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ABSTRACT 

 

ACCESSING THE BIOAVAILABILITY OF PHYTOCHEMICALS IN CACO-2 CELL 

MODEL AND DEVELOPING A SENSITIVE METHOD FOR THE DETECTION 

AND QUANTIFICATION OF THESE COMPOUNDS 

 

SEPTEMBER 2012 

HANÁ SHATARA SOBERS, B.S., PURDUE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor H. Xiao 

 

Numerous studies have found certain unmethylated phytochemicals to possess 

anti-carcinogenic activity; however, they have been associated with poor oral 

bioavailability which is a major limiting factor in their usage in chemopreventative 

treatment.  The purpose of this study was to investigate if methylation of a compound 

would affect bioavailability, in terms of transport and permeability, in a Caco-2 cell 

model as well as the effect of cell viability and cellular uptake in human colon cancer cell 

lines.  Furthermore, a new analytic method using reversed-phase high performance liquid 

chromatography coupled with electrochemical detector (HPLC-EC) for the detection and 

quantification of resveratrol and pterostilbene was developed.   

This new method was simple, rapid, and more sensitive compared to other 

detection methods used to analyze resveratrol and pterostilbene. Linear range, limit of 

detection (LOD), precision and recovery were used to validate this new analytical 
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method.  There was a significant increase in intracellular uptake and stronger growth 

inhibitory of pterostilbene in human cancer cells lines in comparison to resveratrol. 

Resveratrol exhibited a higher and more rapid rate of transport than pterostilbene across 

the Caco-2 monolayer regardless of the concentration tested and direction.  Pterostilbene 

exhibited little difference in the rate of transport from either direction.  The HCT-116 

colon cells had intracellular uptake of each of the polymethoxyflavones (PMFs) tested.  

Transport was observed by all the PMFs and each had different rates of transport. 

Overall, location and amount of methyl groups had an effect on bioavailablity of a 

compound and these compounds show promise as chemopreventative agents. 

 

Keywords: Resveratrol; Pterostilbene; Polymethoxyflavones (PMF); Caco-2 

cells; Transport; Permeability; Bioavailability; Electrochemical (EC) detection 

  



vii 

TABLE OF CONTENTS 

 Page 

ACKNOWLEDGMENTS ................................................................................................. iv 

ABSTRACT .........................................................................................................................v 

LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES .......................................................................................................... xii 

CHAPTER 

1. INTRODUCTION ...................................................................................................1 

1.1 Cancer ................................................................................................................1 

1.1.1 Statistics ..............................................................................................1 

1.1.2 Definition ............................................................................................1 

1.1.3 Chemoprevention ................................................................................3 

1.2 Phytochemicals ..................................................................................................3 

1.2.1 Methylated vs. Unmethylated .............................................................3 

1.2.2  Polymethoxyflavones .........................................................................4 

1.2.3 Stilbenes ..............................................................................................8 

1.2.3.1  Resveratrol ..........................................................................9 

1.2.3.2 Pterostilbene .......................................................................11 

1.3 Bioavailability ..................................................................................................12 

1.3.1 Overview ...........................................................................................12 

1.3.2 Bioavailability of Compounds of Interest .........................................14 

1.3.4 Caco-2 cell Monolayer Model ..........................................................16 

 

 



viii 

2. RAPID METHOD FOR THE DETERMINATION OF RESVERATROL 

AND PTEROSTILBENE BY REVERSED-PHASE HIGH 

PERFORMANCE LIQUID CHROMATOGRAPHY WITH 

ELECTROCHEMICAL DETECTION .................................................................19 

2.1 Abstract ............................................................................................................19 

2.2 Introduction ......................................................................................................20 

2.3 Materials and Methods .....................................................................................22 

2.3.1 Chemicals and reagents.....................................................................22 

2.3.2 Instrumentation .................................................................................22 

2.3.3 Chromatographic Conditions ............................................................22 

2.3.4 Preparation of standards ....................................................................23 

2.3.5 Analyses of Juice Samples ................................................................23 

2.4 Results and Discussion ....................................................................................24 

2.4.1 Optimization of Chromatographic Conditions..................................24 

2.4.2 Voltametric Behavior of Resveratrol and Pterostilbene ...................25 

2.4.3 Linearity and Range ..........................................................................28 

2.4.4 LOD and LOQ ..................................................................................29 

2.4.5 Accuracy/Recovery Studies ..............................................................29 

2.4.6 Precision ............................................................................................30 

2.4.7 Analysis of resveratrol and pterostilbene in commercial juice 

products ..........................................................................................31 

2.5 Conclusion .......................................................................................................32 

 

3. COMPARISON OF THE CELLULAR UPTAKE AND INHIBITORY 

EFFECTS OF RESVERATROL AND ITS METHYLATED 

ANALOGUE PTEROSTILBENE ON HUMAN COLON CANCER 

CELLS ...................................................................................................................34 

 



ix 

3.1 Abstract ............................................................................................................34 

3.2 Introduction ......................................................................................................35 

3.3 Materials and Methods .....................................................................................36 

3.3.1 Materials ...........................................................................................36 

3.3.2 Cell culture treatment ........................................................................37 

3.3.3 Cell Viability Assay ..........................................................................37 

3.3.4 Cellular Uptake Assay ......................................................................38 

3.3.4.1 Cytosol Faction ..................................................................38 

3.3.4.2 Membrane Fraction ............................................................39 

3.3.5 HPLC analysis ..................................................................................39 

3.3.6 Statistical Analysis ............................................................................40 

3.4 Results & Discussion .......................................................................................41 

3.4.1 Growth inhibition on Caco-2 ............................................................41 

3.4.2 Cellular Uptake of 3 Colon Cancer Cell Lines .................................42 

3.5 Conclusion .......................................................................................................48 

 

4. COMPARISON OF PERMEABILITY AND TRANSPORT OF 

RESVERATROL AND ITS METHYLATED ANALOGUE 

PTEROSTILBENE IN HUMAN INTESTINAL CACO-2 CELLS ......................50 

4.1 Abstract ............................................................................................................50 

4.2 Introduction ......................................................................................................51 

4.3 Materials and Methods .....................................................................................52 

4.3.1 Materials ...........................................................................................52 

4.3.2 Cell Culture - Caco-2 ........................................................................53 

4.3.3 Transport Experiments ......................................................................53 

4.3.4 HPLC analysis ..................................................................................54 



x 

4.3.5 Data Analysis ....................................................................................55 

4.4 Results and Discussion ....................................................................................56 

4.4.1 Overall...............................................................................................56 

4.4.2 Resveratrol ........................................................................................62 

4.4.3 Pterostilbene ......................................................................................63 

4.5 Conclusion .......................................................................................................63 

 

5. COMPARISON OF THE CELLULAR UPTAKE, PERMEABILITY 

AND TRANSPORT OF POLYMETHOXYFLAVONES (PMFS) ......................66 

5.1 Abstract ............................................................................................................66 

5.2 Introduction ......................................................................................................67 

5.3 Materials and Methods .....................................................................................68 

5.3.1 Materials and Reagents .....................................................................68 

5.3.2 Cell Culture Treatment .....................................................................69 

5.3.4 Cellular Uptake Assay ......................................................................69 

5.3.5 Transport Experiments ......................................................................70 

5.3.6 Sample Analysis................................................................................70 

5.3.7 Data Analysis ....................................................................................71 

5.4 Results & Discussion .......................................................................................72 

5.4.1 Cellular Uptake of PMFs in HCT-116 cancer cells ..........................72 

5.4.2 Transport of PMFs by Caco-2 cells ..................................................75 

5.5 Conclusion .......................................................................................................77 

 

6. FUTURE RESEACH .............................................................................................80 

 

BIBLIOGRAPHY ..............................................................................................................82 



xi 

 

LIST OF TABLES 

Table Page 

Table 1.1 PMFs used in the different experiments ..............................................................7 

Table 2.1 Voltametric behavior of resveratrol and pterostilbene. .....................................28 

Table 2.2 Linearity, LOD, and LOQ for resveratrol and pterostilbene. ............................28 

Table 2.3 Accuracy/Recovery data of resveratrol and pterostilbene standards. ................30 

Table 2.4 Precision data of resveratrol and pterostilbene standards. .................................31 

Table 2.5 Amount of resveratrol and pterostilbene in different juice products. ................32 

Table 4.1 Apparent permeability coefficients or different concentrations of 

resveratrol and pterostilbene through Caco-2 monolayers ..............................62 

Table 5.1 Apparent permeability coefficients of the  PMFs through Caco-2cell 

monolayers. ......................................................................................................77 

 

 

  



xii 

LIST OF FIGURES 

Figure Page 

1.1 Cancer arises from a loss of normal growth control ......................................................2 

1.2 Chemical structure of (a) resveratrol and (b) pterostilbene. ..........................................9 

1.3 Overview of Bioavailability and ADME. ....................................................................13 

1.4 Determinants of oral bioavailability and a decision-tree to assess their role ...............14 

1.5 Diagram of the Caco-2 cell monolayer cultivated on a permeable filter support ........16 

1.6 Possible compound transport pathways across the intestinal mucosa, 

illustrating (1) transcellular and (2) paracellular modes of passive 

transport, (3) transcytosis, (4) carrier-mediated transport and (5) efflux 

transport. ..........................................................................................................17 

 

2.1 Representative chromatograms of resveratrol and pterostilbene at different 

potentials. .........................................................................................................25 

 

2.2 The effect of electrochemical cell potential on the peak area (µC) for (a) 

resveratrol and (b) pterostilbene. .....................................................................27 

 

3.1 Growth inhibitory effect of resveratrol and pterostilbene on CaCo-2 human 

colon adenocarcinoma cells.. ...........................................................................42 

 

3.2 Cellular uptake of resveratrol and pterostilbene in the cytosol of (a)Caco-2, 

(b)HT-29, and (c)HCT-116 human colon cancer cell lines. Colon 

cancer cells were incubated with 10μM of (d) resveratrol or (e) 

pterostilbene in complete medium for various time periods ............................46 

 

3.3 Cellular uptake ratio of pterostilbene to resveratrol in the cytosol of Caco-2, 

HT-29, and HCT-116 human colon cell lines. The cells were incubated 

with 10μM resveratrol or pterostilbene in complete medium for (a) 0.5, 

(b) 1 and (c) 2 hour ..........................................................................................47 

4.1The transport from the apical to the basolateral compartment of (a) resveratrol 

and (b) pterostilbene across the Caco-2 monolayer .........................................58 

 



xiii 

4.2 The transport from the basolateral to the apical compartment of (a) resveratrol 

and (b) pterostilbene across the Caco-2 monolayer .........................................59 

 

4.3 Cumulative fraction transport from the apical to the basolateral compartment 

of (a) resveratrol and (b)pterostilbene across the Caco-2 monolayer. .............60 

 

4.4 Cumulative fraction transport from the basolateral to the apical compartment 

of  (a) resveratrol and (b) pterostilbene across the Caco-2 monolayer.. ..........61 

 

5.1 Percentage of cellular uptake in HCT-116 human colon cancer cells of PMF4, 

5 and 7 from the PMF mixture in comparison to uptake of PMF3 from 

the same mixture ..............................................................................................74 

 

5.2 Cumulative fraction transported from the apical to the basolateral 

compartment for PMF3, PMF4 and PMF7across the Caco-2 cell 

monolayer.. ......................................................................................................76 

 

  



1 

CHAPTER 1 

INTRODUCTION 

1.1 Cancer 

1.1.1 Statistics 

According to the World Health Organization (WHO), cancer accounts for more 

deaths worldwide than HIV/AIDs, malaria, and tuberculosis combined and will soon 

surpass heart disease and stroke as the most prevailing cause of death globally (WHO, 

2011).  In the United States, one in every four deaths is due to cancer exceeded only by 

heart disease. It is estimated that almost 1.65 million new cases of cancer will be 

diagnosed this year alone in the United States.    

 The probability of an American male developing cancer over his lifetime is a one 

in two while for woman it is a one in three likelihood. In the United States, the most 

common cancer in men is prostate and for women, it is breast cancer; lung and colorectal 

cancers are the second and third most common cancers in both men and women 

(American Cancer Society, 2011).  These staggering statistics has sparked a surge in 

cancer research.   

1.1.2 Definition 

Cancer arises from the transformation of a normal cell into an abnormal cell that 

divides without control. In general, this is a multistage process that advances from a pre-

cancerous lesion to malignant tumors. Cancer cells can invade and spread to other parts 

of the body through the blood stream and lymph system. Even though cancer can develop 
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in nearly any tissue of the body, each type of cancer has its distinctive features yet the 

fundamental processes that generate cancer are similar in all forms of the disease. A 

majority of all colon cells are adenocarcinomas, which produce and release mucus and 

other fluids (Ruoslahti, 1996; Weinberg, 1996).  Using natural occurring compounds has 

materialized as a plausible approach for cancer management and prevention (Francy-

Guilford and Pezzuto, 2008; Khan et al., 2008; Surh, 2003; Syed et al., 2007).  

 

 

 Figure 1.1 Cancer arises from a loss of normal growth control (National Cancer 

Institute, 2012) 
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1.1.3 Chemoprevention  

Chemoprevention can be defined as managing cancer by which the disease can be 

prevented,  hindered or reversed via administration of one or more compounds of natural 

and/or synthetic origin (Siddiqui et al., 2008; Sporn and Suh, 2002; Surh, 2003).  

Numerous epidemiological studies have linked fruit and vegetable consumption with a 

reduced risk of cancer (Aggarwal and Shishodia, 2006; Center et al., 2009; Gusman et al., 

2001; McCullough et al, 2011).  Multiple phytochemicals have been identified as 

potential cancer fighting agents and subsequently, resulted in an explosion in the 

supplement market selling these compounds to prevent cancer.  

There are different ways to approach the use of phytochemicals as 

chemopreventive agents.  One method would be to incorporate foods rich with that 

compound into ones diet.  A whole food approach exist all ready for other disease and 

aliments such as the use of soy base foods to reduce osteoporosis and cardiovascular 

disease (Karp et al., 2007; Scheiber et al., 2001).  Another approach would be to put the 

phytochemical in a tablet or a power.  Overall chemoprevention can be an easier and 

cheap strategy to manage cancer in comparison to the more traditional methods (Eg. 

Chemotherapy, Organ Removal).  

1.2 Phytochemicals 

1.2.1 Methylated vs. Unmethylated 

A phytochemical can be defined as any chemical that is produced naturally by a 

plant.  Many phytochemicals, in particular flavonoids and stilbenes, are plant metabolites 
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deriving from the phenlypropadnoid metabolism and shikimate pathways with a small 

number of exceptions (Stafford, 1990; Watts et al., 2006).  Unmethylated phytochemicals 

have been studied most extensively (Pan and Ho, 2008; Walle et al., 2007).   

Even though unmethylated phytochemicals have the potential to be great 

candidates as chemoprevention agents, they have been associated with poor oral 

bioavailability, which is a major limiting factor in their potency and usage as an additive 

in food products.  These compounds have low bioavailability because of the free 

hydroxyl groups which gives rise to rapid intestinal/hepatic conjugation and/or sulfation 

and excretion (Wen and Walle, 2006).  The methylation of the free hydroxyl group(s) on 

compound leads to a reduction in susceptible to glucuronic acid or sulfate conjugation, 

resulting in improved metabolic stability (Walle, 2007). There is also an improved 

transport through biological membranes (like intestinal absorption) and an increase in 

oral bioavailability because of methylation (Walle, 2007; Wilson et al., 2008).  Walle and 

others (2007) have observed an increase in effectiveness by methylated compounds to 

inhibit cancer cell growth.  Despite being present in nature and their great potential in 

cancer prevention, they lack the anti-oxidant effects that are usually linked with free 

hydroxyl groups. 

1.2.2  Polymethoxyflavones 

Polymethoxyflavones (PMFs) refer to a distinctive class of flavonoinds 

containing two or more methoxy groups on benzo-γ-pyrone skeleton (C6-C3-C6) with a 

carbonyl group at the C4 position. In nature, PMFs are present exclusively in the citrus 

genus, particularly in the peel of mandarin oranges (Citrus reticulata) and sweet oranges 

(Citrus sinensis).  Cultivation of citrus is thought to have begun around 4,000 years ago 



5 

in Southeast Asia and moved gradually west to Northern Africa, the Mediterranean, and 

then to southern Europe by the Middle Ages (Bruening et al., 2010). In traditional 

Chinese medicine, they have used citrus peel to treat and alleviate a wide range of 

aliments like respiratory infections, indigestion and ringworm infections (Ou, 1999).  

More than 20 PMFs have been isolated and identified from different tissues of citrus 

plants (Li et al., 2006).  (See Table 1.1 for a complete list of all the PMFs that were 

utilized in this thesis).   

The projected forecast for 2012, as of July 2012, on the global production of 

oranges is 51.1 million metric tons (MMT) and 22.6 MMT for tangerine/mandarin.  In 

the United States, the predicted quantity is 8.1 MMT for productions of oranges and 

slightly more than 0.5 MMT for tangerine/mandarin.  Most of the tangerine/mandarin 

produced are expected to be entirely consumed leaving only about 6% for processing.  Of 

the oranges grown worldwide, an estimated 28.5 MMT will be consumed leaving the 

remaindering amount for processing, which is expected to be approximately 22.2 MMT.  

An anticipated 2.2MMT of orange juice will be produced worldwide which will yield a 

considerable amount of orange peel by-product that could potentially be used for medical 

purposes (USDA: Foreign Agricultural Service, 2012).   

PMFs have been shown to exhibit an expansive range of biological activities, 

including anti-atherogenic (Whitman et al., 2005), anti-inflammatory (Chen et al., 2007; 

Choi et al., 2007; Manthey et al, 2001; Middleton et al., 2000) and anti-oxidant (Li et al., 

2007a).  PMFs have recently received a lot of attention because they have been shown to 

have greater anti-carcinogenic activity than other flavones (Li et al., 2007a; Xiao et al., 

2009).   
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Tangeretin, one of the most copious PMFs in citrus peels, has widely been 

accepted has having excellent anti- carcinogenic activity (Chen et al., 2007; Morley et al., 

2007).  Sergeev and his colleagues (2006) demonstrated that both PMF3 and PMF4 

induce apoptosis by raising the amount of intracellular Ca
2+ 

resulting from the depletion 

of the Ca
2+ 

endoplasmic reticulum and infux of Ca
2+ 

from the extracellular space in 

human breast cancer cell.  Pan et al. (2007) observed induced growth inhibition of human 

cancer cells by PMF4 as well as induction of apoptosis in human promyelocytic leukemia 

cells through modulation of mitochondrial functions by PMF4.  There has however been 

a lag in the investigation on the bioavailability of PMFs.  
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Table 1.1 PMFs used in the different experiments 

Abbreviation Structure Name 
Molecular 

Formula 

Molecular 

Mass 

(g/mol) 

Tan 

(Tangeretin) 

 5,6,7,8, 4’ – 

penamethoxyflavone 

C20H20O7 372 

PMF1 

(Nobiletin) 

 

5,6,7,8, 3’,4’ – 

hexamethoxyflavone  

C20H19O8 402 

PMF2 

 

3,5,6,7,8, 3’,4’ – 

heptamethoxyflavone 

C22H24O9 432 

PMF3 

 

5 – hydroxyl – 

6,7,8,3’,4’ – 

pentamethoxyflavone 

C20H20O8 388 

PMF4 

 

5 – hydroxyl – 

3,6,7,8,3’,4’ – 

hexamethoxyflavone 

C21H22O9 418 

PMF5 

 

5 – hydroxyl – 6,7,4’ 

– trimethoxyflavone 

C15H13O6 328 

PMF6 

 

5-hydroxyl - 

3,6,7,3’,4’ – 

pentamethoxyflavone 

C20H19O8 388 

PMF7 

 
 

5- hydroxyl-6,7,8,4’ 

–tetramethoxyflavone 

C19H16O7 358 
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1.2.3 Stilbenes 

The word stilbene was derived from the Greek word stilbos, which means shining 

(Likhtenshtein, 2010).  Stilbenes are small molecular weight compounds (between 200 to 

300 g/mol) produced in response to excessive ultraviolet exposure; microbial, fungal or 

viral attack; or injury (Fauconneau et al., 1997). They are created by means of the 

phenylpropanoid pathway, using phenylalanine ammonia lyase, cinnamate-4-

hydroxylase, stilbene synthase and 4-Coumarate-CoA ligase. The core chemical structure 

of stilbene compounds is 1,2-diphenylethylene (Watts et al., 2006).  They are found in a 

wide range of plants and fruits, including Vitis and Vaccinium berries (Rimando et al., 

2004.)  Stilbenes have been shown to possess a wide range of biological activities such as 

anti-inflammation (Garodia et al., 2007; Juan et al., 2008; Ndiaye et al., 2011) and anti-

carcinogenic (Chillemi et al., 2007; Rimano and Suh, 2008).  
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 Figure 1.2 Chemical structure of (a) resveratrol and (b) pterostilbene. 

1.2.3.1  Resveratrol 

Resveratrol (3,4’,5-trihydroxy-trans-stilbene) (Figure 1.2B) is the most 

extensively investigated stilbene.  They can be found in foods like berries, grapes and 

peanuts (Rimando et al., 2004).  There has been a long held notation that resveratrol from 

red wine is responsible for “French Paradox”.   It was back in the 1819 when an Irish 

doctor, Samuel Black, first noticed that the French ate a lot of fatty foods yet stayed 

healthy. This epidemiological phenomenon is that the French population has a drastically 

lower incidence of cardiovascular disease than other developed countries despite having a 

diet high in saturated fats.  The French drink a lot of red wine, which resveratrol is a 

major component (Kopp, 1998; Vidavalur et al., 2006).   Numerous studies have shown 

that resveratrol has the ability to block human platelet aggregation and eicosaoid 

B

) 

A

) 

A) 

B) 
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snythesies, which may lower the chances of one developing cardiovascular disease 

(Bertelli et al., 1995; Pace-Asciak et al., 1995; Yoshiyuki et al., 1985).   

Each year, hundreds of studies are published on the therapeutic activities of 

resveratrol ranging from an anti-oxidant (Bhat and Pezzuto, 2002; Chanvitayapongs, et 

al. 1997) to anti-tumoural (Bishayee, 2009; Jang et al. 1997).  It has also been shown to 

be a powerful anti-carcinogenic agent because of its low toxicity and capability of 

modulating numerous molecular pathways involved in cancer progression (Athar et al., 

2009).  These pathways play a key role in anti-apoptosis, angiogenesis, cell cycle 

progression and tumor invasion.  In a mouse study executed by Cui et al. (2010), they 

reported significant reduction in the incidence and multiplicity of tumors when mice were 

feed resveratrol.  They demonstrated that resveratrol can abate colitis; therefore, decrease 

the potentially for colon cancer associated with colitis.  In ovarian cancer cells, 

resveratrol has been shown to cause apoptois, cell cycle arrest and detachment (Raj et al., 

2008).  Jang et al. (1997) demonstrated the capability of resveratrol to block the 

development of skin cancer at initiation, promotion and progression stages.  Resveratrol 

has also been showed to suppressing cancer progression in other cancers like breast, 

gastrointestinal tract, lung and prostate (Bishayee, 2009).  

Despite all the accolades resveratrol has received as a cancer chemopreventive 

agent, it has a low systemic bioavailability due to it metabolizing rapidly once it is 

ingested (Asensi et al., 2002; Delmas et al., 2011; Walle, 2011), which may lessen its 

efficacy in humans. Therefore, there has been great effort to consider resveratrol 

derivatives, which may have better bioavailability profiles. 
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1.2.3.2 Pterostilbene 

Pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene) (Figure 1.2A), a naturally 

dimethylether analogue of resveratrol, has recently gained a upsurge of interest because it 

has been shown to have similar biological activities as resveratrol (Rimando et al., 2002). 

It has been proven to be as effective as resveratrol in successfully inhibiting the 

carcinogensesis in mice epidermis.  They were both also able to decreased the expression 

and activity of COX-2 and inducible nitric oxide synthase (iNOS) (Cichocki, 2008).   

In an in vitro study done on human gastric carcinoma cells, pterostilbene caused 

cell cycle arrest and induced apoptosis (Pan et al., 2007).  Pterostilbene was capable of 

suppressing aberrant crypt foci  (ACF) formation, which occurs prior to colorectal 

polyps.  ACF is one of the earliest transformation observed in the colon that might lead to 

cancer (Suh et al., 2007).  Other studies have shown pterostilbene has the potential to 

prevention and treatment of other cancers like breast, liver and lung (Alosi et al., 2010; 

Pan et al., 2009; Schneider et al., 2010).  In a side-by-side comparison of the effects of 

resveratrol and pterostilbene on human colon cancer, pterostilbene had stronger 

apoptosis-inducting effect and was more potent in inhibiting colony formation than 

resveratrol (Nutakul et al., 2011).  Methlyation may play a part in why there are these 

stark differences.  From all the research thus far, pterostilbene is an appealing candidate 

for cancer prevention and treatment.  
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1.3 Bioavailability  

1.3.1 Overview 

The bioavailability is an overall result of absorption, distribution, metabolism and 

excretion (ADME).    

 Absorption describes a compound’s capability to pass into the systemic 

circulation following oral administration.  

 Distribution explains how well a compound reaches the target tissue.   

 Metabolism is the rate that a nutrient/compound is eliminated from the 

systemic circulation, following its initial absorption.   

 Excretion is the rate that a compound is excreted from the systemic 

circulation and ultimately the body.   

Figure 1.3 provides a graphic depiction of the bioavailability/ADME process.  

Thus, bioavailability is determined by the combination of the rates of all these factors. 

The bioavailability of a compound can therefore be defined as the amount of 

nutrient/compound that reaches the blood circulation system and ultimately the target 

tissue.  Therefore, only the unbound fraction of a compound will reach the target tissue to 

be able to interact with the molecular target (Balani et al., 2005; Van de Waterbeemd et 

al., 2003).   

Since oral administration is a widely employed method for the delivery of drugs 

and foods, the effectiveness of a compound is dependent on their intestinal absorption to 

get into systemic circulation to subsequently reach the intented tissue.  The intestinal 



13 

epithelium is a key determinant for the oral absorption of ingested pharmaceuticals, food 

ingredients and toxins (Tong and Wen, 2008). 

 

 

  Figure 1.3 Overview of Bioavailability and ADME (Bourne, 2010). 

 

Usually the first sets of experiments executed to understand the bioavailability of 

a compound are absorption studies (Figure 1.4.).  Permeability measures the ability and 

velocity of a compound to cross through the intestinal membranes into the blood 

circulation system. Permeability denotes the overall effects of influx and efflux in the 

body.   Intestine like cells such as Caco-2 cells can be used to predict permeability. 
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 Figure 1.4 Determinants of oral bioavailability and a decision-tree to assess their 

role (Borchardt, 2006 ). 

 

1.3.2 Bioavailability of Compounds of Interest 

There have been a scarce number of investigations on the bioavailability of PMFs.  

There have been more studies done on the solubility of PMFs which is a key factor when 

accessing the absorption and bioavailability of PMFs but it alone doesn’t provide a 

complete picture on overall bioavailability. When Murakami and his colleagues (2001) 

conducted an in vitro study using Caco-2 cell monolayer to evaluate the absorption of 

PMF1 and luteolin (unmethlyated PMF), more PMF1 was transported to the basolateral 

compartment than luteolin after 4 hours. Also, PMF 1 accumulated in the Caco-2 cell 

monolayer while luteolin did not.  They concluding PMF 1 had higher permeability.  

An in vivo study was also carried out on the same two compounds by Murakami 

et al. (2002).  Each compound was given independently by gastirc intubation to male rats 

SD and after 1, 4 and 24 hours of administration, the concentrations were calculated. 
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There results revealed that during the 1 to 4 hour periods, PMF1 was detected in stomach, 

small and large intestines, kidney and liver; in contrast, luteolin was predominantly 

detected in the gastrointestinal tract of the rats during 1 to 4 hour period following a 

single dose administration. Also, PMF 1 tended to be localized in the mucous membrane 

and muscularis at 1 and 4 hours time marks. Overall, PMF 1 had a wider distribution and 

accumulation in tissues. 

Numerous in vitro and in vivo studies on absorption, transport and bioavailability 

have been done on resveratrol but not significant amounts have been conducted on 

pterostilbene.  Kapetanvico et al. (2011) demonstrated that when pterostilbene and 

resveratrol were administered orally to rats, pterostilbene and resveratrol were 

approximately 80% and 20% bioavailable, respectively.  Pterostilbene had greater 

bioavailability and total plasma levels of both parent compound and metabolites than 

resveratrol.  These differences are a hint that the in vivo biological activity of 

pterostilbene might be greater than that of resveratrol.  Also, suggesting that methlyation 

may affect bioavailability.   

Walle and his colleagues at Medical University of South Carolina have conducted 

a number of studies comparing bioavailability of unmethyalted and methylated 

flavoniods.  In one study, they showed a 5 to 8 fold higher rate of intestinal permeability 

by methylated flavonoids compared to their corresponding umethlyated counterpart 

(Walle et al., 2006). In another study, again they demonstrated methylated compound had 

better absorption and high oral bioavailability as well as tissue accumulation in vivo in 

the rats (Walle et al., 2006). 
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1.3.4 Caco-2 cell Monolayer Model 

Caco-2 cell monolayers have been extensively used for years as a tool to test 

permeability, assess the oral absorption potential and study the absorption mechanism of 

compounds (Gan et al., 1993). Caco-2 cells originate from human colonic 

adenocarcinoma cell lines.  Typically after 21 days of growth, the Caco-2 cells 

differentiate into a monolayer with micro villus structures and many other biochemical 

and functional characteristics of small intestinal villus epithelium.  The cells form tight 

junctions, express many brush border enzymes, some CYP isosnzymes, and phase II 

enzymes (such as glucuronidase, glutathione-S-transferases and sulfotranserase) 

(Hubatsch et al., 2007; Lind et al., 2007). 

 

 

Figure 1.5 Diagram of the Caco-2 cell monolayer cultivated on a permeable filter 

support.  Test compound is place on the apical or basolateral compartments. (Hubatch et 

al., 2007). 
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In the transport/permeability experiments, Caco-2 cells are cultivated on 

permeable filters in which they represent the intestinal environment in that lumen is 

separated from the bloodstream by the intestinal epithelial monolayer (Figure 1.5). Trans-

epithelial passage of molecules from the apical to the basolateral side of the monolayer 

can be easily measured in different experimental conditions, thus allowing discriminating 

factors involved in transport mechanisms.  To better mimic what is happening in the 

body, different pH solutions can be used in each compartment. A pH of 6.5 can be used 

in apical compartment to represent the pH of the upper small intestine under fasted 

conditions while a pH of 7.4 can be used in the basolateral compartment to replicate the 

pH of blood in the body (Deferme et al., 2008; Fallingborg, 1989; Lind et al. 2007).  

 

 

 

Figure 1.6 Possible compound transport pathways across the intestinal mucosa, 

illustrating (1) transcellular and (2) paracellular modes of passive transport, (3) 

transcytosis, (4) carrier-mediated transport, and (5) efflux transport. A combination of 

these routes often defines the overall transepithelial transport rate of nutrients and drug 

(Deferme et al., 2008). 
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Caco-2 cell monolayer expermients provide valuable information regarding (i) 

intestinal permeability, (ii) transport mechanisms - paracellular, transcellar or active 

carrier (Figure 1.6), (iii) role of intestinal metabolism and (iv) influence of p-glycoproetin 

efflux system.  There are potentially three datasets that can be obtained from the Caco-2 

cell experiments and they are the following:   

 The apparent permeability (Papp) from apical compartment to the 

basolateral compartment represents the overall effect of transportation 

carried out by both absorptive transporters and secrectory transporters.  

 The apparent permeability (Papp) from basolateral compartment to apical 

compartment measures the effects of secretory transporters only.    

 The ratio of Papp from basolateral compartment to apical compartment 

over the Papp from apical compartment to the basolateral compartment 

evaulates efflux.  If the ratio is greater than 3, then there is a greater 

possible of efflux will occur.  This means a compound is being pumped 

out too quickly from the blood circulation system, which will have an 

effect on the amount of compound in the sytemtic circulation and thus 

affect the absorption and bioavailability of the compound.    

Therefore, Caco-2 cell model experiments offer vital insight in the prelimianry 

phase of compound discovery on intestinal permeability, transport, absorption through 

membrances and overall potential bioavailiablity (Walle et al., 2003) .  
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CHAPTER 2 

RAPID METHOD FOR THE DETERMINATION OF RESVERATROL AND 

PTEROSTILBENE BY REVERSED-PHASE HIGH PERFORMANCE LIQUID 

CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION 

2.1 Abstract 

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) and pterostilbene (trans-3,5-

dimethoxy-4’-hydroxystilbene) both belong to the stilbene family.  They have an array of 

pharmacological properties from anti-atherosclerosis to anti-carcinogenic.  The aim of 

this study was to develop a simple, rapid and highly sensitive method using reversed-

phase high performance liquid chromatography (HPLC) equipped with an 

electrochemical (EC) detector for the quantification of resveratrol and pterostilbene.  The 

developed analytical method was fully validated in terms of accuracy, linearity and 

precision.  The recovery rates were between 96.59% and 109.01%.  Both calibration 

curves showed excellent linearity with correlation coefficient (r
2
) greater than 0.999.  The 

limit of detection (LOD) values was lower than those obtained by other detectors 

published in the literature.  The precision for the retention times and peak areas were both 

below 9%.  The method was applied to quantify resveratrol and pterostilbene from 

commercial juice products.  The proposed method could be useful for prospective 

nutritional, pharmacological and toxicological research on resveratrol and pterostilbene.   

 

Keywords:  Resveratrol; Pterostilbene; Stilbene; High performance liquid 

chromatography (HPLC); Electrochemical detection (EC)  



20 

2.2 Introduction 

Stilbenes, a small family of polyphenolic compounds, have received increased 

attention over the past decade due to their array of pharmacological properties, including 

anti-atherosclerosis (Ko et al., 1999; Luo et al., 2008, Pace-Asciak et al., 1995) and anti-

carcinogenic activity in various biological systems (Namasivayam, 2011; Paul et al., 

2010; Rimano and Suh, 2008).  Of all the stilbenes, resveratrol (3,5,4’-trihydroxy-trans-

stilbene) has been most extensively investigated for its potential health benefits to 

humans such being anti-oxidant (Gescher, 2008; Rimando and Suh, 2008).  Despite all 

the accolades resveratrol has received, it has low systemic bioavailability (Asensi et al., 

2002; Delmas et al., 2011; Walle, 2011), which may lower its efficacy in humans; 

therefore, has lead researchers to investigate resveratrol derivatives.   

Pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene), a dimethylether analogue 

of resveratrol, has been shown to have anti-carcinogenic (Paul et al., 2010; Tolomeo et 

al., 2005), anti-diabetic (Amarnath and Pari, 2006; Pari and Satheesh, 2006; Szkudelski 

and Szkudelska, 2011) and anti-inflammatory activity (Remsberg et al., 2007).  In some 

cases, it possesses stronger inhibitory activity (Billack et al., 2008; Huang et al., 2007; 

Paul et al, 2010;) and overall better pharmacokinetic characteristics than resveratrol (Lin 

et al., 2009). 

Numerous analytical techniques have been proposed for the separation, 

identification, and determination of stilbenes.  Researchers overall prefer the employment 

of high performance liquid chromatographs (HPLC) for qualitative and quantitative 

measurements of resveratrol and pterostilbene (Buiarelli et al., 2006; Gocan, 2009; 

Kolouchová-Hanzlíková et al., 2004; Rodríguez-Bernaldo de Quiró et al. 2007).  When 

http://www.refworks.com.silk.library.umass.edu/Refworks/~0~
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compared to other systems, HPLC has higher resolution, columns that can be used again 

without regeneration or repacking and quicker cycle times.  Furthermore, the mobile 

phase of these systems can be varied during the analysis producing a gradient elution.   

HPLC coupled with UV detector is the most prevalently used for quantification of 

stilbenes (Dong, 2005; Lin et al., 2009); however, HPLC coupled with mass spectrometry 

(MS) and fluorescence (FL) detectors are also commonly used (Buiarelli et al., 2006, 

Remsberg et al., 2007) for detection of stilbens.   

Because of its high selectivity and excellent sensitivity, HPLC with 

electrochemical (EC) detector has become more popular in the determination of stilbenes 

in complex matrices (Jandera et al., 2005; Benova et al., 2008). EC detector does not 

exploit a physical property of an analyte, like UV and fluorescence detectors, but induce 

a chemical change that results from an electrochemical reaction.  EC has the ability to 

detect resveratrol in the low pg range (Gocan, 2009).  However, in the literature, there are 

few validated analytical methods, if any, for the determination of pterostilbene with 

HPLC-EC using a multichannel arrary.   

In this study, a validated HPLC method with multi-channel EC detection was 

developed for the quantitative analysis of resveratrol and pterostilbene. The capability of 

the HPLC system was evaluated with the following factors: peak shape, linearity, 

detection limits, accuracy, recovery and precision.  Potentials of electrodes and mobile 

phase were also evaluated to see how they can aid in optimizing the analytical conditions.   
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2.3 Materials and Methods 

2.3.1 Chemicals and reagents   

All organic solvents utilized, acetonitrile (ACN), methanol (MeOH), 

tetrahydrofucan (THF), trifluoroacetic acid (TFA) were of HPLC grade and purchased 

from Fisher Scientific (Fairlawn, NJ, USA).   Ammonium Acetate (99%) was purchased 

from EMD Chemicals Inc. (Gibbstwon, NJ, USA). Highly purified trans-resveratrol 

(99%) and pterostilbene(98%) were obtained from Quality Phyochemical LLC (NJ, 

USA). 

2.3.2 Instrumentation 

The CoulArray® HPLC system was obtained from ESA (Chelmsford, MA, USA) 

and equipped with a binary solvent delivery system (model  584), an auto-sampler (model 

542), a CoulArray® Multi-Channel EC detector (model 6210 - two cells, each cell 

contains four channels), and a UV detector.  Data collection, processing and instrument 

control were achieved using the CoulArray 3.06 software.  

2.3.3 Chromatographic Conditions 

Ascentis RP-Amide reversed-phase HPLC column (15 cm x 4.6 mm id, 3 µm) 

from Sigma-Aldrich (St. Louis, MO, USA) was used to analyze compounds.  The mobile 

phase consisted of 50% water, 40% ACN, 10% THF and 50mM ammonium acetate.   

The pH of the mobile phase was adjusted with TFA to achieve a pH range between 3.5 to 

3.8.  Mobile phase was filtered through a 0.45µm membrane filter from Millipore 

(Bedford, MA, USA).   Both EC detector cells (each contains four channels) were used 
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and detection potentials were set at 200, 300, 400, 500, 600, 700, 800 and 900 mV.  The 

temperature of the auto-sampler was set to 4°C.  The flow rate was set to 1.0 ml/min. 

2.3.4 Preparation of standards 

The stock solution of each compound was prepared in DMSO.  These solutions 

were protected from light and stored in the darkness at 4°C when not in use.  The 

concentrations ranges for both compounds were between 0.001 and 10µL and were 

prepared by a serial of dilution with 50% MeOH just before each experiment.  A 10µL 

volume was injected in the HPLC. 

2.3.5 Analyses of Juice Samples 

A total of 6 juices (2 Grape Juices, 2 Blueberry Juices, and 2 Mix Fruit Juices) 

were analyzed.  They were purchased from local supermarkets (Amherst, MA, USA).  A 

volume of 400µL of juice and 100 µL MeOH were votexed together for 1 minute.  The 

juice/MeOH mixture was extracted with equal volume of ethyl acetate for a total of three 

times. The ethyl acetate collected was pooled together and evaporated to dryness.  

Samples were reconstituted in 400µL 50% MeOH and analyzed using the HPLC-EC 

method developed in this study to determine the amount of resveratrol and pterostilbene 

in each sample. 
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2.4 Results and Discussion 

2.4.1 Optimization of Chromatographic Conditions 

The aim of this study was to achieve in a single HPLC run the separation of 

resveratrol and pterostilbene in a respective short period of time with relatively simple 

gradient profile.  This method was able to successfully attain this goal.  A representative 

chromatogram of resveratrol and pterostilbene at various potentials is illustrated in Figure 

2.2. 

Mobile phase with water-MeOH-THF and water-ACN-THF using the same 

gradient profile were evaluated.  It was determined that the mobile phase composed of 

water-ACN-THF attained superior resolution and better retention time than the water-

MeOH-THF mobile phase.  There were no interfering peaks co-eluted from the mobile 

phase or with compounds of interest.  ACN was also selected as the organic solvent of 

choice over MeOH due to issues with high pressure associated with MeOH as a solvent. 

EC detector is a very sensitive detector that can be effected by the ph and ionic strength 

of the buffer system in the mobile phase (Benova et al., 2008). Therefore, ammonium 

acetate was added to stabilize the pH value of mobile phase. The retention time of 

resveratrol and pterostilbene were around 4 and 12.5 minutes, respectively.  After 

evaluation, the optimal conditions were achieved with mobile phase of water-ACN-THF 

(50:40:10, v/v/v) containing 50mM ammonium acetate and the flow rate of 1.0 ml/min. 
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 Figure 2.1 Representative chromatograms of resveratrol and pterostilbene at 

different potentials.  Potentials with dominant peaks of compounds are noted on the 

figure.  

2.4.2 Voltametric Behavior of Resveratrol and Pterostilbene 

The electrochemical detection offers different and reproducible signal responses 

to a compound at the oxidation or reduction potential applied across the individual flow-

through cells connected in series.  The correlation between potential utilized on 

electrochemical cells and the peak area of the target compound was evaluated.  Each 
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stilbene was subject a series of electric voltages in 100mV increments on EC detector 

concurrently for HPLC analysis.  This allowed for the study to establish optimal potential 

for resveratrol and pterostilbene based on the observed voltametric behavior of the 

compounds.   

Table 2.1 highlights the ratios of pre/postdominant peak area and electrochemical 

cell potential of the dominant peak of each compound.  The dominant peak area 

corresponds with the electrochemical cell potential generating the maximum intense 

signal.   The predominant and postdominant peak areas were designated as the signals of 

the detection cells preceding and succeeding the dominant peak area channel, 

respectively.  As depicted in Figures 2.1 and 2.2, for both resveratrol and pterostilbene, 

the electric voltage of 300mV generated the largest peak. 
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Figure 2.2 The effect of electrochemical cell potential on the peak area (µC) for 

(a) resveratrol and (b) pterostilbene.  The concentration for each compound was 5µM. 
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Table 2.1 Voltametric behavior of resveratrol and pterostilbene. 

Compound Potential of the 

Dominant Peak 

(mV) 

Ratio of Peak Area
a 

Predominant Postdominant 

Resveratrol 300 0.14 0.04 

Pterostilbene 300 0.36 0.33 

a. The ratios are associated with the dominant peak area of the compound of interest. 

2.4.3 Linearity and Range 

The linearity of the detector response was assessed by analyzing the calibration 

graphs of resveratrol and pterostilbene.  The graphs were constructed based on plotting 

the peak area of the compound of interest against the corresponding concentrations.  

Linear regression analysis was used to determine the linearity of the analytical method.   

Table 2.2 lists the regression equations and correlation coefficients (r
2
) for 

resveratrol and pterostilbene.  The concentration range between 0.001µM and 10 µM 

were utilized. The correlation coefficients (r
2
) were greater than 0.999 for both resveratrol 

and pterostilbene indicating good linearity for the tested concentration ranges for each 

compound. 

Table 2.2 Linearity, LOD, and LOQ for resveratrol and pterostilbene. 

Compound Concentration 

range (µM) 

Linear regression equation Correlation 

coefficient,r
2
 

LOD 

(ng/ml) 

LOQ 

(ng/ml) 

Resveratrol 0.001 - 10 y = 4368.9x + 77.696 0.9997 0.29 1.0 

Pterostilbene 0.001 - 10 y = 4530.1x + 71.95 0.9996 2.0 6.7 
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2.4.4 LOD and LOQ 

The limit of detection (LOD) and limit of quantification (LOQ) were calculated 

based on method outlined by the International Conference of Harmonisation (ICH 2005).  

The LOD was defined by lowest measured concentration that can be detected above 

baseline nose with a signal-to-noise (S/N) ratio of 3:1.  Similarly, the LOQ was 

determined S/N of 10:1.   

As indicated in Table 2.2, pterostilbene had higher LOD and LOQ values than 

resveratrol.  The LOD and LOQ values presented here were lower than values acquired 

from other HPLC with EC detector (Benova et al., 2008; Kolouchová-Hanzlíková et al., 

2004) as well as to usage of other detectors like FL and UV (Buiarelli et al., 2006; Gocan, 

2009; Rodríguez-Bernaldo de Quirós et al., 2007). For resveratrol, this method had LOD 

value that was at least 100 times lower than with UV detection (Vian et al., 2005).  Also, 

the LOD and LOQ values for pterostilbene in this study were lower than those obtained 

by other detectors published in the literature (Remsberg et al., 2007; Lin et al., 2009). 

2.4.5 Accuracy/Recovery Studies 

The accuracy of this HPLC procedure was evaluated on the recovery of known 

amounts of compound.   Accuracy is based on the closeness of the result obtained to the 

true concentration. The compounds were  injected three times at four different 

concencentration levels (0.005, 0.05, 0.5, and 5µM).   The results from accuracy studies 

for resveratrol and pterostilbene are shown in Table 2.3.  The highest concentration 

(5µM) for both compounds had the lowest RSD values. 

For resveratrol, the recovery range was from 96.59% to 109.01% with RSD less 

than 2.05%.  The lower concentrations (0.005 and 0.05µM) had similar recovery 

http://www.refworks.com.silk.library.umass.edu/Refworks/~0~
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pecentage.  The highest concentration (5µM) had highest percentage of recovery of 

109.01%.   The recovery range for pterostilbene was between 99.53% to 106.29% with 

the RSD less than 2.35%.  The lowest concentration (0.005µM) had highest percentage of 

recovery 0f 106.29%.   

 

Table 2.3 Accuracy/Recovery data of resveratrol and pterostilbene standards. 

Compound Concentration(µM) % Recovery 
% RSD 

(n=3) 

Reservatrol 0.005 96.59 2.05 

 0.05 96.23 0.82 

 0.5 104.80 0.40 

 5 109.01 0.04 

Pterostilbene 0.005 106.29 1.00 

 0.05 101.88 2.35 

 0.5 99.53 1.31 

 5 100.93 0.21 

 

2.4.6 Precision 

The precision for this study was determined based on repeatability (intraday 

variation) and intermediate precision (interday variation) (ICH, 2005).  Intraday variation 

was evaluated by analyzing four different concentration levels (0.005, 0.05, 0.5, and 

5µM) with triplicate injection within the same day; whereas, interday variation was 

analyzing four different concentration levels (0.005, 0.05, 0.5, and 5µM) on three 

separate days under the same experimental conditions.  

For the intraday variation, resveratrol RSD values for retention time were between 

0.00 - 0.23% and the RSD values for peak area were between 0.04% to 1.91%. The RSD 
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values for retention time ranged from 0.04 to 0.49% and the RSD values for peak area 

were between 0.21% to 2.46% for pterostilbene.  (See Table 2.4) 

For interday variation of resveratrol, the percent RSD of the retention time and 

peak were between 1.70% to 2.70% and 0.39% to 7.60%, respectively.  For pterostilbene, 

RSD values for retention time were between 1.86% to 3.36% and the RSD values for 

peak area were in the range of 4.20 to 8.54%. 

 

 Table 2.4 Precision data of resveratrol and pterostilbene standards. 

Compound 
Concentration 

(µM) 

Intraday variation 

(%RSD)(n=3) 

Interday variation 

(%RSD)(n=3) 

Retention 

time 
Peak area 

Retention 

time 
Peak area 

Reservatrol 0.005 0.23 1.91 1.83 4.29 

0.05 0.23 0.76 2.02 0.39 

0.5 0.13 0.40 2.70 7.37 

5 0.00 0.04 1.70 7.60 

Pterostilbene 0.005 0.28 1.34 2.15 8.54 

0.05 0.49 2.45 2.19 4.31 

0.5 0.16 1.35 3.46 4.20 

5 0.04 0.21 1.86 7.83 

 

2.4.7 Analysis of resveratrol and pterostilbene in commercial juice products 

The amount of resveratrol and pterostilbene present in the six different brands of 

juices were determined by the HPLC method developed for this paper.  The results listed 

in Table 2.5. All the samples that contained blueberries juice (Blueberry Juice 1 and 2; 

Mix Juice Blend 1 and 2) had pterostilbene present. Blueberry Juice 1 had the highest 

concentration of reveratrol and pterostilbene.   Blueberry Juice 1 contained organic 
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blueberry juice concentrate.  Resveratrol can naturally be found in great abundance in 

grapes and there is a significant amount also found in blueberries.  In nature, there is 

more pterostilbene found in blueberries than in grapes, which would explain why there is 

little, if any, pterostilbene found in the grape juices samples (Rimando et a.l, 2004).  

Table 2.5 Amount of resveratrol and pterostilbene in different juice products. 

Juice Sample Resveratrol (µM) Pterostilbene(µM) 

Grape Juice 1 0.451 Trace Amount 

Grape Juice 2 1.988 None 

Blueberry Juice 1 6.584 0.021 

Blueberry Juice 2 1.963 0.016 

Mix Juice Blend 1 2.205 0.005 

Mix Juice Blend 2 0.950 0.002 

 

2.5 Conclusion 

In conclusion, this method developed, by using HPLC coupled with an EC 

detector for the determination of resveratrol and pterostilbene, was simple, rapid and 

highly sensitive.  Linear, range, repeatability and intermediate precision, LOD, LOQ and 

recovery were used to successfully validate this analytical method. 

When this method is compared to HPLC methods using other detectors for the 

detection of resveratrol and pterostilbene, like UV and fluorescence, this method was 

faster and provides greater sensitivity (Buiarelli an et al., 2006; Gocan, 2009; Lui et al., 

2009; Rodríguez-Bernaldo de Quirós et al., 2007; Remsberg, 2007).  In our lab, this 

method has been used to analyze small amounts of resveratrol and pterostilbene for 

permeability and cellular uptake experiments as well as determine the concentration of 

resveratrol and pterostilbene in various food products.   The application of this method 
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will allow for analyzing large quantities of samples in a relatively short period of time, in 

addition to be able to detect trace amounts of resveratrol and pterostilbene for future 

nutritional, toxicological, and pharmacological research.  
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CHAPTER 3 

COMPARISON OF THE CELLULAR UPTAKE AND INHIBITORY EFFECTS 

OF RESVERATROL AND ITS METHYLATED ANALOGUE PTEROSTILBENE 

ON HUMAN COLON CANCER CELLS 

3.1 Abstract  

Colon cancer is the third most commonly diagnosed cancer.  Numerous 

epidemiological studies have revealed a relation between high consumption of fruits and 

vegetables with reduced risk of colon cancer.   Resveratrol and pterostilbene are stilbene 

compounds found in fruits such as grapes and blueberries. The aim of this study was to 

compare the cellular uptake and inhibitory effects of resveratrol and pterostilbene on 

human colon cancer cells.  Pterostilbene had a stronger inhibitory effect than resveratrol 

on Caco-2 human colon cancer cell line.  Pterostilbene IC50 value was approximately 2.5 

times lower than resveratrol.   The cellular uptake of reseveratrol and pterostilbene in 

three human colon cancer cells (Caco-2, HT-29, and HCT-116) was examined.  The 

cellular uptake of pterostilbene was around 2 to 3 fold higher than of resveratrol in all 

colon cancer cells. The increased intracellular uptake and stronger growth inhibitory by 

pterostilbene maybe contributed to the two methyl groups on pterostilbene. Pterostilbene 

is an appealing candidate for cancer prevention.  

 

Keywords: Resveratrol; Pterostilbene; Uptake; Colon Cancer; MTT   
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3.2 Introduction 

In 2012, the World Health Organization (WHO) projected that cancer will be the 

most prevailing cause for death worldwide surpassing heart disease and stroke. 

According to the American Cancer Society (2012), cancer is the second most common 

cause of death in the United States and accounts for about one in every fourth deaths.   

The third most commonly diagnosed cancer in the United States is colon cancer and there 

has been noticeable increase in incidents in adults under the age of 50 (Siegel, 2009).    

These staggering statistics has triggered a surge of interest in cancer prevention.  

Diet and lifestyle has received much attention since they are effective means of 

prevention. They are both major contributing factors as to whether or not one develops 

cancer (Center et al, 2009; McCullough et al, 2011).  Having a diet abundant in fruit and 

vegetables is essential in maintaining good health.  Numerous epidemiological studies 

have revealed a relation between high consumption of fruits and vegetables associated 

with a reduced risk of colon cancer (Rimando and Suh, 2008; Van Duijnhoven et al., 

2009). 

Reservetrol has been shown to exert anti-carcinogenic properties (Athar et al., 

2009).  In vitro models, Aggarwal et al. (2000) and Juan et al. (2008) have demonstrated 

reservatrol ability to be anti-angiogenic, anti-porliferative and proapototic.  Furthermore, 

resveratrol has been shown to inhibit tumor progression in multiple sites such as breast, 

gastrointestinal tract and skin (Bishayee, 2009).  In spite of all its potent as anti-cancer 

agent (Gupta et al., 2011; Li et al., 2010), the bioavailability of resveratrol has been a 

concern due to its rapidly metabolizing leaving small amounts of unconjugated 



36 

resveratrol in the systemic circulation (Asensi et al., 2002 Kapetanovic et al, 2010).  This 

has spark researcher is explore resveratrol derivatives.  

Pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene), a dimethylether analogue 

of resveratrol, has been shown to exhibit strong inhibitory activity again difference 

cancer cell lines (Billack et al., 2008; Huang et al., 2007; Paul et al, 2010) and overall 

better pharmacokinetic characteristics than resveratrol (Lin et al., 2009; Remsberg et al., 

2007; Wilson et al., 2008).  In vivo study, pterostilbene had a longer plasma half-life in 

comparison to resveratrol (Ferrer et al., 2005), which is why pterostilbene is an 

interesting compound to investigate as a potential compound for use in chemoprevention.  

The objective of this study is to see if the structural differences between 

resveratrol and pterostilbene would affect their inhibitory effects in Caco-2 - colon cancer 

cell line as well as compare the cellular uptake of the two compounds in three human 

colon adenocarcinoma cell lines. 

 

3.3 Materials and Methods 

3.3.1 Materials   

Highly purified trans-resveratrol (99%) and pterostilbene(98%) were obtained 

from Quality Phyochemical LLC (NJ, USA).  All organic solvents utilized were of HPLC 

grade and purchased from Fisher Scientific (Fairlawn, NJ, USA).   Ammonium Acetate 

(99%) was purchased from EMD Chemicals Inc. (Gibbstwon, NJ, USA). All three human 

colon adenocarcinoma cell lines were obtained from American Type Cell Collection 

(Manassas, VA, USA).  Penicillin and streptomycin were obtained from Sigma-Aldrich 
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(St. Louis, MO, USA).  Dulbecco’s modified eagle medium (DMEM),  McCoy’s 5A 

media,  fetal bovine serum (FBS), MEM non-essential amino acid, HEPES and other cell 

culture supplies were purchased from Mediatech Inc. (Herndon, VA, USA).   

3.3.2 Cell culture treatment 

Caco-2 cells were maintained in DMEM containing glucose, L-glutamine, and 

sodium pyruvate, supplemented with 10% fetal bovine serum, 0.1% MEM non-essential 

amino acid, 6mM HEPES, 100 U/ml penicillin, and 0.1 mg/ml streptomycin.  HCT116 

and HT-29 were maintained in McCoy’s 5A media supplemented with 5% heat 

inactivated FBS, 100 U/mL of penicillin, and 0.1mg/mL streptomycin.   

All cell lines were kept at 37°C in atmosphere of 5% CO2 and 95% air.  Cells 

were subcultured at 70-90% confluency with media changed every 2 to 3 days for Caco-2 

cells and every other day for HCT116 and HT29.  Cell lines used were between 15 and 

30 passages.  DMSO was utilized as the agent to deliver resveratrol and pterostilbene.  

The final concentration of DMSO in all experiments did not exceed 0.1%. 

3.3.3 Cell Viability Assay 

Caco-2 cells were seeded in 96-well plates at a density of 10,000 cells/well.  After 

24 hours of incubation, media was replaced and cells were treated with serial 

concentrations of resveratrol and/or pterostilbene in 200µl in complete serum media 

except for the control samples that contained media with only 0.1% DMSO.  At the end 

of treatment period of 48 hours, cells were subject to 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay; therefore, the media was replaced with 100µl 

of fresh complete media containing 0.5mg/ml of MTT (Sigma-Aldrich, St. Louis, MO, 
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USA).  After 2 hours of incubation at 37˚C, the media containing MTT was removed and 

the reduced formazan dye was solubized by the addition of 100µl of DMSO per well.  

After lightly tipping the plate to dissolve the DMSO, the absorbance was evaluated at 

570nm using a spectrophotemtric microtiter plate reader (Elx800TM absorbance 

microplate reader, BioTek Instrument, Winooski, VT, USA).  Results were expressed as 

percentage of viable with 100% representing the control cells treated with only DMSO. 

3.3.4 Cellular Uptake Assay 

The colon cancer cells (400 cells/ml) were suspended in 1ml of culture media 

containing different concentrations of resveratrol and/or pterostilbene in glass tube and 

then were incubated at 37°C in atmosphere of 5% CO2 and 95% air for 0.5, 1, or 2 hours.  

After incubation, the cell suspension wase centrifuged at 2000 rpm for 2 minutes at 4°C.  

Supernatant was then removed and cells were rinsed with 1ml of ice-cold PBS (1X; pH 

7.25) and centrifuged at 1000 rpm for 1 minute at 4°C.  After centrifugation, supernatant 

was again removed and 1ml of cytosol buffer (pH 7.5, 10mM-Tris-HCL, 1mM EDTA, 

1mM MgCl2) was added. The solution was kept on ice for 5 minutes before cells were 

sonicated with a probe sonicator and transferred to eppendorf tubes.  The cells were then 

centrifuged at 14,000rpm for 25 minutes at 4°C.  The supernatant was used to determined 

protein amount by BCA assay (Foster et al., 2001). 

3.3.4.1 Cytosol Faction 

After centrifugation, the supernatant was transferred to a new tube.  180µl of 

supernatant was added to 120µl of MeOH (40% MeOH concentration).  The 300µl of 

ethyl acetated (equal volume to the supernatant/MeOH solution) was added to 
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suspernatant/MeOH and centrifuged at 10,000 rpm for 5 minutes at 4°C.  The ethyl 

acetate layer (top layer) was collected.  Ethyl acetate was added again to the 

supernantant-MeOH solution and centrifugated at 10,000rpm for 5 minutes at 4°C.  Then 

ethyl acetate was collected again.  The collected ethyl acetate extracts were evaporated to 

dryness and reconstitued in 180µl of 50% MeOH and analyzed using HPLC-EC. The 

peak areas were compared to standards and the cellular uptake was normalized for 

cellular protein. 

3.3.4.2 Membrane Fraction 

The membrane buffer (pH 6.5, 25mM HEPES, 150mM NaCl, 10% Triton, 60mM 

OCG) was added to the cell pellet. After 30 minutes on ice, 80µl of MeOH was added 

and solution was votexed.  200µl of ethyl acetate was added to membrane-MeOH 

solution.  The solution was centrifuged at 10,000rpm for 5 minutes at 4°C. The ethyl 

acetate (top layer) was collected.  Ethyle acetate was added again to the membrane-

MeOH solution and centrifugated at 10,000rpm for 5 minutes 4°C.  Then ethyl acetate 

was collected.  The collected ethyl acetate were evaporated to dryness and reconstitued in 

120µl of 50% MeOH and analyzed by HPLC-EC. The peak areas were compared to 

standards. 

3.3.5 HPLC analysis 

Samples were analyses on CoulArray® HPLC system, obtained from ESA 

(Chelmsford, MA, USA), equipped with a binary solvent delivery system (model  584), 

an auto-sampler (model 542), a CoulArray® Multi-Channel EC detector (model 6210) 

consisted of two cells, each cell contains 4 channels, and a UV detector.   Ascentis RP-
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Amide column (15 cm x 4.6 mm id, 3 µm) from Sigma-Aldrich (St. Louis, MO, USA) 

was used.  Data collection, processing and instrument control were achieved using the 

CoulArray 3.06 software.  

The mobile phase used consisted of 50mM ammonium acetate in 50% water, 40% 

ACN, and 10% THF.   The pH of the mobile phase was adjusted with TFA to achieve a 

pH range between 3.5 to 3.8 and then filtered through a 0.45µm membrane filter from 

Millipore (Bedford, MA, USA).   Both EC detector cells were used and detection 

potentials were set to 300, 400, 500, 600, 700, 800 and 900 mV.  The flow rate was set to 

1.0 ml/min.  The temperature of the auto-sampler was set to 4°C.  This detection method 

has high selectivity and excellent sensitivity even at low concentrations.   

3.3.6 Statistical Analysis 

Data were expressed as mean ± standard error mean (SEM).  Statistical 

significance of mean difference between two groups was calculated by using Student’s 

two-tailed t-test.  Analysis of variance (ANOVA) model with Dunnett multiple 

comparison was used when comparing more than two groups’ differences.   A 

significance level of P <0.05 was used for all tests. 
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3.4 Results & Discussion 

3.4.1 Growth inhibition on Caco-2 

The colorimetric assay MTT was utilized to determine cell viability; therefore, 

determining the growth inhibition effect of resveratrol and pterostilbene on Caco-2 colon 

cancer cells.  The cell viability is directly proportional to the intensity of the color in the 

solution in each well (Mosmann, 1983). The results showed that both resveratrol and 

pterostilbene caused dose-dependent growth inhibition of the cell viability of Caco-2 

colon cancer cells (Figure 3.1).  Resveratrol IC50 value was estimated to be around 

207μM while pterostilbene attained a significantly lower IC50 value of approximately 

79μM.  Pterostilbene was around 2.6 times more potent than resveratrol in hindering 

growth.   
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Figure 3.1 Growth inhibitory effect of resveratrol and pterostilbene on CaCo-2 

human colon adenocarcinoma cells.  Cells were seeded on 96-well plates for 24 hours.  

After this period of time, cells were treated with serial concentrations of resveratrol or 

pterostilbene. After 48 hours of treatment, growth inhibition was measured by MTT assay 

as described in material and method section.  Each point represents the mean ± SEM. 

(n=6). 

 

3.4.2 Cellular Uptake of 3 Colon Cancer Cell Lines 

The cellular uptake of resveratrol and pterostilbene in three different human colon 

cell lines, Caco-2, HT-29 and HCT-116 were evaulated.  The results revealed that in all 

cell lines the cellular uptake of pterostilbene in the cytostol was statistical significantly 

higher than resveratrol (Figures 3.2A, B and C).  Similar results were obtained when the 

membrane fraction of the cellular uptake of the colon cell lines were examined (Results 
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not shown).  Also, there were no synergistic or inhibitor effects observed when cells were 

exposed to both compounds at the same time. 

After 0.5 hours of exposure, all cells lines were statistically different from each 

other in the presences of either compound (Figures 3.2D and E). There was no difference 

between HT-29 and HCT-116 cellular uptake of resveratrol or pterostilbene at the 1 hour 

and 2 hour incubation periods.  Caco-2 had the most cellular uptake of resveratrol for all 

treatment times in comparison to HT-29 and HCT-116.  However, when cells were 

exposed to pterostilbene, HT-29 had the most cellular uptake at 0.5 hours but then uptake 

amounts reduce to that similar to HCT-116 for other treatment times (1 and 2 hour).   

In examining the overall cellular uptake ratio of pterostilbene to resveratrol in the 

different colon cell lines, HCT-116 and Caco-2 had similar ratios (Figures 3.3A, B, and 

C).  HT-29 exhibits a considerably higher ratio of cellular uptake of pterostilbene to 

resveratrol at 0.5 hours compared to the two other cell lines by approximately four folds. 

However, HT-29 uptake levels off to similar ratios as the 1 hour and 2 hour time pulls as 

the other cell lines.  The cellular uptake treatments clearly illustrated that pterostilbene 

was taken up into the cell more readily than resveratrol. 

Since a cell suspension was used to determine cellular uptake, resveratrol and 

pterostilbene had more accessibility to the cells than conventional uptake methods, where 

cells are grown to confluence in plastic plates that merely allow apical membrane access.  

Also, this method alleviates any difficulties that may occur from scraping cells from the 

plastic plates; therefore, decreasing the variation after sample collection. (Henry et al. 

2005; Sacclui et al., 2002; Vaidyanathan and Walle, 2003). 
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Figure 3.2, continued 
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Figure 3.2 Cellular uptake of resveratrol and pterostilbene in the cytosol of (a)Caco-2, 

(b)HT-29, and (c)HCT-116 human colon cancer cell lines. Colon cancer cells were 

incubated with 10μM of (d) resveratrol or (e) pterostilbene in complete medium for 

various time periods. Each point represents the mean (n=3) ± SEM.  * indicates a 

statistical significance between resveratrol and pterostilbene in the same cell line at the 

same incubation period.  ** indicates a statistical significance between all cell lines at the 

same incubation period.  *** indicates only a statistical significance between Caco-2 and 

other cells lines (HT-29 and HCT-116) but not between each other (HT-29 and HCT-

116) at the same incubation period.   
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Figure  3.3 Cellular uptake ratio of pterostilbene to resveratrol in the cytosol of 

Caco-2, HT-29, and HCT-116 human colon cell lines. The cells were incubated with 

10μM resveratrol or pterostilbene in complete medium for (a) 0.5, (b) 1, and (c) 2 hours. 
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3.5 Conclusion 

 The present study is part of our labs current investigation on accessing the 

bioavailability and potential health benefits of methalyed flavones.  In this study, there 

was an examination of the effects of resveratrol and pterostilbene on three different 

human colon cancer cell lines – Caco-2, HT-29, and HCT-116.  Both resveratrol and 

pterostilbene are naturally occurring stilbene that have the same core structure but differ 

by their functional groups.   Pterostilbene has methoxy groups on the 3 and 5 position on 

the phenyl ring A instead of the hydroxyl groups that resveratrol contains at these 

positions.   

MTT viability assay was used to determine the growth inhibition of the 

resveratrol and pterostilbene.  The assay revealed that pterostilbene had a stronger 

inhibitory effect than resveratrol on Caco-2.  Pterostilbene IC50 value was approximately 

more than 2.5 times lower than that of resveratrol.   In our lab has also explored the 

inhibitor effects of resveratrol and pterostilbene on other human colon cancer lines 

(HCT116 and HT-29) and similar results were observed (Nutakul et al., 2011).   

These findings are in agreement with prior reports that showed the methoxlyated 

derivative have higher bioactivity and increased totoxic activity (Huang et al., 2007; 

Wilson et al., 2008).  Previous studies have shown that the structural difference of the 

stilbene compounds contribute to difference in their activities (Jospeh et al. 2008; Ovesna 

and Horvathova-Kozics, 2005; Stivala et al., 2001).  Other methylated flavones have 

shown to have more potent inhibition of growth versus unmethylated counterparts as well 

(Walle et al., 2007). 
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Bioavailability is key factor that can influence the efficacy of bioactive of a 

compound. Only bioavailable compounds can be accessible to the target cells to be 

bioactive for these cells.  The results obtain suggest greater potency of  pterostilbene than  

resveratrol could potential be because of greater cellular uptake of the pterostilbene.  

Therefore, we investigated cellular uptake of resveratrol and pterostilbene in three human 

colon cancer cell lines – Caco-2, HT-29, and HCT-116.    

The cellular uptake experiments demonstrated a significant higher uptake of the 

pterostilbene than resveratrol in all cell lines.  The substitution of hydroxy with methoxy 

group makes pterostilbene more lipophilic than resveratrol (Cichocki, 2008;Paul et al,. 

2009), therefore, pterostilbene may be able to permeate the plasma membrane of the cell 

and in turn enter the cytsol of the cell more readily than that of reservatrol (Tolomeo et 

al., 2005).  As a consequence of better cellular uptake, the higher intracellular levels of 

pterostilbene can cause more potent inhibitory effects on the colon cancer cells in 

comparison to resveratrol.  There may also be the probability that each colon cancer cell 

have different preference in taking up pterostilbene and resveratrol. 

In conclusion, on the basis of the above findings, pterostilbene has stronger anti-

carcinogenic effect and better bioavailabilty in comparison to resveratrol in human colon 

cancer cells.  This study highlights that pterostilbene merits additional investigation as a 

chemopreventive agent in humans against colon cancer. 
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CHAPTER 4 

COMPARISON OF PERMEABILITY AND TRANSPORT OF RESVERATROL 

AND ITS METHYLATED ANALOGUE PTEROSTILBENE IN HUMAN 

INTESTINAL CACO-2 CELLS 

4.1 Abstract  

Resveratrol and pterostilbene are both structurally related stilbene compounds that 

have been shown to possess a wide range of therapeutic benefits. Caco-2 cells 

monolayers were utilized to evaluate the transport of resveratrol and/or pterostilbene 

from apical to the basolateral compartment and from the basolateral to apical 

compartment.  Samples were analyzed using high-performance liquid chromatography 

equipped with electrochemical (HPLC-EC). Resveratrol exhibited a higher rapid rate of 

transport than pterostilbene across the Caco-2 monolayer regardless of the concentration 

tested and direction.  The transport of resveratrol was linear for only an hour; whereas, 

the transport of pterostilbene stability increased for the first 3 hours and did not reach a 

plateau until 6 hours into examination.  There was little difference in the rate of transport 

of pterostilbene in either direction.   Pterostilbene had an extended period of linear 

transport than resveratrol, suggesting less extensive pre-systemic metabolism than 

reservatrol which may lead to greater bioavailability and biological activity than 

resveratrol.  Further research is warranted to investigate how these closely related 

structures can be utilized effectively for cancer prevention. 

 

Keywords:  Resveratrol; Pterostilbene; Stilbene; Caco-2; Permability; Transport  
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4.2 Introduction 

Resveratrol and pterostilbene are both naturally derived polyphenol compounds 

belonging to the stilbene family. It has long been postulated that resveratrol, which is 

present in wine, maybe the reason for the “French Paradox”.  This epidemiological 

phenomenon is that the French population has a drastically lower incidence of 

cardiovascular disease despite having a diet higher in fat than other populations 

(Vidavalur et al., 2006).  Resveratrol has been show to block human platelet aggregation, 

which may lower ones chance of developing cardiovascular disease (Bertelli et al., 1995; 

Pace-Asciak et al., 1995).  Pterostilbene exhibit similar properties as resveratrol as well 

as its own distinctive therapeutic benefits (Rimando, 2002).  

It is not clearly understood how resveratrol and even a greater extent pterostilbene 

obtain access to an intended cellular site of action.  Furthermore, little is known about 

their absorption and bioavailability in humans. Various studies have demonstrated that 

resveratrol is well absorbed in vitro; yet, in vivo, it has very low bioavailability (Goldberg 

et al., 2003; Walle et al., 2004).  Pterostilbene appears to have greater biological activity 

based on having relatively higher bioavailiability than resveratrol in vivo (rats) (Lin et al., 

2009; Remerg et al., 2008).   

For any compound of interest, their overall absorpiton, distribution, metabolism, 

excretion and toxicity are crucial in evaulating a compounds prospective as a therapeutic 

agent (Balani, 2005; Tetko et al., 2006).  Since oral administration is a widely employed 

method for the delivery of drugs and foods, the effectiveness of a compound is dependent 

on their intestinal absorption to get into systemic circulation to subsequently reach the 
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intented tissue.  The intestinal epithelium is a key determinant for the oral absorption of 

ingested pharmaceuticals, food ingredients and toxins (Tong and Wen, 2008).  

The usage of Caco-2 monolayer to predict the intestinal absorption of compounds 

is routinely utilized (Lind et al., 2007).  Artursson and Karlson (1991) demonstrated a 

good correlation between the rate of transport across Caco-2 cell monolayer to the 

amount absorbed in humans by oral administration of a compound. These cells maintain 

several of the functional and morphological characteristics of the in vivo intestinal 

epithelial cells; therefore, Caco-2 cell monolayer is a vital model for in vitro absorption 

screening (Fossati et al., 2008).    

The intent of this study was to compare the permeability and transport of 

resveratrol and its methylated analogue, pterostilbene, in Caco-2 cell model that were 

cultured as monolayers on transwells.  Samples were analyzed using high-performance 

liquid chromatography equipped with electrochemical (HPLC-EC). 

4.3 Materials and Methods 

4.3.1 Materials   

Highly purified trans-resveratrol (99%) and pterostilbene (98%) were obtained 

from Quality Phyochemical LLC (NJ, USA).  All organic solvents utilized were of HPLC 

grade and purchased from Fisher Scientific (Fairlawn, NJ, USA).   Ammonium Acetate 

(99%) was purchased from EMD Chemicals Inc. (Gibbstwon, NJ, USA). The human 

colon adenocarcinoma cell line, Caco-2, was obtained from American Type Cell 

Collection (ATCC, Manassas, VA, USA).  Polyester (PET) transwell inserts with a pore 

size of 0.4µm and growth area of 4.67 cm
2
 were purchased from Corning Costar 
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Corporation (New York, USA).  Penicillin and streptomycin were obtained from Sigma-

Aldrich (St. Louis, MO).  Dulbecco’s modified eagle medium (DMEM),  fetal bovine 

serum (FBS), MEM non-essential amino acid, HEPES and other cell culture supplies 

were purchased from Mediatech Inc. (Herndon, VA, USA).   

4.3.2 Cell Culture - Caco-2 

Caco-2 were cultured in DMEM containing glucose, L-glutamine and sodium 

pyruvate, supplemented with 10% FBS, 0.1% MEM non-essential amino acid, 10mM 

HEPES, 100 U/ml penicillin, and 0.1 mg/ml streptomycin at 37°C in an atmosphere of 

5% CO2 and 95% air.  The cells were split when 70-90% confluent, using trypsin/EDTA, 

and media was changed every 2 to 3 days.   

Caco-2 cells utilized were between 15 and 40 passages.  The culture medium was 

changed three times a week after seeding and experiments were performed after 21 - 27 

days of post-seeding.  The final concentration of DMSO in all experiments did not 

exceed 0.1%. 

4.3.3 Transport Experiments 

The transwell inserts was seeded with 2.5 X 10
5
 cells/ml of Caco-2 cells. The 

culture medium was changed three times a week after seeding and experiments were 

performed after 21 to 27 days post seeding.  Culture medium was changed 12 to 24 hours 

prior to performing experiments. The culture medium was removed from both chambers 

and the cells were washed twice for 30 minutes with pre-incubated (37°C) Hank’s 

balanced salt solution (HBSS).  The pH of HBSS in apical compartment was 6.5 and 7.4 

for basolateral compartment. 
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 Samples from both compartments were withdrawn at specific times and the 

volume take from each compartment was replenished to the initial volume with the 

appropriate HBSS.  Each sample was analyzed by HPLC-EC.   

4.3.4 HPLC analysis 

Samples were analyses on CoulArray® HPLC system, obtained from ESA 

(Chelmsford, MA, USA), equipped with a binary solvent delivery system (model  584), 

an auto-sampler (model 542), a CoulArray® Multi-Channel EC detector (model 6210) 

consisted of two cells, each cell contains 4 channels, and a UV detector.   Ascentis RP-

Amide column (15 cm x 4.6 mm id, 3 µm) from Sigma-Aldrich (St. Louis, MO, USA) 

was used.  Data collection, processing and instrument control were achieved using the 

CoulArray 3.06 software.  

The mobile phase used consisted 50% water, 40% ACN, 10% THF and 50mM 

ammonium acetate   The pH of the mobile phase was adjusted with TFA to achieve a pH 

range between 3.5 to 3.8 and then filtered through a 0.45µm membrane filter from 

Millipore (Bedford, MA, USA).   Both EC detector cells were used and detection 

potentials were set to 300, 400, 500, 600, 700, 800 and 900 mV.  The flow rate was set to 

1.0 ml/min.  The temperature of the auto-sampler was set to 4°C.   

This detection method has high selectivity and excellent sensitivity even at low 

concentration.  The range of validation (0.001 - 5µM) was linear with coefficients of 

correlation more than 0.999 (Dong et al., 2010).  Samples were stored at -20º C until 

analysis. 
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4.3.5 Data Analysis 

Apparent permeability coefficient, Papp, (cm/s) of a compound was calculated by 

using the equation below (Hubatch et al., 2007).  

 

     
  

  
 

 

    
 

 

        dQ/dt is steady-state appearance rate of compound in receiver compartment (µmol/s) 

        A is the surface area of the filter (4.67 cm
2
)  

        C0 is the initial concentration in the donor compartment (µM) 
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The cumulative fraction transported, FAcum, (cm) for each experiment was also 

evaluated. See the equation above.  This equation takes into account the weighted 

normalized cumulative amount of a compound transported, where the amount of 

transported compound in each time pulls is weighted by the inverse average driving force 

(donor concentration for that time pull) (Hubatch et al., 2007). 

Data were expressed as mean ± standard error mean (SEM).  Statistical 

significance of mean difference between two groups was calculated by using Student’s 

two-tailed t-test.  Analysis of variance (ANOVA) model with Dunnett multiple 

comparison was used when comparing more than two groups’ differences.   A 

significance level of P <0.05 was used for all tests.  
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4.4 Results and Discussion 

4.4.1 Overall 

Caco-2 cell monolayers were utilized to evaluate the transport rate of resveratrol 

and/or pterostilbene from apical to the basolateral compartment and from the basolateral 

to apical compartment.  The transport of the resveratrol and pterostilbene were monitored 

over an 8 hour time period at three different concentrations (10, 25 and 50µM).  Samples 

from both compartments were taken at each time pull and replaced with buffer.  Samples 

were subsequently analyzed by HPLC-EC without any further preparation.    

The concentration range we employed some claim is slightly lower than the range 

of a compound in the gastrointestinal lumen following oral dose (Kerns and Di, 2008) 

while others say slightly higher than expected in the gastrointestinal lumen after drinking 

a cup of juice or glass of red wine (Fremont, 2000; Gescher, 2008).  To better mimic 

what occurs in the body after oral administration of a compound, a pH gradient was used, 

where an acidic pH of 6.5 was utilized in the apical compartment and a neutral pH of 7.4 

was utilized in the basolateral compartment (Lind et al. 2007).  The acidic microclimate 

models the pH of the upper small intestine under fasted conditions and the neutral pH 

(7.4) in the basolateral side mimics the pH of the blood (Fallingborg et al., 1989; 

Deferme et al., 2008).  

When either resveratrol or pterostilbene were loaded on the apical or basolateral 

compartment, they both were detected on the opposite side at the first time pull of 30 

minutes and throughout the 8 hours incubation period.  Both compounds at all three 

concentrations evaluated, clearly demonstrated transcellular absorption (Figurres 4.3 and 
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4.4). When both resveratrol and pterostilbene were added to the apical compartment at 

the same time together (data not shown), there was no synergistic effected occurred. 

Table 4.1 summarizes the Papp for the first hour of transport for resveratrol and 

pterostilbene. There was a distinctive difference between rates that resveratrol and 

pterostilbene had across the Caco-2 monolayer and how concentration and direction 

effect transports of these compounds.  

The efflux ratio (Papp of baterolateral compartment to apical compartment / Papp of 

apical compartment to basolateral compartment) for resveratrol and pterostilbene were 

both less than 3 indicating that no efflux is occurring.  
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Figure 4.1 The transport from the apical to the basolateral compartment of (a) 

resveratrol and (b) pterostilbene across the Caco-2 monolayer.  Each point represents the 

mean (n=4) ± SEM.    
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Figure 4.2 The transport from the basolateral to the apical compartment of (a) 

resveratrol and (b) pterostilbene across the Caco-2 monolayer.  Each point represents the 

mean (n=4) ± SEM.    

 

 

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8

A
m

o
u

o
n

t 
o

f 
R

e
sv

e
ra

tr
o

l  
Tr

an
sp

o
rt

e
d

 (
p

m
o

l)
 

Time (hours) 

A) 50uM

25uM

10uM

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

A
m

o
u

n
t 

o
f 

P
te

ro
st

ilb
e

n
e

 T
ra

n
sp

o
rt

e
d

 (
p

m
o

l)
 

Time (hours) 

B) 50uM

25uM

10uM



60 

 
 

 

 

Figure 4.3 Cumulative fraction transport from the apical to the basolateral compartment 

of (a) resveratrol and (b)pterostilbene across the Caco-2 monolayer.  Each point 

represents the mean (n=4) ± SEM.    
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Figure 4.4 Cumulative fraction transport from the basolateral to the apical compartment 

of  (a) resveratrol and (b) pterostilbene across the Caco-2 monolayer.  Each point 

represents the mean (n=4) ± SEM.    
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Table 4.1 Apparent permeability coefficients or different concentrations of resveratrol 

and pterostilbene through Caco-2 monolayers 

Compound Concentration (µM) 
Transport Direction 

Papp
a
: Apical to Basolateral Papp:

a
 Basolateral to Apical

 

Resveratrol 

10 4.4±0.9 2.8±0.8 

25 10.2±0.2 4.5±0.7 

50 12.1±0.6 6.9±0.7 

Pterostilbene 

10 2.6±0.3 3.0±0.2 

25 3.5±05 2.5±0.3 

50 4.5±1.5 3.0±0.2 

a.  Papp is expressed in cm/sec (x 10
-6

).  Values are means ± SEM. n=4. 

 

4.4.2 Resveratrol  

For the first hour of transport of resveratrol across the Caco-2 monolayers, there 

was a linear increase in the amount of resveratrol transported when added to either 

compartment (Figures 4.3A and 4.4A).  However after 3 hours of inhibition, there was 

plateau in transport of resveratrol, regardless of what compartment resveratrol was loaded 

into.  Also, there were slightly lower amount of resveratrol transported when resveratrol 

was added on the basolateral compartment.    

Transcellular absorption from the apical to basolateral compartment was observed 

at all concentrations and appears to be concentration dependent (Figure 4.5A).  As the 

concentration of resveratrol increase from 10µM to 50 µM, the transport rate from the 

apical to basolateral compartment more than doubled (Table 5.1).   

The basolateral to apical flux of resveratrol was lower than transport from apical 

to basolateral compartment (Figure 5.6A).  Since there was limited linearity in transport 
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of resveratrol with time, this could imply considerable metabolism of resveratrol by the 

Caco-2 cells (Walle et al., 2007). 

4.4.3 Pterostilbene 

Transport of pterostilbene across the Caco-2 monolayer increased steadily for the 

first three hours (Figure 4.3B and 4.4B).  It took twice as long for pterostilbene to reach 

plateau than resveratrol which was after 6 hours of incubation.  

Pterostilbene, unlike resveratrol, did not exhibit concentration dependence when it 

was added to basolateral compartment (Figure 4.6B).  Transport was virtually identical 

for each concentration and direction which demonstrates the absence of direction-

dependent transport (Figures 4.5B and 4.6B).   

This suggests that the transport of pterostilbene across Caco-2 monolayers is 

probably through a passive diffusion mechanism. 

4.5 Conclusion 

 The objective of this study was to examine the transport of resveratrol and 

pterostilbene across Caco-2 cell monolayer.  Even though resveratrol and pterostilbene 

have the same core structure; they differ in their functional groups.  Resveratrol contain 

3,5-dihydroxy motif on the phenyl A ring, while pterostilbene has 3,5-dimethoxy motif.  

Resveratrol is the mostly studied stilbene; however, research on the absorptions of other 

stilbene, especially ones with methylated groups, are still limited.  

The usage of human intestinal cell line Caco-2 cultivated on permeable 

membranes is a well accepted model of human intestinal absorption.  It is critical to 

understand the bioavailability of stilbenes in order to figure out their potential actions in 
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vivo.  Gres et al. (1998) determined that Papp values >2 × 10-6 cm/sec from Caco-2 cell 

experiments ought to correlate with efficient intestinal absorption. As a result, it is 

predicted that both resveratrol and pterostilbene can be effectively absorbed in humans.  

Other stilbene have reported to have lower transport rates than both resveratrol and 

pterostilbene (Kim et al., 2008) 

Resveratrol exhibited a higher and more rapid rate of transport than pterostilbene 

across the Caco-2 monolayer regardless of the concentration tested (10, 25 and 50µM) 

and direction.  The transport of resveratrol was linear for only one hour; whereas, 

pterostilbene transport stability increased for the first 3 hours and did not reach a plateau 

until 6 hours into examination.  Regardless of what compartment pterostilbene was put 

into and concentration examined (10, 25, 50), there was little difference in the rate of 

transport of pterostilbene.  

Previous studies also observed a reduction in transport of resveratrol over time 

from the apical to basolateral compartment, which was clearly concentration dependent 

(Kadlas et al., 2003; Maier-Salamon et al., 2006; Li et al., 2003;).  Human studies 

demonstrated peak levels resveratrol were reached at 30 minutes and one hour times after 

oral dosing and rapidly declined afterwards (Goldberg et al., 2003).  Since transport of 

resveratrol had limited linearity over time, this could possibly be linked with increased 

amount of resveratrol being metabolized over time.  This could indicate low oral 

bioavailability, due to the fact this has been observed in other polyphenols (Walle et al., 

1999).     

The transport of pterostilbene in this study clearly demonstrated passive diffusion 

permeation.  Pterostilbene has been reported to not metabolized as quickly and have 
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longer plasma half-live than resveratrol (Ferrer et al., 2005). Lin et al. (2009) 

demonstrated pterostilbene has better pharmacokinetic characteristics than resveratrol.  

Pterostilbene may have higher bioavailability than resveratrol, since the substitution of 

the hydroxyl with methoxy group increases metabolic stability of most compounds.  

In conclusion, this data showed that even though resveratrol absorbed more 

rapidly than pterostilbene in the Caco-2 cell model, both would be efficiently absorbed in 

the human intestine.  The data revealed that pterostilbene had extended period of linear 

transport than resveratrol suggesting less extensive pre-systemic metabolism than 

resveratrol which may lead to greater bioavailability and biological activity than 

resveratrol.  Further research is warranted to investigate how these closely related 

structures can be utilized for different therapeutic uses.  
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CHAPTER 5 

COMPARISON OF THE CELLULAR UPTAKE, PERMEABILITY AND 

TRANSPORT OF POLYMETHOXYFLAVONES (PMFS) 

5.1 Abstract  

Polymethoxyflavones (PMFs) naturally exist in citrus genus and accumulating 

amount of evidence suggesting they have health-promoting benefits but there has been a 

lack of research on examining their bioavailability. Samples were analyzed using high-

performance liquid chromatography equipped with electrochemical (HPLC-EC).  A cell 

suspension in glass tubes were used to determine cellular uptake in HCT-116 human 

colon cells. Caco-2 cells monolayers were used to evaluate the transport of PMFs from 

apical to the basolateral compartment.  The HCT-116 human colon cells had intracellular 

uptake of each of the polymethoxyflavones (PMFs) tested.  Transport was observed by all 

the PMFs and each had different permeability rates. Overall, the results demonstrated that 

location and amount of methyloxly groups have an effect on intracellular levels of the 

PMF in HCT-116 and the rate of transport.   

 

Keywords: Polymethoxyflavones, Permeability; Transport Caco-2 cells, Cancer, 

Bioavailability 
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5.2 Introduction 

Polymethoxyflavones (PMFs) exist almost exclusively in the citrus fruits in 

nature, particularly in the peel of sweet oranges and mandarin oranges (Li et al., 2006).  

Currently, more than 20 PMFs have been isolated and identified.  For centuries, orange 

peels have been used in Asian culture to heal varies aliments (Ou, 1999).  PMFs have 

been well documented on their broad array of biological activities, such as anti-

atherogenic (Whitman et al., 2005), anti-carcinogenic (Ikeda et al., 2006; Manthey and 

Najla, 2002) and anti-inflammatory (Li et al., 2006).  

It is estimated that 2.2 million metric tons (MMT) of orange juice will be 

produced worldwide this year (USDA: Foreign Agricultural Service, 2012) which will 

yield a considerable amount of orange peel by-product.  There are some PMFs in 

commercial juices due to the industrial process being contaminated with peel constituents 

(Gattuso et al., 2007) but most PMFs will come from the peel by-product of the orange 

juice process which could potential be used for therapeutic purposes.   

However, there is a scarce amount of research out on the bioavailability of PMFs.  

For any compound, the overall effects of absorpiton, distribution, metabolism, and 

excretion are vital in examining a compounds prospective as a therapeutic agent.  The 

term bioavailability is defined as the fraction of an ingested component that eventually 

ends up in the blood systemic circulation system and target tissue (Van de Waterbeemd et 

al., 2003).   

Caco-2 cells model is widely used in vitro model to examining intestinal 

transport, biotransformation and bioavailability at the cellular level. They have similar 
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morphology as human intestinal epithelial cells such as forming polarized monolayers in 

cultures and differentiate into cells (Fossati et al., 2008; Lind et al., 2007). 

This study will focus on the following PMFs:    

 5-hydroxy-6,7,8,3’,4’-pentamethoxyflavone (PMF3) 

 5-hydroxy-3,6,7,8,3’,4’-hexamethoxyflavone (PMF4) 

 5-hydroxy-6,7,8,4’-tetramethoxyflavone (PMF7) 

See Table 1.1 for chemical structure of these PMFs as well as other PMFs used in 

this study.  The object of this study was to investigate if cellular uptake of PMFs occurs 

in HCT-116 colon cancer cells and to evaluate their transport in Caco-2 cell models.  

5.3 Materials and Methods 

5.3.1 Materials and Reagents 

All organic solvents utilized, acetonitrile (ACN), methanol (MeOH), 

tetrahydrofucan (THF) and trifluoroacetic acid (TFA), were of HPLC grade and 

purchased from Fisher Scientific (Fairlawn, NJ, USA).   Ammonium Acetate (99%) was 

purchased from EMD Chemicals Inc. (Gibbstwon, NJ, USA).  Penicillin and 

streptomycin were obtained from Sigma-Aldrich (St. Louis, MO, USA).  Dulbecco’s 

modified eagle medium (DMEM),  McCoy’s 5A media,  fetal bovine serum (FBS), MEM 

non-essential amino acid, HEPES and other cell culture supplies were obtained from 

Mediatech Inc. (Herndon, VA, USA).  Polyester (PET) transwell inserts with a pore size 

of 0.4µm and growth area of 4.67 cm
2
 were purchased from Corning Costar Corporation 

(New York, USA).  
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Both human colon adenocarcinoma cell lines, Caco-2 and HCT116, were obtained 

from American Type Cell Collection (ATCC, Manassas, VA, USA).  PMFs were isolated 

from sweet orange (Citrus sinensis) peel extract (cold pressed oil) and dissolved in 

dimethyl sulfoxide (DMSO).  They were identified by MS, UV and NMR (Li et al., 

2006). DMSO was used as the vehicle to deliver PMFs and the final concentration of 

DMSO in all experiments was 0.1% in culture media. 

5.3.2 Cell Culture Treatment 

HCT-116 were maintained in McCoy’s 5A media supplemented with 5% heat 

inactivated FBS, 100 units/mL of penicillin, and 0.1 mg/mL of streptomycin at 37ºC in an 

atmosphere of 5% CO2 and 95% air. Cells were kept sub-confluent and culture media 

were changed every other day.  HCT-116 cells utilized were between 10 and 25 passages. 

Caco-2 were cultured in DMEM containing glucose, L-glutamine and sodium 

pyruvate, supplemented with 10% FBS, 0.1% MEM non-essential amino acid, 10mM 

HEPES, 100 U/ml penicillin, and 0.1 mg/ml streptomycin at 37°C in an atmosphere of 

5% CO2 and 95% air.  The cells were split when 70-90% confluent, using trypsin/EDTA, 

and media was changed every 2 to 3 days.  Caco-2 cells used were within 15 to 40 

passages.   

5.3.4 Cellular Uptake Assay 

HCT-116 human colon adenocarcinoma cells (200 cells/ml) were suspended in 

1ml of culture media containing different PMFs in glass culture tube and then incubated 

at 37°C  with atmosphere of 5% CO2 and 95% air for a given period of time (0.25, 0.5, 1 

and 2 hours).  After incubation, cell suspensions were centrifuged in a benchtop 
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centrifuges at 12000rpm for 5 minutes. The supernatant was then removed and cells were 

suspended with 1ml of ice-cold PBS (1x; pH7.25) and then sonicated.  The cells 

suspension was again centrifuged (12000rpm for 5 minute).  From the supernatant 

obtained, some was collected and reserved for the protein analysis by Bicinchoninic Acid  

(BCA) assay (Wang et al., 2008).  

Equal amount of supernatant and MeOH were sonicated and then centrifuge again 

(12000rpm for 5 minutes).  The supernatant obtained was collected for the HPLC 

analysis to determine the amount of PMF in the cytosol faction.    

5.3.5 Transport Experiments  

The transwell inserts was seeded with 2.5 X 10
5
 cells/ml of Caco-2 cells. The 

culture medium was changed three times a week after seeding and experiments were 

performed after 21 to 27 days post seeding.  Culture medium was changed 12 to 24 hours 

prior to performing experiments. The culture medium was removed from both chambers 

and the cells were washed twice for 30 minutes with pre-incubated (37°C) Hank’s 

balanced salt solution (HBSS).  The pH of HBSS in apical compartment was 6.5 and 7.4 

for basolateral compartment. 

 Samples from both compartments were withdrawn at specific times and the 

volume take from each compartment was replenished to the initial volume with the 

appropriate HBSS.  Each sample was analyzed by HPLC-EC.   

5.3.6 Sample Analysis 

Samples were analyzed on CoulArray® HPLC system, obtained from ESA 

(Chelmsford, MA, USA).  It was equipped with a binary solvent delivery system (model  
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584), an auto-sampler (model 542), a CoulArray® Multi-Channel EC detector (model 

6210) consisted of two cells (each cell contains 4 channels) and a UV detector.   Ascentis 

RP-Amide column (15 cm x 4.6 mm id, 3 µm) from Sigma-Aldrich (St. Louis, MO, 

USA) was used.  Data collection, processing and instrument control were achieved using 

the CoulArray 3.06 software.  

The mobile phase used consisted of 50% water, 40% ACN, 10% THF and 50mM 

ammonium acetate.  The pH of the mobile phase was adjusted with TFA to achieve a pH 

range between 3.5 to 3.8 and then filtered through a 0.45µm membrane filter from 

Millipore (Bedford, MA, USA).   Both EC detector cells were used and detection 

potentials were set to 200, 300, 400, 500, 600, 700 and 800mV.  The flow rate was set to 

1.0 ml/min.  The temperature of the auto-sampler was set to 4°C.   

This detection method has high selectivity and excellent sensitivity even at low 

concentration.  The range of validation (0.001 - 5µM) was linear with coefficients of 

correlation more than 0.999.  Samples were stored at -20º C until analysis. 

5.3.7 Data Analysis 

Apparent permeability coefficient, Papp, (cm/s) of a compound was calculated by 

using the equation below (Hubatch et al., 2007).  

     
  

  
 

 

    
 

        dQ/dt is steady-state appearance rate of compound in receiver compartment (µmol/s) 

       A is the surface area of the filter (4.67 cm
2
)  

      C0 is the initial concentration in the donor compartment (µM)   
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The cumulative fraction transported, FAcum (cm), for each experiment was also 

calculated.  See the equation above.  This equation takes into account the weighted 

normalized cumulative amount of a compound transported, where the amount of 

transported compound in each time pulls is weighted by the inverse average driving force 

(donor concentration for that time pull) (Hubatch et al., 2007). 

Data was expressed as mean ± standard error mean (SEM).  Statistical 

significance of mean difference between two groups was calculated by using Student’s 

two-tailed t-test.  Analysis of variance (ANOVA) model with Dunnett multiple 

comparison was used when comparing more than two groups’ differences.   A probability 

of less than 0.05 (p < 0.05) was deemed statistically significant. 

 

5.4 Results & Discussion 

5.4.1 Cellular Uptake of PMFs in HCT-116 cancer cells 

The ability of a compound to generate a biological effect depends on if it can first 

enter the target cell.  This study attempts to provide this insight by evaluating the 

intracellular levels of PMFs in HCT-116 human colon adenocarcinoma cells.  The results 

were normalized with the amount of cytosolic protein (Foster et al., 2001).  An array of 

different cellular uptake experiments were performed.  Individual PMFs were examined 
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and then assessed to see if combined with other PMFs there would be an increase in 

cellular uptake of the PMF of interest.  Some experiments had HCT-116 cells exposed to 

one PMF for 24 hours prior to treatment and then exposed to another PMF to determine if 

later PMF would have greater intracellular uptake because cells were exposed to another 

PMF prior.   

Overall, there was no synergistic effect observed when an additional PMF was 

added to the cellular uptake experiment to see if it would have an effect on the other PMF 

(the one of interest).  There was dose dependent observed; therefore, the intracellular 

levels of PMF in the cell would increase with a increase in the amount of PMF exposed 

to the cells (More PMF added the more was uptaken). When PMF4, PMF5 and PMF7 

were compared to the uptake of PMF3 from PMF mixture (25uM of each), there was less 

PMF4, PMF5 and PMF7 uptake in comparison to PMF3 (Figure 5.1).  Slightly less 

PMF7 was uptake in comparison to PMF 4 and PMF5. 
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Figure 5.1 Percentage of cellular uptake in HCT-116 human colon cancer cells of 

PMF4, 5 and 7 from the PMF mixture in comparison to uptake of PMF3 from the same 

mixture. The values are mean ± SEM (n=3). 
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5.4.2 Transport of PMFs by Caco-2 cells 

A scarce number of studies exist on the transport of PMFs, in particular the PMFs 

which were examined in this study.  The ability of a compound to be effectively absorbed 

in human intestine is a critical step in determining its bioavailability. Caco-2 cell 

monolayers were utilized to evaluate the transport of PMFs from apical to the basolateral 

compartment.  The apical-to-basolateral transport of the PMF3, 4 and 7 were monitored 

over an 8 hour time period using a concentration of 2.5µM. An assortment of other 

transport experiments was also performed.  A pH gradient was used to examine the 

transport of PMFs because this better mimics what happens in the body after oral 

administration of a compound (Lind et al. 2007).  In the apical compartment, the acidic 

microclimate (pH 6.5) mimics the pH of the upper small intestine under fasted conditions 

and the neutral pH (7.4) in the basolateral side imitates the pH of the blood (Fallingborg 

et al., 1989; Deferme et al., 2008). 

When PMFs were individually loaded on to the apical compartment, PMF3 and 

PMF4 were observed on the opposite compartment at 30 minutes and throughout the 8 

hour experiment. However, PMF7 was not detected until 90 minutes into the transport 

experiment at the same concentration as the other PMFs.  Even when the concentration of 

PMF7 was double to 5 µM, it was not detected on the opposite compartment until 30 

minutes into the experiment. There was no significance increase or change overall in the 

transport of the PMFs when all PMFs were added to the apical compartment in 

comparison to when only individual PMFs were added to the apical compartment.  Other 

combinations with other compounds (PMF1, PMF2, Resveratrol and Pterostilbene) were 
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evaluated to see if there would be significance change to transport of the PMF3, PMF4 

and PMF7 but no such observation was detected.  

 

 

 

 Figure 5.2 Cumulative fraction transported from the apical to the basolateral 

compartment for PMF3, PMF4 and PMF7across the Caco-2 cell monolayer. Each point 

represents the mean ± SEM.  n=4. 

 

Transcellular absorption clearly occurred for all the PMFs (Figure 5.2).  PMF3 

had the largest amount of transported to the basolateral compartment and largest apparent 

permeability coefficient in comparison to PMF4 and PMF7 (Table 5.1).  PMF7 had the 

lowest amount of compound transfer across the Caco-2 monolayer. There was a 

progressive increase in transport of both PMF3 and PMF4 for the first 5 hours of 
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transport yet PMF7 had a steady increase in transport throughout the transport 

experiment.  

 

Table 5.1 Apparent permeability coefficients of the  PMFs through Caco-2cell 

monolayers.  

Compound Papp
a
 

PMF3 22.3±2.5 

PMF4 7.4±0.8 

PMF7 1.2±0.2 

a. Papp is expressed in cm/sec (x 10
-6

).  The values are means ± SEM. n=4. 

 

 

5.5 Conclusion 

This study is part of an ongoing exploration in our lab on the synthesis, 

mechanisms and potential health effects of PMFs.  PMFs have sparked interest due to 

their wide spectrum of biological effects as an anti-inflammatory (Huang and Ho, 2010; 

Lai et al., 2011; Li et al., 2007 a & b) and anti-carcinogenic (Morley et al., 2007, Pan et 

al., 2007; Qui et al., 2011).  Despite their health potential, the investigation on the 

bioavailability of PMFs has lagged behind.  This study provides some insight on the 

cellular uptake of PMFs in HCT-116 colon cancer cells and the transport of these 

compounds in a Caco-2 cell model.  

The cellular uptake of PMF3, PMF4 and PMF7 in HCT-116 colon cancer cells 

was observed and similar results were obtain in our lab when cellular uptake was 

examined in another colon cell line, HT-29.  Our lab has demonstrated that PMF3, PMF4 

and PMF7 have strong inhibitory effects on the growth of the cancer cells in HCT-116, 

which maybe in part due to their ability to easily be uptaken by the colon cancer cell 
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lines.  Our lab has also shown that these PMFs (3, 4 and 7) have different effects on the 

cell cycle of colon cancer cells indicating that these three PMFs inhibit colon cancer cell 

growth by different mechanisms (Qiu et al., 2010 & 2011). The number of methoxy 

groups and their position may be the reason for why one PMF has higher intracellular 

levels than another in HCT-116.  It is plausible that there is a difference in preference by 

the colon cancer cells line for uptake of certain PMFs.  The exact mechanism by which 

methoxylation may modulate the bioavailability of PMFs is a topic that warrants more 

research. 

Bioavailability of a compound is the amount of the compound that can reach the 

blood circulatory system and target tissue (Van de Waterbeemd et al., 2003) . Walle and 

his colleagues (Walle, 2007; Walle et al., 2007; Wen and Walle, 2006) have 

demonstrated that methoxlyation of PMFs have higher hepatic metabolic stability and 

intestinal absorption compared to unmethlated polyphenles.  The low bioavaiability and 

poor absorption of these unmethlated flavones is due to extensive conjugative 

metabolism in the intestine and liver because of the free hydroxyl groups which gives rise 

to rapid intestinal/hepatic conjugation and/or sulfation and excretion (Wen and Walle, 

2006).  

There has been investigations done on the in vitro absorption of nobiletin, a 

PMF1, versus luteolin, a polyhydroxyflavonoid (unmethlyated), and results revealed that 

nobiletin had higher permeability and accumulated in the differentiated Coc-2 cell 

monolayer while luteolin did not (Murakami et al., 2001). Gres et al. (1998) reported if a 

compound has a Papp values >2 × 10-6 cm/sec from Caco-2 cell model experiments then 

the compound should be associated with efficient intestinal absorption. Therefore, PMF 3 
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and PMF4 can be predicted to be associated with being able to be absorbed in the human 

intestines, where PMF7 is less likely. More research is necessary to see what will occur if 

concentrations are increased as well as what would occur if PMFs are placed in the 

basolateral compartment.  

In summary, the results in this study suggest PMFs have the potential to facilitate 

intestinal absorption in vivo in human because of their capability to be transported in the 

in vitro absorption Caco-2 cell model.  Along with other results attained from our lab, 

these observations demonstrate that PMFs as promising agents in cancer therapy and 

prevention but future research efforts are needed to understand their mechanism of 

transport. 
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CHAPTER 6 

FUTURE RESEACH 

To compliment the research executed in this thesis, future work should continue 

to focus on exploring the potential of methylated phytochemicals as cancer –fighting 

compounds.  Also, work ought to continue to utilize in vitro research models to evaluate 

bioavailability of compounds.   Furthermore, because of its sensitivity and high 

selectivity, HPLC-EC should be evaluated for usage in the separation, identification, and 

determination of other phytochemicals.  

Based on the work done on the side-by-side comparison of resveratrol and 

pterostilbene, pterostilbene had higher intracellular uptake on all three cancer cells 

examined than resveratrol.  Also, pterostilbene had stronger inhibition on the cell 

viability on Caco-2 human colon cancer cells than resveratrol and similar results were 

observed in other human colon cancer cells lines (Nutakul et al., 2011).  This data 

suggests that pterostilbene has superior anti-carcinogeic effect than resveratrol. Thus, it is 

worth performing other side-by-side comparison of resveratrol and pterostilbene on other 

cancer cells lines to see if similar results are obtained. 

The preliminary experimentation preformed on certain PMFs revealed some new 

insight on their bioavailability.  They have different rates of transport but more research 

is needed to determine what type of transport is occurring.  Since transport experiments 

on PMFs evaluated only the permeability of PMFs from the apical side to the basolateral 

side, the next step would be to evaulate transport of PMFs from basolateral compartment 

to apical compartment.  This type of experiment could provide additional information on 

the effect of secretory trasporters.  Also, allows one to calculate the ratio of Papp  B toA / 
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Papp A to B  (Papp basolateral compartment to apical compartment over Papp apical 

compartment to basolateral compartment) for each PMF which would aid in determining 

if efflux possiblity would occurr (Walle et al., 2003).  Therefore, a better  picture could 

be drawn on the absorption of  PMFs.    

For all the compounds examined, determining the exact mechanism by which the 

methoxylation effect intestinal absorption and modulates the bioavailability is an 

attractive topic for future investigation.  The natural progression would be to examine the 

metabolism of these compounds and assess whether the metabolic products (metabolites) 

have any biological and pharmacological properties. Knowledge of both a compounds 

absorption and metabolism can aid in determining a compounds potential biological 

functions in vivo (Masimirembwa et al., 2003; Mohutsky et al., 2006). 

Bioavailability is an important factor that can dictate the efficacy of bioactive 

dietary components. The bioavailability of a these compounds studied in this thesis can 

be compromised in vivo because of their physicochemical properties, such as being 

highly hydrophobic with poor solubility in both water and oil at body temperature.  

Therefore, encapsulating and developing a delivery systems for these compounds would 

aid in enhancing their bioavailability in vivo so bioactive compounds can reach the 

intended target tissue. 
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