters, shift length 7 ....................... 171 

99. ROC Curves, all methods, bias-controlled parameters = -1, shift length 7 ........................... 171 



3 

 

scores, and could positively impact model fit by allowing for more accurate item parameter and 

ability estimation.  

1.1.1 A Brief Explanation of Shift Error Detection Methods  

Probabilistic shift error detection methods must consist of two general steps: 1) 

calculation of response pattern probabilities for detection of improbable response vectors, and 2) 

evaluation of a proposed alternative response vectors. Skiena and Sumazin (2000a, 2000b, 2004), 

employed these two steps, finding substrings with improbable patterns (i.e., having a 

disproportionate number of incorrect answers given the total number correct) then looking at 

improvements in fit based on shifting those substrings. In a preliminary study trying out the 3PL 

(Cook & Foster, 2012), the steps were reversed, response patterns corresponding to but 

misaligned with the answer key were first detected and the realigned pattern was proposed as the 

alternative vector, then probabilities were calculated that these patterns were not misaligned. With 

Skiena and Sumazin’s methods, the probabilities of both the misalignment and the corrected 

substring play factors in identification of shift errors, whereas Cook and Foster’s is based solely 

on the probability that the response string could have occurred in its place absent a shift error. 

Regardless of the order the steps, the result of the process is a list of shift errors that may be 

evaluated against previously determined acceptable thresholds of error. 

1.1.2 Person Fit Methods vs. Shift Error Detection  

Numerous methods are available for evaluating the fit of a person’s performance on a test 

to the measurement model being used to score that test. These methods, referred to historically as 

appropriateness measurement (Levine & Drasgow, 1983), but more currently as person-fit 

methods (Meijer & Sijtsma, 1995), provide indices based on how well individuals’ response 

patterns fit with expected patterns based on the given test model (Meijer & Sijtsma, 2001). 

Indices have been developed to fit CTT models (e.g., personal point-biserial and biserial, Donlon 

& Fischer, 1968), the Rasch model (e.g., M, Molenaar & Hoijtink, 1990), 2PL and 3PL models 

(e.g., lz, Drasgow, Levine & Williams, 1985), and to CAT models (e.g., T statistics, van 
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Krimpen-Stoop & Meijer, 2000). Meijer & Sijtsma’s 2001 meta-analysis compared 24 different 

person-fit statistics, each applicable to one or more measurement models. Karabatsos (2003) 

tested 36 person-fit statistics and found one (HT, Sijtsma & Meijer, 1992) to greatly outperform 

the others. Drasgow, Levine, and Zickar (1996) proposed statistically optimal methods for 

detection of person-misfit in which probabilities of misfit are dependent on the specific type of 

misfit being looked for. Trabin and Weiss (1983) looked at person response curves, comparing 

expected to observed in order to detect certain types of misfit depending on specific differences 

between the two. None of these were determined to be effective in specifically identifying shift 

error though Drasgow, Levine, and Zickar’s statistically optimal methodology offered a 

framework given an appropriate shift-error misfit model. 

 The shift error detection methods of Skiena and Sumazin (2000a, 2000b, 2004) and those 

proposed herein represent efforts to pinpoint this one specific type of person misfit, developing 

optimal indices that can be compared against error thresholds that produce acceptable levels of 

accuracy while maximizing the detection rate. Unlike a more general person-fit index, which can 

flag misfitting persons for exclusion from test analysis, detection of shift errors has the potential 

to provide more alternatives for dealing with the resultant misfit, including, given adequate 

confidence in the results, correction of the response string. 

1.1.3 How Undetected Shift Errors Threaten Validity  

According to the Standards for Educational and Psychological Testing, “Validity refers to 

the degree to which evidence and theory support the interpretation of test scores entailed by 

proposed uses of tests,” going on to say that “… validation can be viewed as developing a 

scientifically sound validity argument to support the intended interpretation of test scores and 

their relevance to the proposed use” (AERA, APA, & NCME, 1999, p. 9). Kane (2006) suggests 

that this definition is reflective of the principles inherent in the construct-validity model. Unless 

the validity argument suggests that attention to detail or something like it provides important 

evidence in support of proposed test uses, answers arrived at correctly but entered incorrectly 
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introduce variance that is irrelevant to the construct and that undermines said validity argument. 

In the case of the would-be cheater, assuming him or her to be of low ability, the misalignment of 

copied answers may better reflect the examinee’s ability than were they in the correct location, 

but that is not to say that the responses are an accurate reflection of that examinee’s ability or that 

one could make accurate inferences based on the examinee’s score. Further, if detection of the 

shift error leads to accurate detection of cheating behavior, removal of the examinee prior to final 

parameter estimation, scaling and setting of cut scores enhances the validity of all of those steps. 

1.2 Statement of Problem 

Methods for the general detection of aberrant response patterns are well-established to the 

point that the most recent studies on the topic are either meta-analyses of previously developed 

methods (Miejer & Sijtsma, 2001; Karabatsos, 2003) or have focused only on application to new 

testing formats, such as CAT (van Krimpen-Stoop & Meijer, 2000). While numerous person-fit 

methods are demonstrated to effectively identify aberrant test behavior, they offer little to nothing 

in pinpointing its nature. Sources of both spuriously high and spuriously low scores are discussed 

throughout the literature (e.g., Levine & Rubin, 1979, Meijer, 1996) but little research (Trabin & 

Weiss, 1983; Drasgow, Levine & Zickar, 1996) has been done on identification of specific types 

of aberrance. On achievement and aptitude tests, examinees’ scores can be spuriously high by 

copying neighbors’ answers or obtaining correct answers prior to the test somehow. Assuming 

these to be the cause ignores the possibility of the aberrance being due simply to a series of lucky 

guesses. On attitude scales, higher scores can be achieved simply by faking good. Spuriously low 

scores can have several root sources, including poor alignment of curriculum to test content, low 

motivation, unusual interpretation of items, and shift errors. The resultant misclassifications can, 

in the case of spuriously high scores, lead to unqualified candidates being undeservingly selected 

into jobs or academic programs, while spuriously low scores could result in qualified people 

being denied said opportunities. 
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Absent causal explanation, options for action after detection of an aberrant response 

pattern are limited. In the case of spuriously high scores, the choice between accepting the score, 

retesting, or outright penalization/disqualification of the examinee would depend on proof that the 

score was based on some form of cheating behavior. To that end, much research is currently 

being done on cheating detection methods and strategies. One such avenue, an exception to the 

dearth of type-specific person-fit research, is the development of indices for detection of copying 

on tests (e.g., K-Index, Holland, 1996; ω, Wollack, 1997). These look for agreement beyond 

chance between a suspected source and examinees who may have had the opportunity to copy 

from said source.  

 No one is accusing examinees with spuriously low scores of cheating, but appropriate 

action in the face of such scores remains complicated when the cause of the aberrance remains 

unknown. If the cause is due to inferior test-taking strategies, a failure to understand instructions, 

a different source of construct-irrelevant variance (e.g., language affecting scores on math word 

problems), or low motivation, the underlying problem may not go away simply by retesting 

(Drasgow & Guertner, 1987). In the case of shift error, however, retesting (with appropriate 

cautions) is likely to avoid a repeat of spuriously low performance. What’s more, detection of 

shift errors with a high enough level of confidence could result in saving the time and expense of 

retesting altogether, since shift error detection has the capacity to determine not just the presence 

of such an error, but of the exact location and length of said error. In instances where shift errors 

are a byproduct of cheating behavior, shift error detection may provide another means toward 

exposing cheaters and taking appropriate action. 

It might be tempting to minimize the present impact of undetected shift errors due to 

current and future inroads toward computer based testing, but that would be wrong. Firstly, 

educational testing and credentialing exams are taking on more importance than ever with 

educational reform, and much of this will continue to be done with paper and pencil, and mostly 

on the bubble sheets that can result in the shift errors this research attempts to address. Validity of 
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results is critical, and so every effort should be made to reduce the systematic threat to validity 

introduced with shift errors. Secondly, as some of the current educational testing is being done 

with younger children who are much more likely to mismark answer sheets, every effort must be 

made to reduce this threat to validity in the test scores of younger children. Thirdly, new 

statistical indices will be of interest to many testing agencies that may not currently be identifying 

these shift error problems. Finally, shift errors do not only affect those who make them; the 

impact extends to the identification of pass rates, and the estimation of item statistics.  

1.3 Purpose of Study 

Studies into answer-changing behavior on tests (e.g., Holland, 1996; Frary, Tideman & 

Watts, 1977; Wollack, 1997) attribute as much as 16% of answer-changing behavior to clerical 

errors detected and corrected mid-test by the examinee. Skiena and Sumazin (2000a, 2000b, 

2004) claim that about two percent of paper and pencil tests contain undetected shift errors. 

Absent optimal methods for detecting shift errors, this remains a guess. Even if this is a severe 

overestimate, some simple math applied to a large-scale high-stakes testing program like the 

Massachusetts Comprehensive Assessment System (MCAS) can demonstrate the potential impact 

of shift errors. In 2012, 552,549 Massachusetts public school students were tested in 3 subjects 

each (Massachusetts Department of Education, 2012), meaning approximately 1.5 million tests 

were administered that year. If the two percent figure is accurate, that represents 30,000 

examinees with spuriously low scores due to an undetected shift error. Cut the rate to one percent, 

that’s still 15,000 examinees in one state in one year with test scores underrepresenting their 

ability due to shift errors. Whether or not that remains a gross overestimate, we can’t know 

without optimal detection methods. Other paper-and-pencil tests with large stakes attached 

include the SAT, with 3 million examinees yearly, and the ACT, with 1.6 million examinees 

yearly, both of which are used by universities in making admissions decisions. As to the impact 

on the individual examinees, parameter estimates, cut scores and pass rates, that also cannot be 

determined unless the shift errors can be accurately detected. In short, part of the importance of 
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the problem is knowing exactly how important a problem it is. Making this determination has the 

beneficial side effect of simultaneously providing a solution. 

The purpose of this study is to investigate new methods for shift error detection that 

employ IRT models, examining the methods for their selectivity (i.e., true positives vs. false 

positives), sensitivity (i.e., true shift errors detected vs. undetected), and robustness to parameter 

bias, all under a carefully manipulated, multifaceted simulation environment. This investigation 

should provide answers to the following questions, applicable across detection methods, bias 

reduction procedures, shift conditions, and ability levels, but stated generally as: 1) How 

sensitively and selectively can an IRT-based probabilistic model detect shift error across the full 

range of probabilities under specific conditions?, 2) How robust is each detection method to the 

parameter bias introduced by shift error?, 3) How well does the detection method detect shift 

errors compared to other, more general, indices of person-fit?, 4) What is the impact on bias of 

making proposed corrections to detected shift errors?, and 5) To what extent does shift error, as 

detected by the method, occur within an empirical data set? 

What follows is a literature review of issues and sources of aberrant test response 

behavior and methods for its detection, previous research on shift error detection and other 

specific forms of aberrant test response behavior, issues related to the paper-and-pencil test 

format, and a breakdown of the measurement models underlying the probability calculations used 

for detecting shift errors within this study. Following that are an outline of the methods for a 

series of studies with a breakdown of all study conditions, including descriptions of probability 

models, detection algorithms, and employed person-fit statistics, a report of the results from 

performing these studies, and a discussion of the meaning of these findings and their impact on 

future measurement practice and research. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Overview of Literature Review 

This chapter is a review of the literature pertinent to undetected shift error and methods 

for its detection. The chapter will be broken down by topic into the following sections: 

2.2 Aberrant Test Response Behavior and Measures of Person Fit.  

2.3 Issues of Validity and Differential Performance Dependent on Test Format.  

2.4 Probability and Measurement Models.  

2.2 Aberrant Test Response Behavior and Measures of Person Fit 

2.2.1 Aberrant Response Behavior and its Impact on Validity  

On a multiple-choice test, an examinee whose response pattern differs greatly from other 

examinees taking the same test could render that person’s test score an inappropriate measure of 

ability. “Even with the best tests and testing procedures, at least a few anomalies are likely to 

occur in any very large test administration and … an effort should be made to identify the 

resulting defective test scores” (Levine & Rubin, 1979). To that end, a multitude of 

appropriateness measures, called person-fit statistics in modern parlance, have been developed. 

Using the term “appropriateness index”, Levine and Rubin (1979) define a person-fit statistic as: 

… a measure of goodness of fit of a very general psychometric model to the 

individual examinee’s item-by-item pattern of responses. An appropriateness 

index is expected to be high if the examinee’s answer sheet is like that of 

similarly able examinees, and expected to be low if unlike similarly able 

examinees. Like the test score, the examinee's appropriateness score is solely a 

function of the examinee's item responses. Appropriateness indices thus 

summarize the internal evidence in the examinee's answer sheet indicating 

whether he or she approaches the test as do other examinees with the same ability 

(p. 271). 

 

Paraphrasing Smith (1986), Petridou and Williams (2010) describe how person misfit threatens 

validity: 

when examinees take a test their responses are expected to conform to some 

standard of reasonableness: they are expected to generally answer the easier 

items correctly and answer the more difficult ones incorrectly. Patterns that 
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contradict this expectation violate this standard of reasonableness and may be 

regarded as misfitting. Such response patterns, if they are unusual enough, signal 

what we call aberrant performances, which may indicate aberrant examinees. We 

suspect that such aberrance may imply the examinees are mismeasured, thus their 

score may be invalid” (p. 43). 

 

Petridou and Williams (2010) describe at length how person misfit is assumed to threaten 

validity, including a table summarizing quotes about the relationship between person-fit and test 

score validity, reprinted here in Table 1. In particular, according to Wolfe and Smith’s (2007) 

taxonomy of sources of evidence to support validity arguments, person misfit would provide 

evidence for substantive validity, defined as the extent to which theory explains differences in 

item response. Petridou and Williams (2010) investigated whether an aberrant response pattern 

was inherently indicative of mismeasurement and, thus, enough to render a test score invalid for 

its purpose. In a study of 674 individuals taking a 45-item mathematics test, two external sources 

of validity – interviews of 31 examinees and teacher assessments of approximately 400 

examinees – were applied to determine whether unexpected item responses accurately reflected 

examinee knowledge. When either the interview or the teacher assessment agreed with the misfit 

statistic, they concluded this was evidence of mismeasurement and responses were changed. They 

concluded that aberrance as indicated by a fit statistic is often evidence of mismeasurement but 

that it does not automatically imply mismeasurement. As Wright’s (1995) quote suggests, 

aberrance, whether truly indicative of mismeasurement or not, casts doubt on the estimate of a 

person’s ability, and as such, person misfit should be seen as a threat to validity. 

Hendrawan, Glas, and Meijer (2005) examined the effect of person-fit on a specific 

validity issue: classification decisions. With simulated samples of 400 and 1000 taking tests of 30 

and 60 items under various conditions in which ten percent of the sample were either guessing on 

some easy items or gained access to the answer on some difficult items, the effect of these 

misfitting examines on theta estimates using MLE and EAP and resulting classification decisions 

were investigated. They found that the effect of the misfitting examinees on the classification of 



11 

 

the normal examinees was minimal, though precision in classifying aberrant examinees 

approached zero as the aberrance became more extreme. 

2.2.2 Overview of Person-Fit Indices  

The quantity of available person-fit statistics is large, but they are nicely summarized and 

compared in Meijer & Sijtsma (2001) and Karabatsos (2003). For most common measurement 

models, multiple person-fit statistics are available. Meijer and Sijtsma (2001) provide a 

methodological review looking at person-fit statistics based on Classical Test Theory, the Rasch 

Model, and the 2PL and 3PL models, as well as person-fit statistics designed specifically to 

address aberrant behavior in computer adaptive testing. Table 2 is a reprinting of their compiled 

list of person-fit statistics, demonstrating the abundance of available indices and breaking them 

down by underlying model. 

Most group-based person-fit statistics are based on the Guttman (1944, 1950) model, in 

which it is assumed that a correct answer on a given item occurs at the exclusion of incorrect 

answers on any easier items. If items are arranged in order of difficulty, permitted patterns under 

the Guttman model are (1, 0), (0, 0), and (1, 1) where 1 is a correct response and 0 is an incorrect 

response. These are known as Guttman patterns. A response pattern of (0, 1) violates the Guttman 

model and is labeled an “error” or “inversion”. Group-based statistics are all based on weighted 

counts of these inversion patterns and differ only in the weighting scheme applied. Criteria for 

selection of a group-based person-fit statistic are 1) low correlation with the number correct score 

and 2) detection rate (Harnisch & Linn, 1981, Rudner, 1983). An issue with group-based statistics 

is that the distribution of values for most of them and, in turn, the probability of classifying a 

score pattern as misfitting are dependent on the test score distribution (Meijer & Sijtsma, 2001). 

For IRT models, be they one of the dichotomous or polytomous models, person-fit 

statistics take the form of residual-based statistics or likelihood-based statistics. Residual-based 

IRT person-fit statistics can be expressed generally as the sum of weighted differences between 

expected and actual outcomes on the items on a test. This form sets the expectation of a person-fit 
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statistic at 0. Squaring residuals before summation allows them to accumulate rather than risk 

them canceling each other out. Indices available based on mean-squared residuals include U and 

W (Wright & Masters, 1982), and UB and UW (Smith, 1985).  

Likelihood-based person fit statistics are all based on the log-likelihood function  

0

1

{ ln ( ) (1 ) ln[1 ( )]}
k

g g g g

g

l X P X P 


     

applied by Levine & Rubin for assessing person fit, in which k is the number of items, X is the 

response for item g (1 being a correct response, 0 being an incorrect one), and Pg(θ) is the 

probability of a correct response on item g for someone of ability level θ. Because l0 is not 

standardized and has an unknown null distribution, several refinements were to follow, most 

notably lz (Drasgow, Levine & Williams, 1985), which standardized l0 by simply subtracting its 

expected value and dividing the result by the standard deviation, and for the Rasch model, M 

(Molenaar & Hoijtink, 1990), a component of l0 both easy to approximate and known to follow 

the same order as l0 given an item-score pattern X. Group-based (i.e., CTT-based) fit statistics can 

also be used to detect misfitting patterns under an IRT model but may yield different results than 

those based on IRT parameters (Meijer & Sijtsma, 2001). 

 One type of person fit index that has both CTT- and IRT-based incarnations is the caution 

index. The caution index (Harnisch & Linn, 1981) is expressed as: 

*
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where 
iX  is the item score vector for examinee i, 

*

iX is the expected Guttman vector given the 

number correct for examinee i, and n is a vector of correct responses per item across all 

examinees. All caution index-based fit indices weigh item score vectors in terms of their 

agreement with a Guttman pattern in this way. For IRT-based caution indices, the expected 

Guttman vector is replaced by the vector P(θ) for a given ability level θ and IRT model, 

providing a more nuanced but preserved version of the Guttman pattern (Meijer & Sijtsma, 2001). 
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Figure 48: ROC Curves, SCIP/3PL, true person parameters, shift error length 10 

 

 
Figure 49: ROC Curves, SCIP/NRM, true person parameters, shift error length 10 
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Figure 66: ROC Curves, all methods , estimated person parameters = 1, shift length 3 

 

 
Figure 67: ROC Curves, CMP/3PL, estimated person parameters, shift length 7 
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Figure 68: ROC Curves, CMP/NRM, estimated person parameters, shift length 7 

 

 
Figure 69: ROC Curves, SCIP/3PL, estimated person parameters, shift length 7 
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Figure 70: ROC Curves, SCIP/NRM, estimated person parameters, shift length 7 

 

 
Figure 71: ROC Curves, all methods, estimated person parameters = -1, shift length 7 
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Figure 72: ROC Curves, all methods, estimated person parameters = 0, shift length 7 

 

 
Figure 73: ROC Curves, all methods , estimated person parameters = 1, shift length 7 
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Figure 74: ROC Curves, CMP/3PL, estimated person parameters, shift length 10 

 

 
Figure 75: ROC Curves, CMP/NRM, estimated person parameters, shift length 10 
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Figure 76: ROC Curves, SCIP/3PL, estimated person parameters, shift length 10 

 

 
Figure 77: ROC Curves, SCIP/NRM, estimated person parameter levels, shift length 10 
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Figure 78: ROC Curves, all methods, estimated person parameters = -1, shift length 10 

 

 
Figure 79: ROC Curves, all methods, estimated person parameters = 0, shift length 10 
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Figure 80: ROC Curves, all methods , estimated person parameters = 1, shift length 10 

 

 
Figure 81: ROC Curves, CMP/3PL, estimated person parameters, mixed shifts 


