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Preemptive vortex-loop proliferation in multicomponent interacting Bose—Einstein condensates

E. K. Daht, E. Babae®¥?, S. Kragset, and A. Sudbg
1 Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2 Physics Department, University of Massachusetts, Amherst MA 01003, USA
3 Department of Theoretical Physics, The Royal Institute of Technology 10691 Stockholm, Sweden
(Dated: February 18, 2008)

We use analytical arguments and large-scale Monte Cartmilegions to investigate the nature of the phase
transitions between distinct complex superfluid phases tinmcacomponent Bose—Einstein condensate when
a non-dissipative drag between the two components is bairigd: We focus on understanding the role of
topological defects in various phase transitions and dgvebrtex-matter arguments allowing an analytical
description of the phase diagram. We find the behavior of datain induced vortex matter to be much more
complex and substantially different from that of singlerpmnent superfluids. We propose and investigate
numerically a novel drag-induced “preemptive vortex loogliferation” transition. Such a transition may be a
quite generic feature in many multicomponent systems warametry is restored by a gas of several kinds of
competing vortex loops.

PACS numbers: 03.75.Hh, 03.75.Kk, 03.75Nt, 47.32.cb

I. INTRODUCTION ation, the detailed investigation of which is the goal of the
present work.

Natural generalizations of many superfluid phenomena are 10 describe the behavior of the system undergoing these

possible in mixtures of independently conserved multicomp Phase transitions as proliferation of vortex loops in a two-
nent Bose—Einstein condensates with intercomponentraurre €OMPonent condensate, we propose a scenario of a “pre-
current interactions. The topic was first investigated ia th €mPptive vortex-loop proliferation”. This scenario in par-
context of‘He — 3He mixtured?, where it is possible to at- thular allows us to estimate the characteristic crmcal_Jc

tain only a limited range of parameters. The recent progress Plings (or equivalently, critical temperatures) and pdes a
atomic Bose—Einstein condensates (BEC) has made it pos§{ortéx-matter based picture of the transitions in the most i
ble to access a much wider range of regimes and explore novEiresting part of the phase diagram, from a state with broken
superfluid phases which can arise in such mixtures. For thi§ (1)xU(1) symmetry into a paired superfluid state and a sub-
reason, there has been much interest in a generic example $fduent transition into a normal state. To find numericeatbac
an interacting BEC mixture, namely/&1) x U (1)-symmetric N9 for the preemptive vortex-loop proliferation scenaxie
system with current-current interactions. One of the nagel Performalarge-scale Monte Carlo (MC) calculation of verte
pects of the superfluid physics in such a system is the podatter in the interacting BEC mixture using a representatio
sibility of a phase transition at a sufficiently strong catre " t€rms of the phases of the ordering fields of the conden-
current interaction to a state of paired superfluid where théates. This numerical approach allows us to study direotly v
only brokenl/ (1) symmetry is associated with order only in tex matter and t_herefore may be V|ew_ed as complementary to
the phase sufn The other discussed example (which doesthe Worm-algorlthm_based approach in Rels. 3,(_3,12. The in-
not fall within the framework of Galilean-invariance based Sight which we obtain from Monte Carlo calculations on vor-
argumerd) is a phase transition for bosons on an optical lat-18x matter may also shed light on how the Andreev—-Bashkin
tice to a state where one species of bosons pair with holes ect modifies the vortex-matter phase transition predicted

the other species, and thereby retaining order only in tasgh for the liquid metallic state of hydrogén
differencé*>. Finally, we remark that the problem of multicomponent

These transitions were investigated numerically in greaYOrtex-loop proliferation has a quite generic charactacesit
detail in the.J-current model in Ref.[]6 using the worm- 'S also related to a wide spectrum of phase transitions ieroth

algorithn?. This numerical study, combined with mean-field SYStems. An example is represented by individually coreserv
arguments, revealed the interesting fact that with inéngas electrically charged condensates that communicate with ea

. . . . . - Q120,11,12,13,14,15 .
current-current interaction, the usual second-order r$uid other only via a fluctuating gauge fiéld e

phase transition is altered to a first order phase trangition ©V€r @ related problem arises in three-dimensional génara

In the free energy functional, the current-current intéoac ~ 1ONS Of phase transitions discussed recently for certainep
is consistent witH7(1) x U(1) symmetry and the transition SPIN- condensatéé-’

should therefore be associated with a proliferation ofrate

ing vortex loops where all vortex-loop segments of the syste
interact with each other through a Coulomb potential. Ex-
isting theories of proliferation of such defects, howewt,
ways lead to a second-order superfluid phase tran8ititnis
indicates that in this system we are faced with a novel sce- We consider a mixture of Bose—Einstein condensates with
nario for thermally driven spontaneous vortex-loop pestif  U(1) x U(1) symmetry and current-current interaction. This

1. THE MODEL
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system in the hydrodynamic limit is describedtby of the condensates equal and absefb: in the definition of
1 p. We focus on theyy; > 0 case. In what follows, we de-
F = = / dr {(p1 — pa)vi + (p2 — pa)v3 + 2pqv1 - v2} note expressions for phase stiffnesses for various topzbg
2 Jr excitations as/(; ;), (the index(i, j) refers to corresponding

1 X " X .
=5 / dr {plvf + pov2 — palvy — 02)2} ’ 1) topological defect). The explicit expressions are given by
I
J(1,00 = p1 — pds (6)

wherev; = hV6;/m,. The last term describes a current-

current interactioh (for its detailed microscopic derivation,

see Ref| 18). The microscopic origin of the non-dissipative Jo,1) = p2 — pa, (7)
drag can for example be elastic inter-component scattering

due to van der Waals forces between the charge-neutral atoms

in the syster®, or can also originate from a lattié2 This Jay = prtpe, ®)
coupling is consistent with/’(1) x U (1) symmetry and thus
is very different from the symmetry breaking intercompo- Jii,—1) = p1+ p2 — 4pa. 9)

nent Josephson-coupling, which is a singular perturba#on

drag term is perturbatively irrelevant and a critical sgnis  Let us denote the critical stiffness of the XDV-Villain

needed to change the zero-drag physics of the problem, dueodel® by

to the extra two gradients in the coupling between the two

phases. pe~0.33 (10)
The discrete model as such may also have a physical real- , , i , )

ization in terms of a Bose—Einstein condensate on an optical "€n if we neglect any interactions between different sgeci

lattice. In the latter case, a particularly wide range of both Of vortices, naive _est|mates of_the lines where variousevort

positive and negative, can be accessgdThe parametes, ~ M0des would proliferate, are given as follows.

is a superfluid density of one condensate carried by the su- (1,0)-vortices proliferate from an ordered background

perfluid velocity of the other as follows from the equatiofis o @/0ng a line defined by, — pa = pe.

motiort, (0,1)-vortices proliferate from an ordered background
along the lines defined by, — pg = pe.
J1 = (p1 — pa)v1 + pava, (2) (1,—1) vortices would proliferate from an ordered back-
Go = (p2— pa)va + pavi. A3) ground along a line defined by + p2 — 4pq = pe.

Proliferation of (1, 1) is irrelevant because of the above
Symmetry-restoring phase transitions in this system @e-as types of topological excitations always proliferate (ahdst
ciated with proliferation of thermally excited topologicte-  restore symmetry) befor@, 1) vortices, whermp, > 0.
fects, namely vortex loofs In what follows, we denote vor- Below we show that this naive energy-scale based picture
tices in the two-component condensate by a pair of integeris not correct.
corresponding to the winding of the phases in each of the con-
densates

IV. PHASE DIAGRAM, EQUAL STIFFNESSES
(A91 = 27TTL1, Aeg = 27Tn2) = (nl,ng). (4)

The current-current interactiatpv, - v introduces a bias The simplest case is where the bare phase stiffnesses of
for counter-directed currents whenis positive . Indeed, this each componentis equal, so we begin by considering that case
term introduces an attractive Coulomb interaction betweeiffirst.

(+1,0) and (0, F1) vortices. The coefficients;, p2 and py

must satisfy the relation
A. Continuous phase transitions in limiting cases

P1P2
pa < ———, 5)
Lt P2 The character of the vortex-loop proliferation transitaam
for stability. This puts an absolute upper bound on the arhournreadily be understood in two limiting cases, by mapping the
of drag in the system that can be considered physical. In theystem to a single component model yielding standard second
phase diagrams to be presented below, we denote as gray (farder phase transitions.
bidden) those areas which cover the sets of parameters thatOne limit is the trivial limitp; — 0, when the system is de-
violate the above inequality. scribed by two independeiY” models undergoing a second
order phase transition frobi(1) x U(1) to a symmetric state.
Indeed, in this limit there is no energetic or entropic adage
lll. ENERGY SCALES ASSOCIATED WITH BARE in restoring order by composite topological defects.
STIFFNESSES Another limit which is fairly simple to understand, follows
from the fact that by increasing,, the stiffness of1, —1)-
Let us begin by a straightforward examination of the en-composite defects can be made arbitrarily much smaller than
ergy scales of the problem. In what follows, we set the massethe stiffnesses fof1,0) and(0, 1) defects. This is the limit



where2p — 4pg = p. < (p — pa) and thus the vortex loop C. Preemptive phase transition

(1, —1) costs little energy to excite, whild, 0) and(0, 1) ef-

fectively are frozen out. Physically, this also means th#tis

limit it is energetically costly to split a composite, —1) de- Now consider the most interesting regime where the line
fect into a pair of individual vortices, and therefore oneyma defined by the relatiod(; o) = Jo,1) = p — pa = pe inter-
neglect its composite nature and map the system onte a sects the line defined by the relation, _1) = 2p—4pa = pe.
component 3IXY model undergoing a phase transition at\We denote the intersection point derived from the naiveggner
Ja,—1) = 2p —4ps = p.. Becausgl,—1) vortices can- scale-based argument By;, par) = (3pc/2, pc/2). Con-
not disorder the phase sum, this continuous phase tramsitigider the regime slightly above the point = 3p./2 (i.e.

is associated with going from@(1) x U(1) stateto astate p = p; + § andpy = par + 6/2). Then, from Eq. [(T1)
with U (1) symmetry associated with order in the phase sumwe conclude that although the phase transition is indeed ini
which is the “paired superfluid phase” in Ref. 3. tiated by proliferation of the lowest-in-energy topologide-

Let us now consider the other regimes which occur in thefects (1, —1) in this regime), the remaining stiffness fdr, 0)
casep; = p2 = p case. For some regimes another representaand (0, 1) excitationsp/2 ~ pr/2 = 3p./4 (which can be
tion of Eq. [3) will be useful, namely read off from the second term in Eq_{11)), is actually less

thanp.. Hence, the vortice$l, 0) and (0, 1) cannot remain

P l/dr{(g _ ) V(01 — 62)]° confined oncd1, —1) are proliferated. Therefore, from the

2, g~ Pd 1=z separation of variables we may draw the conclusion that the
p 9 simple energy-scale based picture underestimates theatrit
+ D) [V (61 + 62)] } (11)  stiffnesses. More importantly, away from the limiting case
the process is cooperative and hence proliferation of campo
This form of the energy is particularly useful when we wantjte defects may trigger proliferation of individual vortis at
to discuss the vortex matter of the remaining superfluid COMgy critical stiffness where arguments based on energy scales
ponent in the background of proliferated composite vostice zlone would predict that the individual vortex loops remain
We next proceed to discussing this situation. confined. Thus, with respect td,0) and (0,1) vortices,
we are dealing with a “preemptive” vortex-loop proliferati
scenario, triggered by the interaction with vortices in & di
B. Phase transitions in a nontrivial vortex gas background ferent sector of the model. In the case where the energy of
(1, —1) vortices is almost the same as tha{bf0) and(0, 1)

A deviation from the vortex proliferation based on the naivevortices there is only one transition where by the same ar-
energy scales scenario is manifested in the transitiondthya f guments both types of topological defects assist each other
symmetric state in the regim&; _1) < J1,0) = Jo,1), I-8.  in restoring symmetry via a single phase transition. Numer-
2p — 4pg < pe < p — pq. To understand how this takes ical calculations which we report in the second part of this
place, we should understand how the background of proliferpaper confirm this behavior of vortex matter. Importantly,
ated(1, —1) vortices affectg1,0) and (0, 1) vortices. This whenever we observed this behavior, the phase transitisn wa
can be explained from the separation of variables in [EQ.. (11¥irst order within the resolution limits of our MC calculatis.

The spontaneous proliferation ¢f, —1) vortices leaves the The region of the phase diagram showing first order transi-
remaining broken symmetry only in the second term. Thetions in our computations, appears to be consistent with the
corresponding remaining phase stiffness is that of a “éfepp  findings in theJ-current modél with the same symmetry,
mode” associated with a response to varying the phase surthough in our case the microscopic physics is different.eNot
The stiffness of the clapping mode is destroyed by proliferthat this scenario is substantially different from the ommt
ation of the cheapest topological defects with a winding inous loop-proliferation transition invariably encounttie a

the phase sum. These defects are individual vortite®) or  single-component mod&¥,

(0,1). The separation of variables E._{11) suggests that the

background of proliferated , —1) vortices destroys the phase  Fig. [ summarizes the new estimates for the lines of vor-
stiffness in the first term and thus only the second term deteitex proliferation which follow from the separation of vésla
mines the effective stiffness ¢f,0) or (0, 1) vortices. Their ~argument Eq[(11). They are given by three different regimes
stiffness is therefore reduced compared to the bare sifime ) )

the naive energy scale argument. The new effective stifines (1,0)- and(0, 1)-vortices proliferate from an ordered back-
is j(1,0) — j(LO) = p/2, and thus it suggests that the Systemground along a line defined hy— pgs = p. (solid red line in
undergoes a phase transition to a fully symmetric state at Fig.[),

1 (1,-1) vortices proliferate from an ordered background
P = Pe: (12) along a line defined bgp — 4p; = p. (dashed blue line in
Fig.[D),

Note that from this argument, it follows that the prolifeoat

of (1,0) or (0,1) vortices in the background of proliferated  (1,0)- and (0, 1)-vortices proliferate from a background
(1,—1) vortices is determined by only. This is testable in of proliferated(1, —1)-vortices atp/2 = p. (dashed-dotted
MC calculations, and we report on it below. black line in Fig[1).
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In the following qualitative discussion in this section, we
consider only a positive; and without loss of generality, we

pa/pe assume that > 1. We start by going through the same en-
dfie ergetics as we did for the cage = p». First of all, the con-
0.5 dition for stability Eq. [5), now readp; < ap/(1 + «).

The proliferation of (0, 1)-vortices from an ordered back-

ground is now determined by the conditiop — pg = p.

or equivalentlyp, = ap — p. while that of (1, 0)-vortices

is determined by the condition— pg = p., or equivalently

pa = p — pe- These lines now differ from each other, in con-

P/Pc trast to the case; = p2, and hence there will be one ad-
ditional region in the phase diagram. This follows, since at

FIG. 1: (Color online) Schematic phase diagram which foidmom pa = 0, the phase transitions in the m°‘?'e' are expecFe_d to
separations of variables for the model in EG8l (1) (@1)= be two non-degenerate vortex-loop proliferation trangi

p2 = p. The gray-shaded area is the forbidden regime> p/2. in the 3DX Y -universality class, with a regime with ordering
The lines separating the various regions areSatid (red) line: Pro-  only in one phase separating them. Moreover, the spontaneou
liferation of (1,0) and (0, 1)-vortices from an ordered background proliferation of(1, —1)-vortices from an ordered background
(i.e largep), along the lingos = p — p.. b) Dashed (blue) line: Pro-  is now determined by the condition (to be read off from the
I!feration of (1, —1)-vortices from an ordereq background, along the second term in EqA3)) + a)p — 4pa = p. Or equivalently

line ps = p/2 — pe/4. ) Dashed-dotted vertical (black) line: Pro- -~ — [(1 4 a)p — p.]/4. These expressions reduce to those
liferation of (1,0) and (0, 1)-vortices from a background of prolif- o+ \vere discussed in Section 1V C for the case 1.

erated(1, —1)-vortices, along the ling = 2p.. This vortex-matter . - " o
phase diagram has the same topology as that obtained frodft the _Next, we proceed to |nve_st|ga_te the condition for proll_fer
ation of (0, 1)- or (1,0)—vortices in a background of prolif-

current modél. I: U(1) x U(1); IIl: U(1)-symmetry in the phase . .
sum; and Il: a fully symmetric case. erated(1, —1)-vortices. We thus assume (an assumption that

will be checked numerically in the second part of the paper)
that the coefficient of the stiffness associated with thesdc

V. PHASE DIAGRAM, UNEQUAL STIFFNESSES term in Eqg. [I8) has renormalized to zero. Then, the first term
accounts for the only phase stiffness remaining in the syste

We next generalize the above qualitative considerations td NUS: the effective model becomes
the case of unequal stiffnesses# p». We will use the nota-
tion thatps = ap1; p1 = p. So that the coefficient is a mea- 1 /

ap® — (1 +a)ppa

eff r
I+ a)p—4pq

sure of the disparity of the stiffnesses. Since the noriality Fi_1y= 3
of the phase diagram of this model is associated with the pos-

sibility of tuning the energy of composite, _1_) d_efects to b‘? Note the rather surprising fact that, provided the compos-
less than (or comparable to) the energy of |nd!V|duaI VeHIC o vortices(1, —1) have proliferated, thél, 0)- and (0, 1)-
(1,0) and(0, 1), we use the same strategy as in the previoug o rtices enter the effective model on equal grounds evéreif t
section to analyze this model. That s, we need to separate thy, e phase stifinesses for these differ. The origin of tsif
variables by extracting all the stiffness terms which amaf- that (1, —1) composite defects have an asymmetric effect on

fected by proliferation of(1, —1) vortices. The corresponding yhe partial reduction of the bare phase stiffnesses of ttiie in
part of the free energy functional therefore should depend Oyjidual vortices. Thug1, 0)- or (0, 1) vortices will participate

gradients of the phase sum only. Separating the variables i, equal grounds in the restoration of the remaining symme-
such a way we arrive at the following representation of they, Based on the above conjectures we obtain the condition
model for proliferation of(1, 0)- or (0, 1) vortices in the background

of proliferated(1, —1) loops

V(6 +62))7  (14)

1 21
1 2
+ 1+ a)p—4pq [(p=2pa) V81 —(ap —2pa) V0:] } Observe that in contrast to the similar condition Eq (12) fo

(13) the case of equal stiffnesses in Secfion 1V C, whes 1, pq
no longer drops out of this relation. The explicit relatisn i
Notice the asymmetric phase weights in the second term in

contrast to the symmetric separation of variables in Sectio B ap? — (1 + a)ppe
V] The asymmetry of the problem is also seen if we consider pd = (1+a)p—4pe o # 1,
negativep; which would result in decreasing the energy of
(1,1) vortices comparedtfl, 0) and(0, 1) vortices. Negative which is seen to approachy — ap/(1 + «) from below
pa May be easily realized in Bose-Einstein condensates on as p becomes large, i.e. the proliferation line approaches the
optical lattice, and we consider this possibility in Appeis. forbidden parameter region from below as— oo. The

(16)



line of proliferation under discussion, namely the pratifiton A. Preemptive scenario
of (1,0)- and (0, 1)-vortices in the background of prolifer-

ated(1, —1)-vortices, only comes into play above the dashed e next discuss the preemptive scenario for vortex-loop

(blue) line separating phases | and Il in Fig. 2. This is wheryoliferation for the more general cage # p», largely fol-

the composite vortices are actually proliferated. We foeee  |owing the line of reasoning in Sectidn IMC. It turns out

only plot the line in this regime, and this is the dashed@btt that the physics is quite rich and markedly different from

(black) line given in Fig[R. the single-component case, which is rather surprisingrgive

) ] ) ) ) _the simplicity of the coupling term between the two conden-

In Fig. [2, the solid (r_ed) lines are the lines of proliferatio gates, cf. Eq. [{1). Hence, consider the intersection point

of (1,0)- and(0, 1)-vortices from an ordered background. At \here the line of proliferation oft, —1)-vortices from an or-

pa = 0, they emanate linearly from = p./a for (1,0)-  dered background is intersected by the line of proliferatio

vortices growing asp, and fromp = p. for (0, 1)-vortices  of (1, 0)-vortices from an ordered background. This intersec-

growing asp. The dashed (blue) line represents the line ofign takes place atps, par) = (3pe/(3 — @), ap./(3 — ).

proliferation of(1, —1)-vortices from an ordered bacl_<gr0und. Consider now a point slightly above the intersection point

It emanates aps = 0 from p = pc/(1 4 «), growing as  apove the line defined by the relatiép; + J, par + 64) =

[(1 + «)p]/4. The dashed-dotted (black) line represents the(3pc/(3_a)+57 ape/(3—a)+ (1+a)5/4), where compos-

line across which the effective stiffness of the clappinglmo jie vortices are proliferated. The remaining stiffness tie
01 + 0, vanishes through the proliferation of individual vor- ¢japping modepciap, is given by Eq.[(TH)

tices(1,0) or (0,1). The lines are seen to divide the phase

diagram into four distinct regions, namely I) the complgtel ap® — (14 a)ppa
ordered state, Il) the partially ordered state with prodfed Pclap = 1+ a)p—4pa
(1, —1)-vortices and confined individudll, 0)- and (0,1)-
vortices, Ill) the completely disordered state with prefdted  The question is now whether proliferation(@f, —1) vortices
individual vortices, and |V) the partlally ordered statettwi can trigger a preemptive pro]iferation (jf’ 0) and (O’ 1) Vor-
confined(0, 1)-vortices and proliferatedl, 0)-vortices. Re- tices. By evaluating.., (p, pa, @) at the intersection point
gions Il and IV are therefore two distinct partially ordered (p1, par) between proliferation of individual vortices in an or-
states with one brokefi(1)-symmetry in each case. dered background and proliferation of composite vortices i
an ordered background, the issue igdf., (o1, par, &) < pe,
(i.e. if this estimate yields a situation that upon proliferation
of composite vortices the individual vortices no longer dnav
enough stiffness remaining to stay condensed). If thisés th
case, then our estimates will indicate a preemptive vader-
proliferation, following the same line of reasoning as wasdl

in Sectior IVQ (to be checked in Monte Carlo calculations in
the second part of the paper).

17)

Pd/ﬂc

VI. WEIGHTED PHASE SUM ORDER

It has been observed in the past that in the drag problem Eq.
p/pe (@), the vortices of the typél, —n) with n > 1 can become
energetically cheape&t.Let us apply the separation of vari-
FIG. 2: (Color online) Schematic phase diagram with regidhdlI, ables method to estimate analytically the position and drag
and IV for the model in Eqs[11) and {13) with = ap1 > p1 = p. dependence of the transition lines in the phase diagram when
For the purposes of illustration, we have taken= 1.2. The gray (1, —n) -types of defects are relevant as well as to describe
shaded are is the forbidden parameter regime> ap/(1 + a).  how vortex matter drives transitions from partially ordite
The lines separating the various regions are obtained &l  f|ly symmetric states in these cases. The accuracy of this

a) Solid (red) lines: Proliferation of (0, 1)-vortices from an ordered  qih04 will be checked numerically in the second part of the
background, along the ling; = ap — p., as well as prolifera- paper

tion of (0, 1)-vortices from an ordered background, along the line . .

pa = p— pe. b) Dashed (blue) line: Proliferation of(1, —1)-vortices Considerp, < pi andpg > 0. First, one should ex-
from an ordered background, along the line= (1+a)p/4—p./4. ~ @mine for which ratio of the bare stiffnesseg/p, does the

¢) Dashed-dotted (black) line: Line of proliferation of individual vor- ~ System prefer to proliferate composite, —n — 1) vortices
tices(1, 0) or (0, 1) in a background of proliferated vorticés, —1),  rather then1, —n). The conditions when the energy for an
given by Eq[I6. When we cross this line from right to left,iag (1, —n— 1) excitation is less then that of &h, —n) excitation

from region Il to Ill, the stiffness of the clapping mode + 62 is  can be found as follows. The phase stiffness associated with
destroyed by the proliferation of individual vortices. an(1, —n) excitation iSJ(1,—n) = p1 +n2ps — (1+ n)2 pa.

Hence one finds that the inequaljty + (n + 1)%ps — (n +
2)2py < p1 + n%p2 — (n + 1)%p; must be satisfied if the




system is to prefer proliferatingl, —n — 1) vortices in an
ordered background instead of proliferatifig—n) vortices.
Combined with the constraipt; < p1p2/(p1 + p2) On pg we

find 32450y < pa < 12— which gives
P2 L (18)
p n+1/2

This condition is illustrated in Tablé I. From this, it folls
that forpa/p1 < 2/3, it is energetically less costly to excite
(1, —2) vortices rather tharfl, —1) vortices for sufficiently
large value ofy,.

TABLE I: This table shows the condition for the ratio betwebe
bare stiffnesses, when we assume hak p; andp, > 0, for the
system to proliferate a given composite vortex.

Condition
2/3 < p2/p1 <1
2/5 < p2/p1 <2/3
2/7T < p2/p1 <2/5

Composite vortex
(17 _1)
(17 _2)
(17 _3)

1
F=-
2

For such regimes the proper separation of variables is
p1p2 — pd(p1 + p2)
p1+n2ps — (1+n)? pa

fol

p1+n2ps —

(nV6; + Vos,)*

T [<p1 (L4 n)pa) Vs

~(p-+ %>pd)vozr}, (19)

weren is an integer. This separation of variables is performe

I
pclap
Pc

0.9

0.8

07 I I I I I I
04 0.7 1.3 16 19 22

(&%

2.5

FIG. 3: (Color online) Plot 0pciap (pr1, par, ) /pc as a function of
«. Note that the system is symmetric around= 1. The dashed
(black) line in the above figure shows that the remainingretifs
of the clapping mode (in the background of proliferated cosap
ite (1, —1)-vortices) is less than the critical coupling for vortex-
loop proliferation in a parameter regin¥®3 < o < 3/2. This
is the parameter regime where it is correct to limit oneselthe
sector where the composite proliferated background \estare of
the type(1,—1). Fora < 2/3, the composite proliferated back-
ground vortices are of typé—n, 1), while for « > 3/2, the com-
posite proliferated background vortices are of tyge—n). The
fact thatpeiap (o1, par, @) < pc indicates that we are in a param-
eter regime where the full restoration bf(1) x U(1)-symmetry
proceeds from a preemptive vortex-loop proliferation ghtxansi-
tion, as explained in the text. The solid (red) line in theabfigure
Shows pciap (o1, par, @) for o < 2/3 in a regime wherg2, —1)-
vortices trigger preemptive proliferation of all topologl defects
anda > 3/2 where (1, —2)-vortices initiate the phase transition
into fully symmetric state.

into the partially ordered state {20). The transition backt
d’ully symmetric state then takes place when

in order to extract the part of the free energy which is unaf-

fected by(1, —n) winding in the phases. Thus, upon prolifer-

ation of (1, —n) vortices the system enters a phase with order

in the weighted phase sun#; + 6, (while individual phases
are disordered). The effective phase stiffness which il r
main in the system is given by

p1p2 — pa (p1 + p2)
p14n2py — (1+n)° pa

. 1
F(CH / dr

Lo = 5 (nV0; + Vb,)? (20)

p1p2 — pd (p1 + p2) _
p1+n2ps — (1+n)%pg

(21)

In our MC calculations, which we report below, we check this
dependence.

Before we proceed to the Monte Carlo calculations, we re-
mark on the accuracy of the estimates of the location of the
phase-transition lines based on separation of variablég T

In contrast to the case considered in previous sections, hefocation of the phase-transition lines based on the abaye ar
the individual phases do not participate on equal grounds aiments, have corrections in the regimes of the phase diagram
ter proliferation of(1, —n) vortices because one of the phaseswhere several such lines split. This is because in the ¥cini
has a factom and is therefore more expensive to fluctuate.of such splitting points, the energy scales associatedwaitix
Nonetheless, there are several types of topological defecbus types of topological defects are not well separatedcélen

which can contribute on equal grounds to restore the remai
ing symmetry. In Fig.[ 1B we plopciap (o1, par, ) /pe as a
function ofa.

For definiteness, we next consider in detail the case?2.

renergetically next-to-cheapest excitations could piadie in
the depletion of the phase stiffness. The above arguments be
come more accurate as we move away from splitting points.
However, they underestimate critical stiffnesses neattisgl

Then, the cheapest topological defect with which to restor@oints. Below, we perform Monte Carlo simulations to study
the symmetry in Eg. [(20) is given a doublet of an elemen-the least analytically tractable region near the splitfonts.

tary vortex(0, 1) and a composite vorted, —1) which is of
lower order than the vorteil, —2) which drives the system

We find that even near the splitting points, the separatfen-o
variables based argument is quite accurate.



VIl. MONTE CARLO CALCULATIONS ing the theory on a lattice, which are standard in the single-
component case, introduce subtle artifacts when the audrren

We next proceed to presenting our numerical results basegHIrent interaction between two condensates is discretize
on large-scale Monte Carlo calculations, for which we needurns out that a study of the vortex physics in a lattice repre
to define our continuum model on a numerical lattice. Al-Sentation of the model EqLI(1) is best facilitated by the so-
ternatively, we may view it as a physical realization of-a called Villain apprOX|ma_t|0n. This accommo_date_s the com-
component Bose—Einstein condensate on an optical lattic®actness of the superfluid phase of the ordering fields and ac-
as alluded to above. Providing a faithful lattice repreaent counts properly for the current-current interaction. Thie V
tion of the continuum model Eq.[](1) using phase variabledain Hamiltonian for the two-component condensate is given
is not straightforward, as some of the schemes for formulatby

Hy [A0, A0] = >V, (Aubr, 8,057,
T 1
VM(Xl? X2; T) = _ﬁ_l ]n{ Z 8*5/2[1’1(Xl*27"”1,#)2+P2(X2*2ﬂ'"2,u)2*l’d(><1*Xz*Qﬂ'(nl,u*nz,u))z] }7 (22)
’ﬂlyu,’ﬂgYM
where the partition function of the system is given By= We first discuss the case = p», for which results for

fo% DO, DbyePHe and3 = 1/kgT. We have performed the phase diagram and helicity moduli are shown in [Elg. 4.
Monte Carlo calculations on EqL_{22), using local Metropo-The dotted lines represent the predictions based on our ana-
lis updating of the fieldsg, (r),02(r) € [0,2x), while en-  lytical arguments from the previous sections. At= 0, the
suring thatAg;(r) € [—m, 7). The system sizes considered

wereL x L x L with L = 16, 24,32, 40, 48, 56 and64. We 0.4
have choser = 1 and variedp = p1 = p2/«a. Addition-
ally, the dragp, is chosen proportional tp, and thus, there 03

is technically no difference between this approach and-vary

ing the temperature for fixegl p,;. During the computations,

we sample the total energli, of the system, and various s (.2
helicity moduli. There are six different helicity moduli we

keep track of (not all independent). The most general helic-

ity modulus one can define in this system is applying a twist 0.1
0, — 01 4+ ayr - éué andfy — 65 + aor - éﬂé. The he-

licity modulus is then given as the second derivative of the

free energy with respect t& For details, see AppendixA. 0
We measure the helicity modulus associated with six differ- ) 5
ent choices of twistsia; = 1,a2 = 0), (a1 = 0,a2 = 1),

(a1 = l,a2 = £1) and(a; = 1l,ay = +2) i.e. twists in 0.4
01, 02, 61 £ 0> andf; £ 205, respectively. These are denoted 0.3

T, Th, T and Yy L,. Here, T = T§ £ 27, + T4 and 0.2 i o T .-
TH 1y = TH +47%, 4+ 474, Afinite helicity modulus is a 01 b) = () 7
signal of a finite superfluid density of the associated qgnti ' \* \.~

a finite Y// represents the possibility of having co-(counter- 0 : : e Rt =
)superflow of the two components. Likewise, the vanishing of 0.54 055 0.56 0.57 0.7 0.8
the helicity moduliY%, . signals a thermally driven sponta- P

neous proliferation (blbwout) of vortex loops originatiwgh ) . S
multiples of2r-windings in the phases; 6, + as0,. We have ~ FIG. 4 (Color online) Phase diagram and a set of helicity utiod
considered these quantities for equal as well as for diftere for the model Eq. [[22) with equal bare stiffnesses . The shade
bare phase stiffnessgs and s, and have in all cases varied region illustrates the forbidden parameter regime> p/2. The
the drag coefficienp, from 0 l,Jp to the maximum allowed helicity moduli areY';,Y2, andY_. The leftmost helicity moduli

. - . are measured for a dragy = 0.30p, while the rightmost fop, =
value compatible with the stability of the two-component su 0.39p. a ’ g pd
perfluid ground state. The location of the phase transitioas

read off from the peak in the heat capacity system features a doubly degenerate phase transition from a

2-component superfluid to Z2zcomponent normal fluid at the



critical couplingsp.1 = pe2 = 0.33. These phase transitions g | £ =10 %* m; 8
are in the 3IX'Y -universality class. When drag is introduced, s 83 5
it initially has the effect of reducing the stiffnesses oéih- 7 ] ?

dividual phase#, andfs, thus moving the doubly degener- | £ 0 5 8
ate phase transitions to higher couplifgs., p2.). At large 2ol

enough drag these phase transitions split, and the intérmed |
ate phase with ordering only in the phase sum emerges (the
“paired superfluid phase” in terms of Ref. 3). We observe that |
our computations show that the analytic arguments advanced
in previous sections describe quite accurately the phase di
gram. 2t
The line of transition fron¥/ (1) x U (1) to a fully symmetric
phase changes its slope indicating that composite vorfices
sufficiently large drag initiate the transition into the gyet-
ric state (the preemptive vortex-loop proliferation sa@rja 24
Importantly, near the bending point the actual transitioe |
is situated to the right of the dotted lines, which originatt ) _
the above bare-stiffness arguments when sub-leading fype §'C: 3 _(Color online) The energy histograms fGp, pa) ~
topological defects are not taken into account. Therefore 0.60,0.20) , with a = 1, 1., in the preemptive region. A clear
. . .y double peak structure is seen to develop, an indication o$tofider
these es_t_lmates naturally_underes_tl_mate the suffnei;saa{d— transition. The areas under the histograms are normaléd t
tual position of a preemptive transition. However, everhis t
region, the deviation is not significant.
The transition line from the state with ordering only in the .

phase sum to a fully symmetric state precisely coincidels wit in on each other, k_)efore they merge into one transition from a
the analytic estimates and is independenpgfin the equal U(1) x U(1) state into the symmetric state. In terms of vortex

stiffinesses case, away from the splitting point. The st matter, this is the preemptive region of the phase diagram. F

point takes place at significantly higher coupling constémt even Iarge_r drag thi_s line s_plits, and the intermediate phas
the phase diagram than what the naive energy-scale based &?—th ordering associated with the phase sum emerges. The
gument gives, and is also in good agreement with the spgjittin
point of the preemptive loops proliferation scenario désad

in Section§ IV.C anf VA.

The corresponding results for the various helicity moduli 03
are also shown in Fid.] 4. In the lower right panel the helicity
modulusY _ for the composite vortex modé, —1) vanishes
first as we approach lower couplings (or equivalently, highes 0.2
temperatures) from the completely ordered side. The iiagult
state is only partially ordered. The individual stiffnes&g,
and Y, vanish simultaneously at some lower coupling (higher 0.1
temperature), rendering the system a normal fluid. The in-
teresting part of the phase diagram is just below the smiitti

0.4

point, where we have a region in which the phase transition is 0
first-order. 0.8 -
T +°
0.6 | R 1
27Ty Ts, .=
We find strong indications, shown in Fi{g. 5, that the transi- 0.4 + i =t PELLERE
tion from theU (1) x U (1) state to the fully symmetric state in x* 5® R ST
: 02+ (a) = . T (0 e s PR
the region where vortex-matter based argument suggest pre- \ (h) ° Ty Y PR
, A , " . \ =" (d) -
emptive scenario is indeed a first order transition. This is O kuusapfaceons P P DA i
also in agreement with previous computations of.theurrent 04 043 046 049 0.64  0.67 0.7
mode?. p

We proceed to discuss the case of slightly unequal bare
stiffnessesj.e. (1, —n) vortices withn > 1 are unimpor- FIG. 6: (Color online) Phase diagram and a set of helicity atiod
tant. In our computations, we have used = 1.1p;, see for the model Eq.[(22), fo = 1.1. The shaded region illustrates
Fig.[@. At py = 0 the system features two independent phaséhe forbidden parameter regime > p1p2/(p1 + p2). The helicity
transitions in the 3DXY -universality class gb.; ~ 0.33 and  moduli areY;, T2, andY_. The left most helicity moduli are mea-
pe2 ~ 0.30. When drag is introduced, it initially has the effect Sured for adraga = 0.25p, while the rightmost arpa = 0.39.
of driving the transitions to higher values pf(lower values
of T'). For moderate values of drag, these two transition closéotted lines in Fig[16 are predictions described in Sedfibn V



and these agree well with our computations. Specifically, we 0.8
observe that when the helicity modulifs_ is renormalized

to zero, the individual stiffnesses become equal, as eggect
from our separation of variables arguments Hql (14). More-
over, in Fig[T, we show the corresponding energy histograms
computed on the phase-transition line between points @) an< 4
(c) in Fig. [8, namely atp, pq) ~ (0.60,0.22). This puts us

in a part of the phase diagram where we would expect, based

on our vortex-matter arguments, to be able to see the preemp-  0-2
tive scenario explained above played out. Indeed, the phase

0.6

transition is clearly seen to be of first order also in thise¢as 0
thus confirming that the preemptive vortex-loop prolifemat
scenario is also realized for unequal bare phase stiffagsse 0.5 T
andps. 0.4 1 ;; 4
0.3} Ty =t . T
12 7 0.2 + B+t 2 s
L= o,
Hé o1l @ T (9 F N
- . . L = ,
10 ’ﬁz gg il 0 Esnigggﬁi (E)¥*¥¥Tr2 & B, % = (Xd)i %Tl’i%
1.35 1.4 145 1.5 1.551.9 195 2 205 21

1 P

FIG. 8: (Color online) Phase diagram and a set of helicity uliod
for the model Eq. [[22)p = 0.55. The shaded region illustrates
the forbidden parameter reginpg > p1p2/(p1 + p2). The helicity

1 moduli areY,T2, andY:,—2. Here, the latter correspond _,
with the difference that thé;-phase is twisted twice as much s
The leftmost helicity moduli are measured for a dyag= 0.32p,
while the rightmost areq = 0.336p.

065 27 275 2.8 2.85 2.9 2,95
EJV 20

T
[alelele
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FIG. 7: (Color online) The energy histograms fop, pqs) =~
(0.60, 0.22), with « = 1.1, i.e. in the preemptive region. A clear 15|
double peak structure is seen to develop, an indication eéteofider
phase transition. The areas under the histograms are rinechab

1.
10 -

We now discuss the case of significantly different bare-stiff ° [
nesses, i.e. whefl, —n)-vortices withn. > 1 are important.

In our computation we have used = 0.55p1, which from
Tablel] indicate that we should observe a state with order in0 e
the weighted phase sum, with= 2. As in the case of slightly BV

unequal stiffnesses the system features two independant tr

sition in the 3DYY -universality class, in our computationthe FiG. 9: (Color online) The energy histograms fop, pa) ~
transitions ap, = 0 occurs at.; ~ 0.33 andp.2 ~ 0.605. (1.77,0.58), with o = 0.55, i.e. in the preemptive region. A clear
At small drag values the transitions stay independent aad arouble peak structure is seen to develop, an indication osofider
shifted to higher values gf. For moderate drag values the transition. The areas under the histograms are normaleéd t
region with partial order (order ifl;) becomes smaller, be-

fore disappearing at some higher drag value. The system then

enters into the preemptive vortex-loop proliferation oegi  For even larger drag values this single lines splits into two

where the system features a transition frofi@) x U(1)-  lines, and a partially ordered state appears. The partaly
state to the fully symmetric state. In this region we findistro  dered state which appears is a state were-2)-vortices have
indications of first order transitions, shown in Hig. 9. proliferated while individual vortices stay confined (innge

eral (1, —n)-vortices can proliferate). In the lower rightmost
panel in Fig[8 we observe th#t, _, drops to zero whilél’;
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andY'> remain finite, from this we conclude that we observecompared to the case where it is absent. An inter-component
the partially ordered state with order in the weighted phaselrag term has two gradients in it, since it is a current-atrre
sum. The MC calculation shows that in this quite generic cas@nteraction. Consequently, it has a naive scaling dimensio
that the analytical arguments from the first part of the papewhich is reduced by compared to the Josephson coupling,
are remarkably quantitatively accurate even near lingtisgg ~ and in contrast to the Josephson couplling it does not repre-
points. Observe further that whéfy _, have renormalized sent a singular perturbation. Quite the contrary, as we have
to zero we have the relatidfi; = 475, as expected from the seen, a critical value of the strength of the inter-compbnen
discussion near Eq._(R0) (in general we expect= n27Y5). drag term is required for it to have an appreciable effect on
the physics of the system.

VIIl.  IMPLICATION FOR THE LIQUID METALLIC

HYDROGEN PROBLEM
IX. SUMMARY AND CONCLUSIONS

The approach developed above is also useful to obtain _ i )
insight into the role of non-dissipative drag when it is in- [N this paper, we have studied the problem of the influence
cluded in the problem of multicomponent electrically cteatg  Of non-dissipative inter-componentdrag on the phase diagr
condensatéd®. For example, in the problem of projected and phase transitions in a two-component Bose—Einstein con
quantum fluid states of hydrogen, we deal with two electri-densate. The non-dissipative drag is a quite generic featur
cally charged fields corresponding to electronic and prioton Présentin interacting multicomponent systems in the centi
condensates. The fields will then be coupled by an electrgum as well as on a lattié€°% Recently, the topology of

magnetic gauge field in addition to the now familiar drag cou-the phase diagram and orders of the phase transitions were in
pling tensively studied in the/-current model withU/ (1) x U(1)

symmetry by means of worm-algorithm based Monte Carlo
1 2 2 simulationg#:>:8 revealing novel features such as conversions
F= _/Tdr{p(vol —eA) ap(Voz+ed) of the phase transitions from continuous to first order as a
—pa (V01 — Vs — 2¢A)% + (V x A)? L function of drag strength. . .
23) We have developeq an approachin terms Qf topological de-
fects for understanding these phase transitions and get new
weree is the charge and\ is the gauge field. insight into physics of the various states of two-component
In this case, the phys|ca||y relevant Separa‘[ion of vagsbl Bose—Einstein condensates. We have carried out an investi-
corresponds to extraction of the phase sum. This followsgation of the phase diagram based on analytical vortexematt
since in this situation it is the phasam which is not cou- arguments, and suggested a novel scenario of vortex-matter
pled to the gauge field. This allows us to draw conclusiond€havior, namely a “preemptive vortex-loop proliferation
about superfluid and superconducting states of the systemSuch a scenario may well be generic to systems where sym-
Following the same line of reasoning, an assessment of th@etry is restored through proliferation of distinct topgiical
role of non-dissipative drag is made by an extraction of thedefects in the form of vortex loops that have been excited out
phase sum to distinguish the drastically different chamyeti  Of the individually conserved condensates. We have found
neutral modes of the system. The model then becomes support for these scenarios in large-scale Monte Carlaiealc
lations. These computations have been carried out using a

1 ap? — (14 a)ppa 9 representation of the system in terms of the phase of the com-
= 9 / d { (1+a)p—4pq [V (01 + 92)} plex ordering field of each of the components. The approach
1’ allows us to investigate directly the physics of topologotex
—_ [(p —2pq) Vb1 — (ap — 2pq) Vb, fects in this system. Importantly, the phase represematsn
(1+a)p —4pa allows us to study the system under rotation. This can peovid

B B 2 2 a bridge for studying these states of matter experimentaly
e{(1+a)p—4pa}A]” +(V x A) } 24 otational response. Work on this problem is in prog#ess

By virtue of featuring one composite charged mode and one

composite neutral mode, this model has the same structure

as the model with zero dr&&’. However, now the stiff- Acknowledgments

nesses of neutral and charged modes acquire dependence to

the drag coefficienp,. Therefore, the conclusions of Réf. 9  The authors acknowledge useful discussions with J. Hove,
should be rather robust against finite-drag perturbatidhs. D. A. Huse, A. Kuklov, E.J. Mueller B. Svistunov, and M.
inter-component drag term is a quite different perturbatio Wallin. This work was supported by the Norwegian Research
to the system compared to inter-component Josephson co@ouncil Grant Nos. 1585187/431, 158547/431 (NANOMAT),
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multicomponent electronic condensates. Josephson ogupli thank the Center for Advanced Study at the Norwegian
amounts to an explicit symmetry breakdown, and in terms ofAcademy of Science and Letters, where part of this work was
long length scale physics it represents a singular pertiorba done.
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APPENDIX A: SUPERFLUID DENSITY MATRIX IN A This is a general expression for the helicity modulus, irehep
2-COMPONENT SYSTEM dent of the form of the Hamiltonian. We now specify the form
of the Hamiltonian to that of a two-component Villain-model
In general, the helicity modulus defines the superfluid deni-e. Hy =3, Vi, (A,01(r), A, 0:(r)) where the potential
sity of a system. For the Andreev—Bashkin probleme V. is given in EQI(2R). We now apply an arbitrary twist in
superfluid density is a matrix quantity given by the seconcthe phases("l(")) - (91(7“)) _ (al) 8.7, Werea,, as are
o :  62(7) 02(r) as ’ ’
derivative of the free energy of the system with respect to an, J (a4l n

infinitesi isti i umbers and expressions on both side of the arrow
infinitesimal twist in the phase, i.6(r) — 0(r) _25 7. The  gatisfies periodic boundary conditions. The Hamiltonianth
helicity modulus,Y, is then given a&,, = - 9" F[9]

5a5 a5 |. .- takesthefornf,[6] =5, Vi (A,01(r)—aid,, AybOa(r)—

n9u [ 5=0 ) ' U o
SinceF[8] = —3'1n Z[é], where( is inverse temperature a2d, ). The first and second derivatives of the Hamiltonian are
andZ[8] = [ DI'e~#H19] is the partition function, the helicity then given by,
modulus can further be written as

- 4] (220)

, (A1)
((6H[6] OH[d) >) H ‘
AN G : |
\ i P T T Ts=o
oHp)| v, o,
00 ls5—0 Z ( “on6, oAb (A2)
o) » OV, PV P,
853 5=0 - ; <a1 OA 07 ma 0A,010A,,0- +az 3A#9%) ' (A3)

The helicity modulus associated with this choice of twistha phase, is given by
Oy N\ [ OH, [ 0H, \Y’
OA,0% O0A 01 0,01

2
+ 20,1&2 8 HU —6 8HU _ 8HU 8Hv . 8Hv (A5)
L3 0A,0:10A,,05 0A,0: 0,0, 0A 05 0A 05
a3 [/ 0°H, 0H, oH, \\’
L 0A,,03 AW 0A,,05

We observe that a general twist in the phases can be exprimseeadh three independent quantities, the superfluid teasi

the two single components ed._(A4) and [A6), dendfédand T4 respectively, and a novel inter-component quantity Eq.

(AD) denotedY'’,. We interprefl';, as a renormalized drag coefficient. A general helicity moduhay then be written in the
compact form

2
TH _Y
ay,az L3

(A4)

+

TE o =aiTh + 2a1a2 Y, + a3 Yh. (A7)

ai,az
[

APPENDIX B: NEGATIVE DRAG COEFFICIENT would remain in the system whe, 1) vortices proliferate.
Then, the proper separation of variables for analyzing the

The subject of the sign of the drag coefficientjs a subtle ~ modelis given by
one and depends on the physical realization of the model. In

the case of a realization of the model on an optical lattiee th o

sign of the drag coefficient can straightforwardly be made F= /dr{ <—p — pd> [V (61 — 62)]?

negativé. T I+a (B1)
In the case of a negative drag coefficient the analysis in Sec- i P V0, + ave ]2

tion[V] will hold, with the role of(1, 1)- and (1, —1)-vortices T+a ! S A

interchanged. However in the separation of variables wd nee
to extract a phase difference to estimate the stiffnesstwhic
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(1975)
3 A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. L&,
030403 (2004).

4 A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90, 100401

(2003)

5 V. Kaurov, A. Kuklov, and A. Meyerovich, Phys. Rev. Le#@l5,
090403 (2005).

6 A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. L&8,
230402 (2004).

" N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phystie
A, 238 (1998); F. Alet and E. Sgrensen, Phys. Re§7E015701

15

16
17

18
19
20

12

(2003).

C. Dasgupta and B. I. Halperin, Phys. Rev. Let7. 1556 (1981);
H. Kleinert, Lett. Nuovo Cimentd35, 409 (1982); A. K. Nguyen
and A. Sudbg, Phys. Rev.@, 15307 (1999); Europhys. Lett., bf
46, 780 (1999); J. Hove and A. Sudbg, Phys. Rev. L&4.3426
(2000); J. Hove, S. Mo, and A. Sudbg, Phys. Rev. L88§.2368
(2002).

E. Babaev, A. Sudbo, and N. W. Ashcroft, Natu#31, 666
(2004); E. Smgrgrav, J. Smiseth, E. Babaev, and A. Sudbga,. Phy
Rev. Lett.,94, 096401 (2005);ibid 95, 135301 (2005); Phys.
Rev. B71, 214509 (2005); E. Babaev and N. W. Ashcroft, Na-
ture Physics, 530 (2007).

E. Babaev, Phys. Rev. Le&9, 067001 (2002); Nucl. Phy8686,
397 (2004).

O. I. Motrunich and A. Vishwanath, Phys. Rev. ®, 075104
(2004).

A. B. Kuklov, Prokof’ev, B. Svistunov, and M. Troyer, Ann. {h
(N.Y.) 321, 1602 (2006).

L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Seteyup
Phys. Rev. Br1, 144508 (2005).

S. Kragset, F. S. Nogueira, and A. Sudbg, Phys. Rev. 19#t.,
170403 (2006).

F. S. Nogueira, S. Kragset, and A. Sudbg, Phys. Rev6B
220403(R), (2007).

E. Babaev, Phys. Rev. Let@4, 137001 (2005).

D. Podolsky, S. Chandrasekharan, and A.Vishwanath,
ar Xi v: 0707. 0695, (2007). Note that in this paper, a
Kosterlitz-Thouless-like transition is considered in ateyn with
two types ofpoint-like topological defects. These authors find
no evidence for a first order transition, unlike in our casénaf
types of proliferatingsortex loops.

D. V. Filand S. I. Shevchenko, Phys. Rev72 013616 (2005).
A. K. Nguyen and A. Sudbg, Phys. Rev58, 3123 (1998).

E. K. Dahl, E. Babaev, and A. Sudbg, in preparation.


http://arXiv.org/abs/0707.0695

	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	2008

	Preemptive vortex-loop proliferation in multicomponent interacting Bose-Einstein condensates
	E. K. Dahl
	E. Babaev
	S. Kragset
	A. Sudbo
	Recommended Citation


	Analytic_PDIV.tex

