


STEP 4: Similarity graph construction

Before execution of STEP 4

System Monitor = o) 3:09PM @ mzhao ()
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Memory usage: 1.1 out of 2.0 GB, 54.5% occupancy

During and after execution of STEP 4
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STEP 5: Random walk refinement

Before execution of STEP 5
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Memory usage: 1.1 out of 2.0 GB, 56.8% occupancy

During and after execution of STEP 5

System Monitor = 6PM @ mzhao ()
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Memory usage: 1.3 out of 2.0 GB, 65.3% occupancy

Total running time: 11500 seconds (192 minutes)
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APPENDIX B

HADOOP FRAMEWORK

Before I dive into the architecture of the implementation, I would like to talk
a little about the Hadoop Distributed File System (HDFS) that associates with the
framework. As we know, the data centers have hundreds or thousands of machines,
and these machines are always inexpensive. Therefore, hardware failures should be
very common and HDFS is responsible for failure detection and recovery. HDFS uses
replication to provide reliable storage. Each file has been chopped into small blocks
with the same size, which is usually 64 MB, except the last one [18]. The blocks are

replicated in case of hardware failure.

Machine 1 Machine 2 Machine 3 Machine 4
Block 1 Block 2 Block 3 Block 2 Block 3 Block 1
HDFS storage

HDFS consists of a manager, called NameNode, and a cluster of workers,
called DataNode [18]. NameNode is responsible for the access control and general
file system management. DataNode, as implied by the name, is mainly for data
storage, data read, write, deletion and replication under the order of NameNode.
View HDFS from the high level, it is nearly the same as operating on the single
machine. Though when view from the lower level, it differs in the storage
mechanism. HDFS does allow user data to be stored in files, but files are chopped

into blocks, and stored in different machines. This design provides file system
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reliability and fault tolerant ability. When performing operations on the file system,
user communicates with the NameNode, and the NameNode sends orders to the
DataNode to complete the user command since the NameNode knows exactly the

entire mappings among files, blocks and machines in the low level.

HDEFS User
NameNode
(Manager)
DataNode 1 DataNode 2 DataNode 3 DataNode 4
(Machine 1) (Machine 2) (Machine 3) (Machine 4)
Block 1 Block 2 Block 3 Block 2 Block 3 Block 1

HDFS structure

I mentioned in the previous paragraph that HDFS looks the same as the
normal desktop from the high level, because HDFS is also using hierarchical file
organization. All the block operations are hided and users can perform copy,
deletion, move operations and create directories. The NameNode is in charge of
holding and maintaining the file system namespace, and it records every change
made on namespace. File system namespace will be loaded into memory, and
NameNode checks namespace table frequently for mapping among metadata, files
and block locations [18, 19].

After I have covered the Hadoop distributed file system, we can go back to

the Hadoop framework implementation now. In my MapReduce experiment, there
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are four machines with a quad-core processor, 4GB’s memory, and 1TB disk running
Linux. There is no hardware failure in my experiment, so I am not talking more
about fault tolerance and recovery any more. Figure 33 is the high level architecture
of Hadoop frame, and the following paragraph describes how it works.

First, the framework is deployed on a cluster of machines, therefore, we need
a manager to coordinate their work, and this manager is called “Master”. The rest of
the machines are called “worker” or “slave”. Second, the framework takes the input
file as a job, and chops the whole input into small pieces, called “splits”. Each split is
usually 64MB (one block in HDFS is 64 MB), and each split will be processed as a
map task. The master assigns map tasks to each machine. When the slave machine
receives the order, it retrieves a corresponding input split and creates a map task. In
the map task, key value pairs are parsed and passed to the map function. Then the
intermediate key value pairs are produced, partitioned and written into temporary
local files. Values associated with the same key have to be partitioned into the same
reducer (slave machines that perform reduce tasks). This is the rule; otherwise, key
list pair cannot be generated properly. Simple rules such as MOD work for the
partition. Third, after the map tasks finish, the reducers read the temporary files and
sort the intermediate key value to group values with the same key. Finally, reducers
apply reduce function to each key list pair and generate output. In the whole
process, the master is responsible for distributing tasks (both map tasks and reduce
tasks), storing task states, and temporary file locations, etc. The light green part is
the input splits, the light purple part is the map process, and blue part is the reduce

process.
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Distributed File System

Split 1

<key 1, value 1>
<key 2, value 2>
<key 3, value 3>
<key 4, value 4>
<key 5, value 5>

Split 2

<key 6, value 6>
<key 7, value 7>
<key 3, value 8>
<key 5, value 9>
<key 8, value 10>

Split 3

<key 1, value 11>
<key 2, value 12>
<key 5, value 13>
<key 7, value 14>
<key 8, value 15>

Split 4

<key 4, value 16>
<key 2, value 17>
<key 3, value 18>
<key 6, value 19>
<key 8, value 20>

Map Task 1

Map Task 2

Map Task 3

Map Task 4

Slave machine 1 (mapper)

Temporary file 1

<key 1, value 1>
<key 2, value 2>
<key 3, value 3>
<key 3, value 8>
<key 4, value 4>

Temporary file 2

<key 5, value 5>
<key 5, value 9>
<key 6, value 6>
<key 7, value 7>
<key 8, value 10>

Slave machine 1 (reducer)

!

Output 1

Slave machine 2 (mapper)

Temporary file 1

<key 1, value 11>
<key 2, value 12>
<key 2, value 17>
<key 3, value 18>
<key 4, value 16>

Temporary file 2

<key 5, value 13>
<key 6, value 19>
<key 7, value 14>
<key 8, value 15>
<key 8, value 20>

Slave machine 2 (reducer)

!

Output 2

MapReduce flow chart
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