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We study the evolution of rotational response of a hydrodynamic model of a two-component
superfluid with a non-dissipative drag interaction, as the system undergoes a transition into a
paired phase at finite temperature. The transition manifests itself in a change of (i) vortex lattice
symmetry, and (ii) nature of vortex state. Instead of a vortex lattice, the system forms a highly
disordered tangle which constantly undergoes merger and reconnecting processes involving different
types of vortices, with a “hidden” breakdown of translational symmetry.

Recently, there has been increased interest in so-called
“paired” states of superfluids (and also related counter-
flow states) where pairing results from proliferation of
composite topological defects in various physical contexts
[1]-[4]. The mechanism can be outlined as follows. In
certain systems the energetically cheapest defects which
proliferate under the influence of thermal fluctuations or
applied external field are not the simplest vortex loops.
Rather, they are composite ones. That is, they have
phase winding in several components of the order pa-
rameter, but nonetheless lack topological charge in some
sector of the model. Consequently, their proliferation
does not restore symmetry completely. Broken symmetry
may remain in e.g. sums of the phases of components of
the order parameter, and the resulting state is frequently
called a paired superfluid. Since the origin of pairing
in this case is an entropy-driven formation of a tangle of
composite topological defects, one encounters an unusual
situation in which a system forms paired states as a con-
sequence of heating. Thus, in what follows we will refer
to this state as a Thermally Paired Superfluid (TPS), to
distinguish it from a conventional pairing mechanism.

Today, the experimentally most feasible system to
study TPS, appears to be the multicomponent Bose–
Einstein Condensates. Here, TPS can arise [2, 4] due to
a current-current (Andreev–Bashkin) interaction, which
can be tuned in an especially wide range for bosons in
optical lattices [2]. Questions therefore arise as to how
the transition into a TPS alters the rotational response of
the system, and what are its experimental signatures? In
this paper, we address this by studying a hydrodynamic
model of a mixture of two superfluids with a dissipation-
less drag [2, 4], given by
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where θi, ni and mi are the phases, densities and masses
of the condensates respectively, the angular frequency is
given by Ω = ∇ × Θ, while nd is the density of one

component dragged by the other. The central feature
of the model is that for significantly strong drag nd the
composite vortices with phase winding in both compo-
nents (∆θ1 = 2π, ∆θ2 = −2π) [in what follows denoted
by (1,−1)], become the energetically cheapest to excite
and are the easiest objects of a thermal fluctuation-driven
proliferation [2, 4]. The resulting phase is well described
by separating out the sector of the model unaffected by
proliferation of composite vortices. The accuracy of this
procedure was numerically checked in various regimes in
Ref. 4. The Hamiltonian reads, after separation of vari-
ables
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where the first term represents the part of the model
unaffected by proliferation of (1,−1) vortices. In what
follows, we consider the case m1 = m2 = 1 and n1 =
n2 = ρ, nd = ρd, in units where ~ = 1, namely

F =
ρ

4
(∇(θ1 + θ2) − 2Θ)

2
+

ρ − 2ρd

4
(∇(θ1 − θ2))

2
(3)

In the absence of rotation, the model Eq. (3) has three
different phases. (i) At low drag and low temperature,
there is a phase with broken U(1)×U(1) symmetry. (ii)
At high temperatures there is a fully symmetric phase.
(iii) At ρd > 0, there is a phase with broken U(1) symme-
try only in the phase sum. This is the TPS. The phase
diagram was studied in the J-current representation in
[2], and in terms of proliferation of vortex loops in the
Villain model in [4]. In this work, we address the ques-
tion of the physics of this system when it is subjected
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to rotation. To this end, we have performed large scale
Monte Carlo computations on Eq. (3), following the pro-
cedures of Ref. 4. Rotation is accounted for by choosing
Θ = (0, 2πfx, 0), where f is the number of rotation in-
duced vortices per plaquette in the xy-plane. Our free
energy is a function of the ratios of stiffnesses to temper-
ature. Thus, we explore the phase diagram in terms of
these dimensionless ratios, i.e. by absorbing the temper-
ature in ρ and ρd. Thus, low values of ρ and ρd amount
to high temperatures, and vice versa. In these standard
units, and in the discretization scheme using the Villain-
approximation, the single-component XY model has a
critical stiffness ρc ≈ 0.33. We have considered cubic
numerical grids, with periodic boundary conditions, of
size L3 with L = 64 and 128. Moreover, we have chosen
f = 1/64. For each coupling we have used 5 · 105 sweeps
over the entire grid for thermalization, and then used 106

sweeps for calculating averages.
In the limit ρd → 0, the system tends towards two de-

coupled superfluids for which our simulations recover the
standard triangular vortex lattice forming in response to
rotation. Already for a drag ρd as low as ρd ≈ 0.08, the
energetically most favourable vortex ordering becomes
square vortex lattices for each of the components. These
lattices are shifted with respect to each other half a lattice
spacing in the x- and y- directions. This effect, arising in
this hydrodynamic model with current-current interac-
tions, has a counterpart in the appearance of square lat-
tices in two-component condensates with density-density
interaction [5]. Below, we study vortex matter with fur-
ther increased drag and temperature by (i) inspection of
3D snapshots of typical vortex configuration, (ii) calcu-
lating structure factors, and (iii) by calculating the quan-
tity ν̃i(r⊥) representing real-space averages over various
number of MC sweeps of the vorticity integrated along
the z-direction, defined as

ν̃i(r⊥) =

〈

1

Lz

∑

z

νi
z(r⊥, z)

〉

, (4)

where νi
z(r⊥, z) is the vorticity of component i along the

z direction at r = (x, y, z) and r⊥ = (x, y), 〈·〉 denotes
MC averaging. It is important to note that when ν̃i(r⊥)
shows a lattice ordering, although it signals a particular
rotational response, it does not necessarily imply a vortex
state visible in z-axis density averages. This is so because
the MC and z-axis averages in ν̃i(r⊥) are taken over
vorticity, but not over a density. Vortex segments with
opposite phase windings cancel each others vorticity in
these averages.

In the low drag, low temperature regime the quan-
tity ν̃i(r⊥) show peaks corresponding to a square lat-
tice. At stronger drag, there appear weak intensity peaks
in the center of the plaquettes for each of the com-
ponents, cf. Fig. 1. This means that an increased
drag and temperature creates a fluctuating vortex back-

ground such that there is an increased probability to
find a segment of a vortex directed along the z-direction
and situated in the center of plaquettes of the square
vortex lattice, Fig. 1. In addition, the higher order
Bragg peaks disappear from the k-space structure fac-
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With increasing temperature, equivalently decreasing
ρ, the intensity of new peaks in the quantity ν̃i(r⊥) grows
at sufficiently large ρd. Eventually, we observe a discon-
tinuous phase transition to a state with domains where
the secondary real-space vortex position peaks have an
intensity equal to the primary peaks. In these domains,
the lattice symmetry also changes from square to trian-
gular, and the real space position averages for each com-
ponent become identical, i.e. ν̃1(r⊥) ≈ ν̃2(r⊥). These
triangular lattice domains coexist with domains of square
high-intensity lattices with a weaker intensity square
sublattice, where ν̃1(r⊥) is approximately the same as
ν̃2(r⊥), but shifted a half lattice spacing in the x- and
y-direction. This is seen by comparing panels a) and b)
in Fig. 2.

FIG. 1: (Color online) The average vortex positions in xy-
plane integrated along the z-direction and averaged over every
100th of a total of 1 · 106 MC sweeps (ν̃1(r⊥)). Here ρ =
0.924 and ρd = 0.17 in a) and ρd = 0.37 in b). The brighter
green color shows higher probability to find a vortex segment
directed along the rotation axis. The left part of each panel
shows vortices with phase winding in component 1 ν̃1(r⊥),
while the right part is that for the component 2 ν̃2(r⊥). The
lattice of the two components are displaced a half period in
both directions. The inset shows the corresponding k-space
structure factor.

With further increase of temperature, the triangular
lattice domains grow until ν̃1(r⊥) and ν̃2(r⊥) form iden-
tical essentially perfect triangular lattices which precisely
coincide in space, cf. panels c) of Fig. 3. Note also
that now ν̃i(r⊥) has twice as high density of vortex posi-
tions as the low-drag, low-temperature case. Fig. 2 also
shows snapshots of typical vortex configurations arising
in these states. Even in the state with U(1)×U(1) sym-
metry and square lattice with relatively weak sublattice
intensity peaks in ν̃i(r⊥), it is not obvious from a typ-
ical snapshot that the system has a vortex lattice with
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translational symmetry is broken. Moreover, it is impos-
sible to see vortex lattices in any snapshots corresponding
to the case when statistical averaging produces nearly
perfect triangular lattice. Thus, we will use the term
“hidden vortex lattice” (HVL) for this case. In Fig. 3,
we show ν̃i(r⊥) averaged over a different number of MC
snapshots. In the case of triangular HVL, in contrast
to the low-drag low-temperature case, averaging over a
small number of MC snapshots shows no vortex lattice
in real space images. As seen from 3D snapshots, the
effect is stronger for density averages, i.e. averages per-
formed over vortex-core positions instead of vorticity av-
erage of z-axis directed vortex and antivortex segments,
represented by ν̃i(r⊥).

FIG. 2: (Color online) The upper row shows the xy-position
of component 1 vortices integrated along the z-direction,
ν̃1(r⊥), averaged over every 100th of a total of 1.0 · 106 MC
sweeps. a): ρ = 0.984, b): ρ = 0.982, c): ρ = 0.980, ρd = 0.4
in all panels. The inset shows the corresponding k-space
structure factor S1(k⊥). The bottom row shows typical 3D-
snapshots of the vortex configuration of a 16×16×16 segment
of the simulated system. The green and yellow color repre-
sents vortices in different components. The figure shows the
transition from a square lattice structure (leftmost column) to
a triangular lattice structure (rightmost column). The middle
column shows coexistence of a triangular and square lattice.
The square lattice is seen in the left top and bottom corner
of the panel b), it is also possible to see a square structure
inside the hexagonal structure in the k-space inset. For vi-
sualizing the 3D snapshots, the vortex diameter is chosen to
be 0.1 of the numerical grid spacing. Sharp bends arising at
the scales of numerical grid spacing are smoothed by spline
interpolation. For animations, see [6].

The evolution of vortex matter with increasing tem-
perature at significantly strong drag can be described as
follows. Topologically, the increase in drag makes com-
posite defects (1,−1) with energy ∼ ρ − 2ρd the easiest
objects to proliferate. The thermally generated compos-
ite (1,−1) vortex loops interact with the rotation induced
lattice through processes schematically illustrated in Fig.
4. For instance, a rotation induced (0, 1) vortex line can
absorb a segment of a thermally created (1,−1) vortex

FIG. 3: (Color online) Panel (a) is a typical snapshot of
ν̃1(r⊥) with the corresponding k-space structure factor as
inset, while panel (b) is the corresponding quantity averaged
over 5 different configurations (100 MC sweeps are used to
obtain a new configuration) while in panels (c) the quantity
is averaged over 1000 different configurations. We see that
one needs to average over several configurations before a tri-
angular lattice is clearly visible in ν̃i. The computations were
done for ρ = 0.98, ρd = 0.4.

FIG. 4: (Color online) Left panel illustrates how a segment
of a rotation induced vortex line effectively can change color
via merger with a thermally excited composite (1,−1) vortex
loop. The process is responsible for e.g. appearance of sublat-
tice peaks in ν̃i(r⊥). Right panel shows that when the system
undergoes a transition from square to triangular vortex lat-
tice, the helicity modulus for the (θ1 − θ2) sector, Υ− goes to
zero, while the helicity modulus for component 1 , Υ1 stays
finite (left axis, squares). Also, it is seen that in spite of vor-
tex number doubling in the quantity ν̃i(r⊥), the number of
z-directed rotation induced vortex segments is constant (right
axis, circles). N is the number density of z-directed vortices.

loop. This changes the “color” of a segment of the rota-
tion induced line. Subtracting all counterflow segments
(i.e. co-centered counter-directed vortices (1,−1)) which
are not directly relevant to rotational response, shows
that this process leads to a rotation-induced vortex lat-
tice where the vortex lines comprising the lattice will have
randomly alternating and thermally fluctuating colors.
Indeed, when the number of thermally induced (1,−1)
loops is low, each sublattice at any moment acquires only
a small number of segments of vortices of another color
via rare merger processes with thermally excited compos-
ite vortices. This is the origin of the weak sublattice in-
tensity peaks appearing in the centers of each plaquette,
discussed above. At sufficiently strong drag the system
should undergo a transition to the TPS via proliferation
of (1,−1) vortices. In the TPS, the remaining broken
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U(1) symmetry in the phase sum still allows the system
to form rotation induced lattices of individual vortices,
but the individual vortices (1, 0) and (0, 1) will constantly
absorb and emit (1,−1) vortex loops. Thus, one cannot
attribute a specific color to them. In this state the system
only has one type of color-indefinite topological defect,
and the spatially and MC averaged images ν̃i(r⊥) display
a triangular lattice. Even though the averaged real space
images show a doubled number of vortices as seen in Fig.
3, Fig. 4 illustrates that in our simulations the total
number of z-components of the elementary segments of
rotation-induced vortices does not change. In snapshots,
every rotation induced vortex line on average consists of
50% green segments and 50% yellow segments. Overall,
the system in this state is in a disordered vortex tangle
state which is continuously undergoing merger processes
between composite and individual vortices. The break-
down of spatial symmetry transpires only after spatial
and MC averaging.

We now discuss quantitatively the influence of rota-
tion, for given vortex density, on the phase diagram of the
system. Fig. 5 shows the phase diagrams of the model
in the Villain approximation, both without rotation [4],
and with rotation. In the zero-drag limit the broken sym-
metry domain shrinks most significantly, since under ro-
tation the symmetry is now restored by lattice melting
rather than vortex loop proliferation. On the other hand,
in the strong-drag limit an opposite situation arises.
Namely, the transition from U(1) × U(1) to U(1) TPS
state is governed by composite vortices and for strong
enough drag is almost unaffected by rotation-induced lat-
tice of individual vortices. However, the transition from
TPS to a fully symmetric state is strongly affected by
rotation because it is dominated by vortex-lattice melt-
ing rather than vortex-loop proliferation. Note also that
the stiffness at this transition is independent of ρd and is
exactly twice the critical stiffness of the phase transition
in the zero-drag limit. This demonstrates the accuracy
of the separation of variables argument in Ref. 4 in case
of a rotating system.

In conclusion, we have studied the rotational response
of a hydrodynamic model of two interacting superfluids.
At very low temperatures, the drag effect results in for-
mation of vortex lattices with square symmetry in re-
sponse to rotation. At moderate temperatures, there ap-
pears a statistical vorticity buildup in the form of a weak
square sublattice. With further elevation of the temper-
ature the system undergoes a transition to a TPS which
we find is accompanied by a melting of the square lattice
into a triangular one. The new triangular lattice breaks
translation symmetry in a statistical sense. Snapshots
of this state reveals a highly entangled vortex state. We
stress that the quantities which we use, namely ν̃i(r⊥)
and Si(k), measure averaged vorticity and do not nec-
essarily imply detectable breakdown of translation sym-
metry in density measurements. This might have ex-

ρc

ρ/ρm

ρd

m1 = m2 = m

ρ1 = ρ2 = ρ

2.521.51.50

.4

.2

0

FIG. 5: (Color online) Phase diagram of the model Eq. 1
with and without rotation. Dotted lines and blue crosses are
obtained from the analytical estimates and numerical results
from Ref. 4. Black crosses are obtained in the current case of
rotating system from the vanishing of the peaks of structure
function at primary reciprocal lattice vectors of the rotation-
induced vortex lattice, which signals symmetry restoration.

perimental implications. There might be regimes where
density snapshots may not display vortex lattices in the
TPS, even though the system may have perfectly trian-
gular HVL from the point of view of the above quantities
which measure averaged vorticity. It might, however, be
possible in principle to detect HVL in interference exper-
iments. Furthermore, in a certain sense a counterpart
of some of the phenomena discussed above may be visi-
ble in the density profile of quasi-2D systems. There, in
the regime of strong drag, the composite (1,−1) vortices
undergo a Berezinskii-Kosterlitz-Thouless transition at
(ρ/2−ρd) = π/4 while the system retains the order in the
phase sum for ρ/2 > π/2. Under rotation, they can be
expected to display a vortex lattice of individual vortices
coexisting with a liquid state of thermally excited com-
posite vortices and antivortices. Finally, we remark that
the previous studies of the effect of a presence of a trap
on thermally fluctuating vortices in single-component hy-
drodynamic model [7], suggest that a density variation
in a trapped two-component condensate may produce a
situation where several of the above states may be simul-
taneously present at different distances from the center
of the trap.

This work was supported by the Norwegian Research
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