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Magnetic field delocalization and flux inversion in fractional vortices in

two-component superconductors
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We demonstrate that, in contrast to the single-component Abrikosov vortex, in two-component
superconductors vortex solutions with exponentially screened magnetic field exist only in exceptional
cases: in the case of vortices carrying an integer number of flux quanta, and in a special parameter
limit for half-quantum vortices. For all other parameters the vortex solutions have delocalized
magnetic field with a slowly decaying tail. Furthermore, we demonstrate a new effect which is
generic in two-component systems but has no counterpart in single-component systems: on exactly
half of the parameter space of the U(1) × U(1) Ginzburg-Landau model, the magnetic field of a
generic fractional vortex inverts its direction at a certain distance from the vortex core.

The two-component Ginzburg-Landau (TCGL) model,
in which two independent superconducting components
interact with each other via a coupling to a vector po-
tential, appears in various physical contexts. It describes
the projected quantum liquid states of metallic hydrogen
and its isotopes under high pressure1,2,3,4, where super-
conductivity of electrons coexists with superconductivity
of protons or a Bose condensate of deuterons. Similar
models describe neutron star interiors, where the two
superconducting components represent possible protonic
and Σ− hyperonic Cooper pairs5. There are also various
physical situations where the U(1) × U(1) TCGL model
arises as an effective description6. The crucially impor-
tant excitations appearing in the physics of rotational
and magnetic responses, fluctuations and phase transi-
tions in these systems are the topological defects (vortex
lines and loops). Qualitative analysis of the U(1)×U(1)
symmetric TCGL model indicates that it allows vortex
excitations carrying an arbitrary fraction of the stan-
dard flux quantum, where the fraction is determined by a
continuous parameter, the ratio of superfluid densities1.
There is also growing interest in various unusual integer-
flux vortex solutions which can be viewed, in this model,
as bound states of fractional flux vortices7,8. So far, frac-
tional flux vortices in these theories have been discussed1

only in the so-called London limit, a mathematical sim-
plification wherein the condensate densities are assumed
to be constant outside the vortex core, which is mod-
eled by a sharp cutoff. It is well known that in single-
component systems the London limit gives a qualitatively
accurate picture of the behavior of the fields of a vortex
in the full Ginzburg-Landau model; in particular, it cor-
rectly predicts that the magnetic field varies monotoni-
cally and is screened exponentially at large distances.

In this Letter, we demonstrate that the situation in the
two-component case is entirely different. We find that
vortex solutions in the TCGL model are, in fact, qualita-
tively different from the solutions obtained in the London
limit, and exhibit highly unusual behaviour for a system
which has a Meissner effect. Namely, we find that the

magnetic flux of a fractional vortex is generically not ex-
ponentially localized in space, but has a long tail which
decays according to a 1/r4 power law. The magnetic field
has a tendency to get extremely delocalized for small frac-
tions of flux quanta, where the maximum of the magnetic
field at the vortex center becomes barely distinguishable.
This effect can be understood using explicit asymptotic
formulas we obtain for the magnetic field and conden-
sate densities at long range in terms of the TCGL model
parameters. These formulas show, moreover, that under
quite generic conditions in multicomponent superconduc-
tor the magnetic field in a fractional flux vortex can re-

verse its direction at a certain distance from the core,
in stark contrast to vortex solutions in single-component
superconductors.

The system of interest is the U(1) × U(1) symmetric
TCGL model with free energy

E =
1

2

∫

dx dy
{

|(∂k + ieAk)ψ1|2 + |(∂k + ieAk)ψ2|2

+η1(u
2
1 − |ψ1|2)2 + η2(u

2
2 − |ψ2|2)2 + (ǫij∂iAj)

2
}

. (1)

Here ψ1,2 are two complex scalar fields corresponding to
two superconducting order parameters. The model (1) is
realized in physical systems where the electrodynamics is
local and Josephson-like coupling between condensates is
forbidden. We have given the condensates equal electric
charge, but the results apply equally well for a system of
oppositely charged condensates2,3,4,5 since the model (1)
is invariant under inversion of the sign of the charge of a
condensate accompanied by complex conjugation of that
condensate. The results can be straightforwardly gener-
alized to include other terms in the effective potential,
or mixed gradient terms, so long as these are consistent
with the U(1) × U(1) symmetry. Vortices in this model
are solutions of the Euler-Lagrange equations

(∂k + ieAk)2ψ1 + 2η1(u
2
1 − |ψ1|2)ψ1 = 0 (2)

(∂k + ieAk)2ψ2 + 2η2(u
2
2 − |ψ2|2)ψ2 = 0 (3)

−ǫkj∂jB = Jk (4)
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where Jk is the supercurrent Jk = i
2
e{ψ1(∂k − ieAk)ψ∗

1−
ψ∗

1(∂k + ieAk)ψ1 +ψ2(∂k − ieAk)ψ∗

2 −ψ∗

2(∂k + ieAk)ψ2}.
In the first part of this paper we seek solutions of this
system within the axially symmetric ansatz

(A1, A2) =
a(r)

r
(− sin θ, cos θ); ψi = σi(r)e

−iniθ (5)

which amounts to imposing 2πni winding on the phase of
condensate ψi, where ni are integers. Here x+ iy = reiθ

and a(r), σi(r) are real profile functions. Note that, in
certain cases the axial symmetry of vortex solutions in
this model was found to be spontaneously broken7. How-
ever in the cases studied below, the solutions are axially
symmetric, as verified by the numerical simulations pre-
sented in the second part of the paper. In what follows
we are looking for localized solutions in the sense that
|J| → 0 and σi → ui as r → ∞. It follows that

a(r) → a∞ =
1

e
Φ, where Φ =

n1u
2
1 + n2u

2
2

u2
1 + u2

2

. (6)

By Stokes’s theorem, it follows that the total magnetic
flux through the xy plane is

∫

B dxdy = 2π
e

Φ which is a
fractional multiple Φ of the usual flux quantum if n1 6=
n2

1.
Substituting (5) into (2),(3),(4) yields a coupled sys-

tem of ordinary differential equations

σ′′

1 +
σ′

1

r
− (n1 − ea)2

r2
σ1 + 2η1(u

2
1 − σ2

1)σ1 = 0 (7)

σ′′

2 +
σ′

2

r
− (n2 − ea)2

r2
σ2 + 2η2(u

2
2 − σ2

2)σ2 = 0 (8)

a′′ − a′

r
− e(ae(σ2

1 + σ2
2) − n1σ

2
1 − n2σ

2
2) = 0 (9)

subject to the boundary conditions a → a∞, σ1 → u1,
σ2 → u2 as r → ∞. Solutions with n1 = n2 carry
integer flux and were considered in Ref.7. They turn
out to have a much richer variety of interaction behavior
than Abrikosov vortices. However, just like their single-
component counterparts, the modulation of the fields |ψi|
and |B| is exponentially localized in space. Here we ob-
serve that, by contrast, if n1 6= n2, neither n1 − ea nor
n2 − ea approaches zero as r → ∞, and consequently
it follows from (7), (8) that neither σ1 nor σ2 can ap-
proach its boundary value (u1, u2 respectively) exponen-
tially fast. So, in contrast to integer flux vortices, for
fractional flux vortices the densities |ψi| can recover their
asymptotic values only according to some power law.
Since the third terms in (7), (8) decay like r−2 it is con-
sistent to assume (the assumption is verified below) that

σi(r) ∼ ui − αir
−2, i = 1, 2 (10)

at large r, for some real coefficients α1, α2. Then σ′′

i ,
σ′

i/r are O(r−4), and demanding that the leading term
(order r−2) vanishes gives the prediction

αi =
(ni − Φ)2

4ηiui

, i = 1, 2. (11)

Note that αi > 0, so σi approaches its boundary value
from below, as one expects. From (9), it is then consis-
tent to assume (again, verified below) that

a(r) ∼ Φ

e
− βr−2 (12)

at large r, for some real coefficient β. Again, a′, a′/r are
order r−4, and demanding that the leading term in (9)
vanishes leads one to predict that

β =
1

2e(u2
1 + u2

2)

{

(n1 − Φ)3

η1
+

(n2 − Φ)3

η2

}

. (13)

Now B = r−1a′(r), so in the case where Φ > 0 (e.g.
if n1, n2 ≥ 0), a(r) interpolates between a(0) = 0 and
a∞ > 0, so one expects a′(r) > 0 uniformly, and hence
B(r) > 0. In particular, one expects a(r) to approach its
boundary value a∞ from below, so that β > 0. But
in this regard, formula (13) contains a surprise: it is
quite possible for β to be negative. In this case, since
B(r) ∼ 2βr−4 at large r, we see that the magnetic field

has to flip its direction as one travels out from the vortex

core: it is positive for small r and negative for large r.
Let us introduce polar coordinates on the u1u2 and η1η2
parameter planes, so u1 + iu2 = ueiζ and η1 + iη2 = ηeiφ

where 0 < ζ, φ < π
2
. Then

β =
(n1 − n2)

3

2eu2η

{

sin6 ζ

cosφ
− cos6 ζ

sinφ

}

, (14)

so β < 0 if and only if tanφ < cot6 ζ, which holds on
precisely half of the ζφ square. Hence, not only can mag-
netic flux reversal occur for fractional flux vortices, it is
a generic effect which occurs on half the parameter space
of the TCGL model (see also remark10).

It is interesting to consider parameter values on the
curve tanφ = cot6 ζ, for which β ≡ 0. At generic points
on this curve, a(r) ∼ a∞ − β′r−4, so for that family
of vortices the magnetic field B is power-law localized,
but with unusual power, decaying as r−6. However we
find that a very special situation happens when the vor-
tex carries a half of the flux quantum and both conden-
sates have the same coherence length, that is, u1 = u2,
η1 = η2 (i.e. φ = ζ = π

4
). This regime is relevant for

physical situations where such a TCGL model is dic-
tated by symmetry. Substituting power series ansätze
σi(r) =

∑

∞

k=0 αi,kr
−k, a(r) =

∑

∞

k=0 βkr
−k into (7)-

(9), we see that it is consistent that a(r) = a∞ to all or-
ders (i.e. βk = 0 for k ≥ 1): equations (7) and (8) then
imply that σ1(r) = σ2(r) to all orders (i.e. α1,k = α2,k

for all k), which is consistent with (9) (whose left hand
side is then zero to all orders). One is led to conclude,
therefore, that exponential localization of the magnetic
field B(r) is recovered for the half-quantum vortex at
this symmetric parameter set, despite the density fields
|ψi(r)| still being only r−2 localized.

To obtain more detailed knowledge of the behavior of
the profile functions of fractional flux vortices, and con-
firm accurately the above calculations, we must perform
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numerical computations. The shooting method for sys-
tem (7)-(9) described in Ref.7 turns out to be hopelessly
unstable for fractional flux vortices, so we must resort
to a relaxation method. We have discretized the system
using the method described in9 then used gradient based
optimization algorithms to find highly accurate minima
of the system energy for a given phase winding. It should
be noted that the numerical scheme does not impose ro-
tational symmetry, so if we obtain axially symmetric so-
lutions (as we do), we can be confident that they are
stable against all small perturbations.

In this second part of the paper, we present the nu-
merical results for the parameters e = 2, η1 = η2 = 2/3
and several values of ui. These parameters allow us to
confirm numerically the analytic calculations from the
first part of the paper. The characteristic unusual fea-
tures become more pronounced with decreasing e, ηi (i.e.
the vortex solution gets more delocalized and has more
pronounced field inversion tail). However our choice
of parameters here is motivated by minimizing the ef-
fects of the boundary of the numerical grid. We present
detailed numerical investigations of the following cases:
[n1 = 1, n2 = 1, u1 = 1, u2 =

√
0.2] (flux fraction

Φ = 1), [n1 = 1, n2 = 0, u1 = 1, u2 =
√

0.2] (flux fraction

Φ = 5/6) and [n1 = 1, n2 = 0, u1 =
√

0.2, u2 = 1] (flux
fraction Φ = 1/6).

Eq. (10) indicates that the rate at which the density
approaches its ground state value at large distances de-
creases as its corresponding αi increases. This is indeed
confirmed by the plots in Fig. 1. The long distance be-
havior of all of these agrees with (11): in the integer-flux
case the densities recover their vacuum values exponen-
tially fast, as in the case of the Abrikosov vortex (and
α1 = α2 = 0) while in the fractional-flux cases the be-
havior is αi/r

2. We also find that the component ψ2

(which does not have phase winding) exhibits very un-
usual behavior near the origin in the second case: its den-
sity has a local maximum in the core. Observe that in
our model we do not have terms in the effective potential
corresponding to direct interspecies density-density inter-
actions, and this unusual density maximum in the core is
caused purely by electromagnetic interaction of the con-
densates. We explored this behavior for a range of differ-
ent values of u2. The results of three characteristic cases
with u2 ∈ {0.2, 0.4, 2} are shown in Fig. 2, which suggests
that decreasing u2 deepens the “W”-shaped density mod-
ulation in the condensate without phase winding. The
maximum of ψ2 originates in the fact that the circula-
tion of the supercurrent in the component ψ2 stems from
the vector potential (see eq. (3)). At distances r ≪ λ
from the core we have σ1 ∼ rn1 , σ2 ∼ rn2 , a ∼ r2. The
behavior of a shows that there is almost no supercurrent
circulation in ψ2 near the origin of the vortex. Conse-
quently |ψ2| tries to minimize the energy by recovering
the ground state value of density at short r. Since there
are no singularities of superfluid velocity in the compo-
nent ψ2 the “W”-shaped density suppression can be arbi-
trarily deep; however it can never produce a zero-density

singularity in |ψ2|.
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Figure 1: (Color online.) Asymptotic behavior of the fields
in the two-component vortex: |ψ1| (left) and |ψ2| (right) with
flux fractions 1 (solid blue), 5/6 (dashed green) and 1/6 (dash-
dot red). In accord with analytic calculations, in the case of
1/6 flux quantum, |ψ1| is strikingly delocalized; however in
the case of 5/6 flux quantum, the power-law tail is tiny and
the difference from the integer-flux case is barely visible. The
ψ2 configuration is coreless, but has a dip and local maximum
at the origin. The dip is especially pronounced in the case of
5/6 flux quanta, and is almost invisible in the case of 1/6 flux
quanta (where |ψ2(0)| = 1 and |ψ2(3.2)| ≈ 0.9996).
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Figure 2: (Color online.) The behavior near the vortex core:
|ψ1| (left) and |ψ2| (right) with flux fractions 5/6 (solid blue),
5/7 (dashed green) and 1/3 (dash-dot red). The component
with the phase winding |ψ1| always has a singularity. The
other component always has a non-singular “W ’-shaped sup-
pression of density.

Let us turn our attention to the magnetic field. From
the above analytic considerations, we expect the mag-
netic field to approach zero exponentially if the flux frac-
tion is an integer. Also exponential and high algebraic
power 1/r6 localization of magnetic field is found in some
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cases for half-quantum vortices. But in the general case,
the magnetic field should have 1/r4 asymptotic behavior.
Indeed, this can be seen in Fig. 3, which shows the mag-
netic field behavior in the same three cases whose density
plots appear in Fig. 1. Figure (3) confirms the two main
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Figure 3: (Color online.) The behavior of Bz near the origin
of the vortex (left panel) and long-range tail (zoomed in, right
panel) with flux fractions 1 (solid blue), 5/6 (dashed green)
and 1/6 (dash-dot red). We see behavior strikingly different
from the Abrikosov vortex: in case of 1/6-quantum vortex, the
magnetic field is extremely delocalized without a pronounced
maximum at the origin, but already at r ≈ 3.5 having larger
value than the field of the one-quantum vortex . In case of 5/6
quantum, the vortex accumulates magnetic flux larger than

(5/6)Φ0 near the origin, almost mimicking in this region the
Abrikosov vortex. However the magnetic field rapidly goes to
zero at r = 3.275 ± 0.0125, after which point the magnetic
field flips its direction, producing a slowly decaying power-
law tail of inverse flux. The delocalized magnetic flux in the
outer region subtracts from the strongly localized flux near
the origin to produce net flux (5/6)Φ0 . The dotted lines in
the right panel depict the curves predicted by Eq. (12).

generic features of vortex solutions in the TCGL model
predicted in the first part of the paper: the delocalization
of magnetic flux when the fraction of the flux quantum
is 1/6, and the delocalization and reversal of magnetic
flux when the fraction of the flux quantum is 5/6. These
features get even more pronounced for weaker potentials
and larger penetration lengths.

In conclusion, we showed that, quite counter-
intuitively, considering the solutions of the complete two-
component Ginzburg-Landau problem reveals new and
unusual physics. Namely, we find that for generic frac-
tional flux vortex solutions (except for the special pa-
rameter set of half-quantum vortices) the magnetic field
is delocalized, possessing a slowly decaying 1/r4 tail, and
that on exactly half of the model’s parameter space, the
vortices exhibit magnetic flux inversion: near the origin
of the vortex there is a peak in magnetic field carry-
ing flux in the positive direction of the z-axis, while at
a certain distance from the core this field has a rapid
reversal of direction producing a tail of magnetic field
in the negative direction along the z-axis. These phe-
nomena should have a number of physical consequences.
Field delocalization and inversion can serve as an experi-
mental signature of fractional vortices in superconductors
with multiple components or in artificial superconduct-
ing structures with several magnetically coupled super-
conducting components. The model describes the pro-
jected quantum fluid of metallic hydrogen2,3,4, a subject
of renewed experimental pursuit. This magnetic field de-
localization effect should affect magnetic-response-based
techniques proposed to be the main tool to detect the
transition to the quantum fluid of metallic hydrogen and
suggested similar transitions in hydrogen-rich alloys and
deuterium4.
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