

STEP 4: Similarity graph construction

Before execution of STEP 4

System Monitor = o) 3:09PM @ mzhao ()
|System | Processes Resources | File Systems
CPU History
100%
80%
) f
. I\ - \ \/FJ N AW AVA
2%
0%
60 seconds 50 ® EY) 2 10 0
[cPu1 19.8% I cPu2 22.8%
Memory and Swap History
100%
80 %
0%
40 %
0%
09
’ Memory g Swap
1.1GiB (54.5 %) of 2.0 GiB 24.0 MiB (9.4 %) of 256.0 MiB
Network History
10.0 Kls
8.0 K/s
6.0 Ki/s.
N
2.0 KBls [\
[
20Kls A — =
P —)~ T~ — _
60 seconds 0 ® 3 2 10 0
Receiving 238 bytes/s Sending 0bytes/s
Total Received 31.3MiB Total Sent 1.7MiB

Memory usage: 1.1 out of 2.0 GB, 54.5% occupancy

During and after execution of STEP 4

76

megabooks-core - NetBeans IDE 1

PGS 9D

Projects
» e galagosearch-3.0
» ®ygalagosearch-3.0-core

» & galagosearch-3.0-tupleflow
P @ galagosearch-3.0-tupleflow-typebuilc

339PM @ m

S B AN

<default conf...

« x| va [E Output - megabooks-core x| [& Buildmagelndexjava * [& ImageWordListWriterjava x| [& TagSimilarity,java x [« » [¥|[o]
- SimLtarity olze. 0o =
W 33710
T

Oute

: zygocotyl /home/mzhao/CIIRbooks/imagePagelist/zygocotyl.txt

P @ megabooks

- megabooks-core

v @pSource Packages

» [edu.umass.ciirmegabooks.dbpedi|

v [EHpedu.umass.ciir.megabooks.image

[8 Evaluation java

[8 ImageCollectionLength.java
[& ImageCollectionMap.java

[& ImageCollectionWordFrequency
[& ImageDoc java |
[& ImagelmpTag.java

[& Imagelnfo java

[& ImageMetaData.java

[ImageParser java

[8 ImageSearchwebHandler java
[8 ImageSplitinDocumentOut java
[8 ImageTag.java

[8 ImageTagList java

[8 ImageTagPageList.java

[8 ImageTagScore.java

[& ImageTest java

[ImageTestClass java
ImageWordListWriter.java
PreEvaluation java
PreRandomWalk java
QuerySearch java
RandomWalk java

IBEEEE

Tanc

33711

33712

33713

33714

gospor.txt

Similarity Siz
time for construct similarity graph 1720 seconds

: 525

N

28 minutes 47 seconds
Thu Feb 02 15:39:07 EST 2012

Finished at:
Final Memory: 16M/126M

Memory usage: 1.3 out of 2.0 GB, 64.7% occupancy

Total running time: 1720 seconds (29 minutes)

STEP 5: Random walk refinement

Before execution of STEP 5

System Monitor

LSystem

Processes | [Resources) | File Systems

CPU History

100 %

Memory and Swap History

100%

[cPu1 51.5%

0 30 20
I cPu2 47.1%

s 50

’ Memory

1.1GiB (56.8 %) of 2.0 GiB

Network History

Swap

24.1 MiB (9.4 %) of 256.0 MiB

5.0 Kigfs
4.0 Kdls \
2.0K8s \
|
2.0 Kigf's \
\
10 Klis P . 7 ‘\
— — — S —— — T N— T N S = —
0.0 K5 e Dt e B ~ — e S N\~ —\ S e Ny
) 50 0 30 2 10 0
Receiving 773 bytes/s Sending 0bytes/s
Total Received 32.6 MiB Total Sent 1.7 MiB

77

Memory usage: 1.1 out of 2.0 GB, 56.8% occupancy

During and after execution of STEP 5

System Monitor = 6PM @ mzhao ()

|System | Processes Resources|| File Systems

CPU History
100 % ; oy e

s 50 40 30 2 10 0

[cpu1 87.1% [cPu2 96.0%

Memory and Swap History
100%

3 50 © EY) 2 10 0
Memory Swap
’ 1.3 GiB (65.3 %) of 2.0 GiB 25.2 MiB (9.8 %) of 256.0 V\L}B
Network History
5.0 Kls
10KkEs
3.0 Kills.
20K8s

Receiving 597 bytes/s Sending 0bytes/s
Total Received 32.7MiB Total Sent 1.7MiB

@ megabooks-core - NetBeans IDE 7.0.1

- m & B @ (<defaultconf. [~ BEF “&S D ‘ @.

Projects < x| [& ImageTest.java X | @ Output - megabooks-core | [& Buildimagelndexjava X | [ImageWordListWriterjava X |[& T.. <= (o
» @ galagosearch-3.0 = i

» ©ygalagosearch-3.0-core W
» & galagosearch-3.0-tupleflow W ji
P @ galagosearch-3.0-tupleflow-typebuilc| || g 95
» e megabooks 111
- megabooks-core 46
v @gSource Packages 4
» [edu.umass.ciirmegabooks.dbpedi 27
v [sedu.umass.ciir.megabooks.image 96
[& Evaluation.java 63
[8 ImageCollectionLength.java 66
. 47
[8 ImageCollectionMap.java 59
@ ImageCollectionWordFrequency| 32
[ImageDoc java 1 99
[ImagelmpTag java 61
[& Imagelnfo.java 104
[ImageMetaData java 9
[ImageParser java 13
[ImageSearchWebHandler.java 86
[& ImageSplitinDocumentOut.java 54
[ImageTagjava f?)?
[ImageTagList java 109
[ImageTagPageList java 95
@ ImageTagScore java time for random walk: 11500 seconds
B ImageTestjava ||| | emm e m oo iiloo
B ImageTestClass.java BUILD SUCCESSFUL
B ImageWordListWriterjava | || [zrrmrmmm e e
& prebton s e ey s S
n inished at: Thu Fe :56:
g PreRandomwalk.java Final Memory: 16M/126M
QuerySearchijava ||
[& RandomWalk java ‘
B T aCimmilacibs fanin Z &
<]

Memory usage: 1.3 out of 2.0 GB, 65.3% occupancy

Total running time: 11500 seconds (192 minutes)

78

APPENDIX B

HADOOP FRAMEWORK

Before I dive into the architecture of the implementation, I would like to talk
a little about the Hadoop Distributed File System (HDFS) that associates with the
framework. As we know, the data centers have hundreds or thousands of machines,
and these machines are always inexpensive. Therefore, hardware failures should be
very common and HDFS is responsible for failure detection and recovery. HDFS uses
replication to provide reliable storage. Each file has been chopped into small blocks
with the same size, which is usually 64 MB, except the last one [18]. The blocks are

replicated in case of hardware failure.

Machine 1 Machine 2 Machine 3 Machine 4
Block 1 Block 2 Block 3 Block 2 Block 3 Block 1
HDFS storage

HDFS consists of a manager, called NameNode, and a cluster of workers,
called DataNode [18]. NameNode is responsible for the access control and general
file system management. DataNode, as implied by the name, is mainly for data
storage, data read, write, deletion and replication under the order of NameNode.
View HDFS from the high level, it is nearly the same as operating on the single
machine. Though when view from the lower level, it differs in the storage
mechanism. HDFS does allow user data to be stored in files, but files are chopped

into blocks, and stored in different machines. This design provides file system

79

reliability and fault tolerant ability. When performing operations on the file system,
user communicates with the NameNode, and the NameNode sends orders to the
DataNode to complete the user command since the NameNode knows exactly the

entire mappings among files, blocks and machines in the low level.

HDEFS User
NameNode
(Manager)
DataNode 1 DataNode 2 DataNode 3 DataNode 4
(Machine 1) (Machine 2) (Machine 3) (Machine 4)
Block 1 Block 2 Block 3 Block 2 Block 3 Block 1

HDFS structure

I mentioned in the previous paragraph that HDFS looks the same as the
normal desktop from the high level, because HDFS is also using hierarchical file
organization. All the block operations are hided and users can perform copy,
deletion, move operations and create directories. The NameNode is in charge of
holding and maintaining the file system namespace, and it records every change
made on namespace. File system namespace will be loaded into memory, and
NameNode checks namespace table frequently for mapping among metadata, files
and block locations [18, 19].

After I have covered the Hadoop distributed file system, we can go back to

the Hadoop framework implementation now. In my MapReduce experiment, there

80

are four machines with a quad-core processor, 4GB’s memory, and 1TB disk running
Linux. There is no hardware failure in my experiment, so I am not talking more
about fault tolerance and recovery any more. Figure 33 is the high level architecture
of Hadoop frame, and the following paragraph describes how it works.

First, the framework is deployed on a cluster of machines, therefore, we need
a manager to coordinate their work, and this manager is called “Master”. The rest of
the machines are called “worker” or “slave”. Second, the framework takes the input
file as a job, and chops the whole input into small pieces, called “splits”. Each split is
usually 64MB (one block in HDFS is 64 MB), and each split will be processed as a
map task. The master assigns map tasks to each machine. When the slave machine
receives the order, it retrieves a corresponding input split and creates a map task. In
the map task, key value pairs are parsed and passed to the map function. Then the
intermediate key value pairs are produced, partitioned and written into temporary
local files. Values associated with the same key have to be partitioned into the same
reducer (slave machines that perform reduce tasks). This is the rule; otherwise, key
list pair cannot be generated properly. Simple rules such as MOD work for the
partition. Third, after the map tasks finish, the reducers read the temporary files and
sort the intermediate key value to group values with the same key. Finally, reducers
apply reduce function to each key list pair and generate output. In the whole
process, the master is responsible for distributing tasks (both map tasks and reduce
tasks), storing task states, and temporary file locations, etc. The light green part is
the input splits, the light purple part is the map process, and blue part is the reduce

process.

81

Distributed File System

Split 1

<key 1, value 1>
<key 2, value 2>
<key 3, value 3>
<key 4, value 4>
<key 5, value 5>

Split 2

<key 6, value 6>
<key 7, value 7>
<key 3, value 8>
<key 5, value 9>
<key 8, value 10>

Split 3

<key 1, value 11>
<key 2, value 12>
<key 5, value 13>
<key 7, value 14>
<key 8, value 15>

Split 4

<key 4, value 16>
<key 2, value 17>
<key 3, value 18>
<key 6, value 19>
<key 8, value 20>

Map Task 1

Map Task 2

Map Task 3

Map Task 4

Slave machine 1 (mapper)

Temporary file 1

<key 1, value 1>
<key 2, value 2>
<key 3, value 3>
<key 3, value 8>
<key 4, value 4>

Temporary file 2

<key 5, value 5>
<key 5, value 9>
<key 6, value 6>
<key 7, value 7>
<key 8, value 10>

Slave machine 1 (reducer)

!

Output 1

Slave machine 2 (mapper)

Temporary file 1

<key 1, value 11>
<key 2, value 12>
<key 2, value 17>
<key 3, value 18>
<key 4, value 16>

Temporary file 2

<key 5, value 13>
<key 6, value 19>
<key 7, value 14>
<key 8, value 15>
<key 8, value 20>

Slave machine 2 (reducer)

!

Output 2

MapReduce flow chart

82

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

BIBLIOGRAPHY

Hao Xu, Jingdong Wang, and Xiansheng Hua. Interactive image search by 2D
semantic map. In WWW 's 10: Proceedings of the 19th international conference
on World Wide Web. New York, NY: ACM Press, 2010.

Ying Liu, Tao Qin, Tieyan Liu, Lei Zhang, and Weiying Ma. Similarity space
projection for web image search and annotation. In MIR '05: Proceedings of the
7th ACM SIGMM international workshop on Multimedia information retrieval.
New York, NY: ACM Press, 2005.

Dong Liu, Xiansheng Hua, Linjun Yang, Meng Wang, and Hongjiang Zhang.
Tag ranking. In WWW '09: Proceedings of the 18th international conference on
World Wide Web. New York, NY: ACM Press, 2009.

Jingyu Cui, Fang Wen, and Xiaoou Tang. Real time google and live image
search re-ranking. In MM '08: Proceedings of the 16th ACM international
conference on Multimedia. New York, NY: ACM Press, 2008.

Kambiz and Ling Guan. Content-based image retrieval via distributed
databases. In CIVR '08: Proceedings of the 2008 international conference on the
content-based image and vedio retrieval. New York, NY: ACM Press, 2008.

Trevor Strohman. Efficient processing of complex feature for information
retrieval. PhD dissertation, University of Massachusetts. Amherst, MA, 2007.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.
Berkeley, CA, 2009.

Cloud Computering [online]. Available from:
http://en.wikipedia.org/wiki/Cloud_computing.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI 's04: 6th Symposium on Operating Systems Design and
Implementation.

MapReduce [online]. Available from: http://en.wikipedia.org/wiki/MapReduce.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze.
Introduction to Information Retrieval. Cambridge University Press, 2008.

Bruce Croft, Don Metzler, and Trevor Strohman. Search engine, information
retrieval in practice. Addison Wesley, 2010

83

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

Donald Metzler and Bruce Croft. A markov random field model for term
dependencies. In SIGIR '05: Proceedings of the 28th annual international ACM
SIGIR conference on research and development in information retrieval. New
York, NY: ACM Press, 2005.

Internet [online]. Available from: http://en.wikipedia.org/wiki/Internet.
Facebook [online]. Available from: http://en.wikipedia.org/wiki/Facebook.
LinkedIn [online]. Available from: http://en.wikipedia.org/wiki/Linkedin.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, lon Stoica,
Matei Zaharia. A view of cloud computing. Vol. 53. New York, NY, 2010.

HDEFS architecture guide [online]. Available from:
http://hadoop.apache.org/common/docs/r1.0.3/hdfs_design.html.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In SOSP '03 Proceedings of the nineteenth ACM symposium on
Operating systems principles. New York, NY, 2003.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In WWW?7 Proceedings of the seventh international
conference on World Wide Web 7, Page 107-117, 1998

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Accelerate large-
scale iterative computation through asychronous accumulative updates. In
Proceedings of the 374 workshop on Scientific Cloud Computing in conjuction
with HPDC 2012, Delft, Netherlands, June 2012

84

