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Type-1.5 superconductivity in two-band systems

Egor Babaev1,2 and Johan Carlström1

1 The Royal Institute of Technology, Stockholm, SE-10691 Sweden
2 Department of Physics, University of Massachusetts Amherst, MA 01003 USA

In the usual Ginzburg-Landau theory the critical value of the ratio of two fundamental length
scales in the thery κc = 1/

√
2 separates regimes of type-I and type-II superconductivity. The

latter regime possess thermodynamically stable vortex excitations which interact with each other
repulsively and tend to form vortex lattices. It was shown in [5] that this dichotomy in broken in
U(1)× U(1) Ginzburg-Landau models which possess three fundamental length scales which results
in the exisrtence of a distinct phase with vortex excitations which interact attractively at large
length scales and repulsively at shorter distances. Here we briefly review these results in particular
discussing the role of interband Josephson coupling and the case where only one band is super-
conducting while superconductivity in another band is induced by interband proximity effect. The
report is partially based on E. Babaev, J. Carlström, J. M. Speight arXiv:0910.1607. a

The textbook classifications of superconductors divide
them in two classes: type-I and type-II, according to
their behavior in an external field. Type-I supercon-
ductors expel low magnetic fields, while elevated fields
produce macroscopic normal domains in the interior of
superconductor. Type-II superconductors possess much
richer magnetic response by supporting stable vortex ex-
citations. Lattices of these vortices form as the ener-
getically preferred state when the applied magnetic field
exceeds a certain threshold called the lower critical mag-
netic field. This picture of type-II superconductivity
relies on the fact that interaction between co-directed
vortices is purely repulsive [2]. In [5] is was demon-
strated that in two-component superconductors, there
are vortex solutions in a very wide parameter range which
are on one hand thermodynamically stable, and on the
other hand, possess interaction potential which is non-
monotonic: repulsive at short distances but attractive at
larger distances. The longer range attractive interaction
part originates from the fact that in these solutions, the
size of the core of one of the components is the largest
length scale of the problem: i.e. the core of one of the
components extends beyond the current carrying region.
In general, the precise conditions for the appearance of
non-monotonic interaction are quite complicated. How-
ever, in the simplest case the following description is quite
accurate: When two vortices are situated at a distance
smaller than the extended core size, but larger than the
effective magnetic field penetration length, then the vor-
tices attract each other. At shorter distances the inter-
action mediated by currents and magnetic field wins and
the vortices start to repel each other. This is schemati-
cally shown on Fig. 1. It should be stressed that in the
one-component Ginzburg-Landau theory co-directed vor-
tices have attractive interaction they are thermodynam-
ically unstable because the first critical magnetic field

a A talk given at the “Vortex VI” conference on 17 September
2009, Rhodes, Greece.

in that case is typically larger than the thermodynam-
ical critical magnetic field. However it was shown that
in two-component superconductors there is a large range
of parameters where the vortices with long-range attrac-
tive, and short-range repulsive interaction are thermody-
namically stable (i.e. can be produced by magnetic fields
with strengths smaller than the thermodynamical critical
magnetic field [5]).

Indeed such a vortex interaction, along with thermo-
dynamic stability, should cause the system response to
external field to be entirely different from vortex states
of traditional type-II Ginzburg-Landau model. Namely,
the attraction between vortices should, at low fields, pro-
duce the “semi-Meissner state” [5]). The implications
of it include (i) formation of voids of vortex-less states,
where there are two well developed superconducting com-
ponents and (ii) vortex clusters where one of the compo-
nents would typically dominate because the second com-
ponent would be suppressed (in fact significantly sup-
pressed for a range of parameters) due to overlapping of
outer cores of the vortices. The “phase separation”, of
this nature, which, from the point of view of the sec-
ond component resembles a mixed state of type-I super-
conductors makes this system principally different from
the inhomogeneous vortex states of single-component su-
perconductors where inhomogeneity can be induced by
small corrections beyond the Ginzburg-Landau theory in
regimes where κ is close to 1/

√
2 see remark [3].

The two-band superconductor MgB2 [8] was regarded
in many early theoretical and experimental works as a
standard type-II superconductor which should possess
regular Abrikosov vortex lattices [11]. However, an objec-
tion to this scenario was raised in the recent experimental
works by Moshchalkov et al. [6, 7] where a formation of
highly inhomogeneous states was observed with vortex
clusters and vortex-less Meissner domains strikingly sim-
ilar to the picture of the semi-Meissner state [5] which
results from vortices having a longer range attractive
part in the interaction potential in the two-component
model. In the ref. [6] which was based on Bitter dec-
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Figure 1. A schematic illustration of the origin of the non-
monotonic interaction potential between vortices in the su-
perfluid mixture without intercomponent Josephson coupling
discussed in [5]. A: attractive interaction mediated by outer
cores overlap B: domination of the repulsive interaction me-
diated by currents and magnetic field.

oration methods and [7] based on scanning SQUID mi-
croscopy a statistically preferred intervortex separation
was reported. Moshchalkov et al. proposed that this
phase separation is an intrinsic property of MgB2 and is
associated with the mentioned above three fundamental
length scales in a two-component superconductor which
in that case represents a new kind of superconducting
states outside the usual type-I/type-II dichotomy. The
term type-1.5 superconductivity was coined for this sce-
nario in [6]. Let us stress that if there appear several fun-
damental length scales at the level of Ginzburg-Landau
theory such a state is indeed entirely different from the
states of single-component supercondtors. In the latter
case, although a variety of different non-universal micro-
copic corrections may indeed produce a weak intervortex
attraction [3], it does not alter the classification of single-
component superconductors at the level of fundamental
length scales in the Ginzburg-Landau theory.

The theory in [5] with added intercomponent Joseph-
son coupling (briefly considered below) directly applies
to the case where there is fully developed superconduc-
tivity in both bands. However in general in a two-band
superconductor, at elevated temperatures there can be
a regime where only one band is superconducting while
superconductivity in another band is induced by inter-
band proximity effect (also called inter-band Josephson
effect). In particular this was argued to be the case in
MgB2 above a certain temperature [9].

So it is an important generic question whether type-
1.5 superconductivity is possible in the case where one
of the bands does not have a coherence length in the

Ginzburg-Landau sense, and has a non-zero density of
superconducting condensate only because of the inter-
band proximity effect.

To study the essential properties of vortex physics in
two-component systems we use the following free energy
density functional

F =
1

2

(
|ψ1|2 − 1

)2

+ α|ψ2|2 +
1

2
β|ψ2|4 (1)

+
1

2
|(∇+ ieA)ψ1|2 +

1

2
|(∇+ ieA)ψ2|2

−η|ψ1||ψ2| cos(θ2 − θ1) +
1

2
(∇×A)2.

The regime with η = 0, α < 0, β > 0 corresponds to
the situation of two independent superconducting com-
ponents coupled only by vector potential, studied in [5].
In the case of two bands with well-developed supercon-
ductivity, the inter-band Josephson coupling η 6= 0 works
against the type-1.5 regimes.

We studied numerically the effect of the Josephson cou-
pling on the vortex-vortex interaction energy in a system
with two superconducting bands (i.e. η 6= 0, α < 0, β >
0). The results of numerical calcualions of the intervor-
tex interaction energy in the model (1) are shown on Fig.
2. In the first curve η = 0 and the condensates interact
only through the shared vector potential, the parame-
ters α, β, e were choosen to yield a disparity of coher-
ence lengths and penetration depth to produce a type-1.5
regime. Adding a moderate Josephson coupling η = 0.05
increases ground state densities of the condensates, and
decreases penetration length (which depends on super-
fluid densities in both bands and thus on η) which results
in fact in a deeper minimum of the interaction potential.
However this coupling decreases the disparity of the re-
covery rates of the condensates, resulting in a decreased
range of the attractive interaction. Even though a suffi-
ciently strong Josephson coupling in the GL model can
eliminate type-1.5 behavior, this example shows that the
type-1.5 behavior survices even in case of a rather sub-
stantial interband Josephson coupling. Similarly type-1.5
regime exists also in the presence of mixed gradient terms
[10].

Consider now the the case of nonzero Josephson cou-
pling η 6= 0 but with one of the bands being above its
critical temperature [1]. In that case the effective poten-
tial for ψ2 has only positive coefficients α, β > 0. Thus
the second band has a nonzero density of Cooper pairs
only because of inter-band tunneling represented by the
term −η|ψ1||ψ2| cos(θ2−θ1). This term also locks phases
θ1 = θ2. So in the following, we consider only solutions
with the winding in the total “locked” phase. These vor-
tices have finite energy and carry one flux quantum. If
there is a phase winding only in one phase, one gets
a Josephson vortex with linearly diverging energy [12]
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Figure 2. Intervortex interaction energy in a system with two
active bands. In the first case, the Josephson coupling is zero,
and the ground state densities of the condensates are 1 and
0.25. In the second case, nonzero but moderate Josephson
coupling η = 0.05 decreases the range of the attractive part
of the interaction potential but at the same time it increases
the ground state densities to approximately 1 and 0.4, yielding
a slightly deeper minimum.

(which cannot be produced by external field under usual
circumstances).

Since the phases in this regime are locked to equal
values which minimizes the Josephson term θ1 = θ2 = φ,
our effective model becomes

F =
1

2

(
|ψ1|2 − 1

)2

+ α|ψ2|2 +
1

2
β|ψ2|4 (2)

+
1

2
|(∇+ ieA)ψ1|2 +

1

2
|(∇+ ieA)ψ2|2

−η|ψ1||ψ2|+
1

2
(∇×A)2.

We present accurate numerical solutions for one-
quanta vortices (i.e. with the phase winding ∆φ = 2π)
and vortex-vortex interaction in the model (2) (for other
details including analytical theory see [1]). The nu-
merical solutions were obtained using a local relaxation
method. A two-vortex configuration is initially gener-
ated fixing only the positions of the vortex cores and
phase windings. Then this multiple vortex configuration
is relaxed with respect to all the other degrees of freedom
in the system, thus producing highly accurate solutions
of the Ginzburg-Landau equations of motion with given
phase windings and vortex separation. The procedure
is repeated for a different vortex separation yielding a
highly accurate vortex interaction potential.

First lets consider the regime where the fourth order
term in |ψ2| can be neglected. In this case we conducted
simulations with the density ratios |ψ2|2/|ψ1|2 being 0.1
and 0.5 [1]. The numerical results are presented in Figs.
3-5. The computed interaction energy is given in units
of 2Ev where Ev is the energy of a single vortex.
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Figure 3. Intervortex interaction energy for a density ratio of
0.1.
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Figure 4. Intervortex interaction energies for density ratio of
0.5.

In the first case with the density ratio 0.1, we find
that in general, the recovery lengths of the condensates
can be quite different, even though one of the bands has
proximity-induced superconductivity. We find that as a
consequence of the disparity in the recovery lengths, the
system crosses over from the Type-II to the Type-1.5
regime when α and η are sufficiently small (Fig. 3). The
low density of condensate in the band with proximity-
induced superconductivity means that the attractive part
of the interaction is weak. In the curves 3 and 4, we find a
slight long range attraction, yielding a minimum energy
at a separation of approximately 8. The curves 3 and
4 correspond to the smallest values of α and η, yield-
ing quite large cores in the band with proximity induced
superconductivity.

In the second case (Fig. 4), the density ratio is 0.5. The
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Figure 5. Intervortex interaction energies at a density ratio
of 0.5 and an increased charge of e = 1.41.

vortex-vortex binding energy is now much larger, and the
minimum energy occurs at a smaller separation. Long
range attraction occur in curves 3-5 with a maximum α
of 0.5, in contrast to α ≈ 0.1 in the previous case.

In the third case (Fig. 5), the charge has been in-
creased by a factor

√
2. The resulting shorter penetration

length decreases the magnetic repulsion between vortices.
Observe that now the energy of an axially symmetric
vortex solution with two flux quanta is smaller than the
energy of two infinitely separated one-quanta vortices,
nonetheless the axially-symmetric two-quanta vortex is
not stable since the minimum energy corresponds to a
nonzero vortex separation.

Figure 6 shows the effect of the addition of a fourth
order term with β = 0.1 in the free energy of the band
with Josephson-induced superconductivity. This image
is further reinforced in Fig. 7 showing pronounced non-
monotonic interaction and thus type-1.5 superconduc-
tivity in this system. Figure 8 shows a system with
larger density ratio than the previous systems. The in-
creased condensate density, especially in the band with
Josephson-induced condensate provides a dominating at-
tractive interaction potential that pushes the system into
the Type-I regime.

The figures 9-10 show cross-sections of vortices in two
cases exhibiting Type-1.5 superconductivity. The first
case is the fifth curve of Fig. 4. The right image corre-
spond to the energy minimum. Here, the cores overlap
is significant in the induced band, but almost nonexis-
tent in the active band. There is a moderate overlap
of magnetic fields. Decreasing the separation produces
slightly more cores overlap in the band with induced su-
perconductivity, but the condensation energy gained is
more than compensated by the increasing magnetic and
current-current interaction-driven repulsion, resulting in
increased total energy. In the second case, correspond-
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Figure 6. Intervortex interaction energy. Model parameters
are given in the inset. Observe that the density ratios are
different for different curves.
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Figure 7. Intervortex interaction energy in different regimes
described in the inset.
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Figure 8. Intervortex interaction energy in different regimes
described in the inset.

Figure 9. Cross section of interacting vortices for the case
α = 0.1, β = 0, η = 0.14 and e = 1 (the fifth curve in fig 4).
Curves “1” and “2” show the behaviour of |ψ1,2| and the curve
“3” represents the magnetic field. The right image displays
the system at vortex separation of ≈ 4.2 (energy minimum),
the left image displays the system at a separation of ≈ 2.8

ing to the fourth curve in Fig. 6, the charge is larger,
resulting in a more sharply peaked magnetic field. The
minimum energy does in this case occur at a smaller sep-
aration (2.8 instead of 4.2). The overlap of the cores in
the main band, as well as in the magnetic field/current
carrying regions is larger in this case. Observe that the
increase in α and η clearly results in a faster recovery of
the condensate density in the band with proximity effect
induced superconductivity.

In conclusion, type-1.5 superconductivity is a magnetic
response possible in multicomponent systems because of
the existence of several fundamental length scales as-
sociated with the masses of the fields which is distinct
from the type-I/type-II dichotomy found in usual single-
component Ginzburg-Landau model. Here we discuss

Figure 10. Cross section of interacting vortices for the case
α = 0.25, β = 0.1, η = 0.35 and e = 1.41 (the fourth curve
in fig 6). Curves “1” and “2” show the behaviour of |ψ1,2|
and the curve “3” represents the magnetic field. The right
image displays the system at a separation of ≈ 2.8 (energy
minimum), the left image displays the system at a separation
of ≈ 2.1

that this kind of superconductivity may be present for
a rather large range of parameters in two-band systems
becasue it persists in the presence of intercomponent
Josephson coupling and even can take place in the case
where only one of the bands has true superconductivity
while superconductivity in the other band is induced by
interband proximity effect [1].
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