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SYMMETRIC SYMPLECTIC HOMOTOPY K3 SURFACES

WEIMIN CHEN AND SLAWOMIR KWASIK

Abstract. A study on the relation between the smooth structure of a symplectic
homotopy K3 surface and its symplectic symmetries is initiated. A measurement
of exoticness of a symplectic homotopy K3 surface is introduced, and the influence
of an effective action of a K3 group via symplectic symmetries is investigated. It
is shown that an effective action by various maximal symplectic K3 groups forces
the corresponding homotopy K3 surface to be minimally exotic with respect to our
measure. (However, the standard K3 is the only known example of such minimally
exotic homotopy K3 surfaces.) The possible structure of a finite group of symplectic
symmetries of a minimally exotic homotopy K3 surface is determined and future
research directions are indicated.

1. Introduction

In the recent advances in topology and geometry of smooth 4-manifolds a very
important role was played by one particular class of 4-manifolds, namely, the homotopy
K3 surfaces. These manifolds have been used to test the flexibility of smooth and
symplectic structures in comparison with the rigidity of holomorphic structures. To be
more precise, let X be a homotopy K3 surface, namely, X is a closed, oriented smooth
4-manifold homeomorphic (as an oriented manifold) to the standard K3 surface. If
such a manifold admits an orientation-compatible symplectic structure, then it is called
a symplectic homotopy K3 surface. While the knot surgery of Fintushel and Stern (cf.
[9]) allows construction of numerous examples of symplectic homotopy K3 surfaces,
deep work of Taubes [26] gives very strong information about the smooth structures
on such manifolds. For example, one can easily show that the set of Seiberg-Witten
basic classes of X spans an isotropic sublattice LX of H2(X;Z) (with respect to the
cup product), so that its rank, denoted by rX , must range from 0 to 3 (cf. Proposition
4.1). The rank rX of the lattice LX of the Seiberg-Witten basic classes gives a rough
measurement of the exoticness of the smooth structure of X, with rX = 0 being the
minimally exotic and with rX = 3 being the maximally exotic.

There are various known characterizations of the minimally exotic (i.e. rX = 0)
symplectic homotopy K3 surfaces X, which are all characteristics of the standard K3,
namely:

• X has a trivial canonical class, i.e., c1(KX) = 0, cf. [26].
• X has a unique Seiberg-Witten basic class, cf. [21, 26].
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2 WEIMIN CHEN AND SLAWOMIR KWASIK

• X has the same Seiberg-Witten invariant of the standard K3, cf. [26].
• X is a simply-connected, minimal symplectic 4-manifold with zero Kodaira
dimension, cf. [16].

Moreover, the standard K3 surface is the only known example of such a 4-manifold,
and it has been a challenging problem as whether there is an exotic smooth structure
with rX = 0.

In [7] the authors studied the possible effect of a change of a smooth structure on
the symmetry group of a closed, oriented 4-manifold. It was shown that for an infinite
family of maximally exotic (i.e. rX = 3) K3 surfaces, there are very significant
constraints on the smooth symmetry groups of the manifolds. The current paper took
a rather opposite viewpoint as one of its purposes is to investigate the implications of
a (symplectic) group action for the smooth structure of a 4-manifold.

The interaction between smooth structures and symmetry groups of a manifold is
one of the basic questions in the theory of differentiable transformation groups. In
particular, the following classical theorem of differential geometry gives a character-
ization of the standard sphere S

n among all the homotopy n-spheres as having the
largest degree of symmetry (cf. [13]).

Theorem (A Characterization of Sn). Let Mn be a closed, simply connected man-
ifold of dimension n, and let G be a compact Lie group which acts smoothly and
effectively on Mn. Then dimG ≤ n(n + 1)/2, with equality if and only if Mn is
diffeomorphic to S

n.

If X is a homotopy K3 surface then it is well known that a compact Lie group acting
smoothly on X must be finite (cf. [2]). A finite group G is called a K3 group (resp.
symplectic K3 group) if G can be realized as a subgroup of the automorphism group
(resp. symplectic automorphism group) of a K3 surface. Finite automorphism groups
of K3 surfaces were first systematically studied by Nikulin in [23]; in particular, he
completely classified finite abelian groups of symplectic automorphisms. Subsequently,
Mukai [22] determined all the symplectic K3 groups (see also [14, 27]). The following
11 groups are the maximal symplectic K3 groups:

L2(7), A6, S5,M20, F384, A4,4, T192,H192, N72,M9, T48.

Motivated by the above characterization of the standard S
n we were led to the

following:

Problem Let X be a homotopy K3 surface supporting an effective action of a
“large” K3 group via symplectic symmetries. What can be said about the smooth
structure on X?

Viewing the above maximal symplectic K3 groups as “large”, our solution to this
problem is contained in the following:

Theorem 1.0. Let G be one of the following maximal symplectic K3 groups:

L2(7), A6,M20, A4,4, T192, T48,



SYMMETRIC SYMPLECTIC HOMOTOPY K3 SURFACES 3

and let X be a symplectic homotopy K3 surface. If X admits an effective G-action
via symplectic symmetries, then X must be minimally exotic, i.e., rX = 0.

Remarks It is possible to extend Theorem 1.0 to other K3 groups, or more
generally, to give an upper bound on the exoticness rX when X admits a “relatively
large” symplectic symmetry group. However, we shall not pursue these extensions
here as the detailed analysis depends very much on the structure of each individual
group involved.

In fact, behind the proof of Theorem 1.0 a general method was devised in this
paper which allows one to measure the effect of a symplectic finite group action on a
homotopy K3 surface X in terms of its exoticness rX . The basic idea of our method
may be summarized as follows. Let a finite group G act on a homotopy K3 surface X
via symplectic symmetries. Using the techniques developed in our previous work [6]
and exploiting various features of the structure of G, one first determines the possible
fixed point set of an arbitrary element g ∈ G, from which the trace tr(g) of g on
H∗(X;Z) can be computed using the Lefschetz fixed point theorem. This leads to a
calculation of

dim(H∗(X;R))G =
1

|G|
∑

g∈G

tr(g).

On the other hand, there is an induced action of G on the lattice LX of the Seiberg-
Witten basic classes. The following basic inequality

dim(LX ⊗Z R)G ≤ min(b+2 (X/G), b
−
2 (X/G)),

which follows from the fact that LX is isotropic (cf. Proposition 4.1), plus the identity
dim(H∗(X;R))G = 2 + b+2 (X/G) + b−2 (X/G) allows one to obtain information about
dim(LX ⊗Z R)G and rX = rank LX .

For an illustration we consider the case where G is a nonabelian simple group. It is
easily seen that in this case b+2 (X/G) = 3 and rX = dim(LX ⊗ZR)

G. The above basic
inequality then becomes

rX ≤ min(3,dim(H∗(X;R))G − 5).

There are three nonabelian simple K3 groups: L2(7), A5 and A6. For the case where
G = L2(7) or A6, we show in Section 2 that dim(H∗(X;R))G = 5 (which is the same as
that of a holomorphicG-action on aK3 surface), so that rX = 0 as asserted in Theorem
1.0. For G = A5, the fixed-point analysis only gives dim(H∗(X;R))G ≤ 8, cf. Lemma
2.5. (Note that even for a holomorphic A5-action, one only gets dim(H∗(X;R))G = 6.)
Thus in the case of G = A5, our method only gives rX ≤ 3, which does not yield any
restriction on the exoticness rX .

Our Theorem 1.0 naturally gives rise to the following question.

What can be said about a finite group G which can act effectively on a minimally
exotic symplectic homotopy K3 surface via symplectic symmetries?
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In the following theorem, we show that the symmetries of a minimally exotic sym-
plectic homotopy K3 surface look very much like holomorphic automorphisms of the
standard K3 surface; in particular, the symmetry groups are more or less K3 groups.

Theorem 1.1. Let X be a minimally exotic symplectic homotopy K3 surface (i.e.
rX = 0) and let G be a finite group acting effectively on X via symplectic symmetries.
Then there exists a short exact sequence of finite groups

1 → G0 → G→ G0 → 1,

where G0 is cyclic and G0 is a symplectic K3 group, such that G0 is characterized as the
maximal subgroup of G with the property b+2 (X/G0) = 3. Moreover, the induced action
of G0 on X has the same fixed point set structure as does a symplectic holomorphic
action on the standard K3 by G0.

Motivated by the above result we turn our attention to the problem of constructing
symplectic finite group actions on exoticK3 surfaces. It seems that this line of research
will require a developement of new techniques. Our next result could be viewed as a
first, preliminary, step in this direction.

First of all, it is clear that the Fintushel-Stern knot surgery [9] can be suitably
adapted for this purpose. More precisely, suppose a finite group G acts on the standard
K3 surface preserving an elliptic fibration. Then under a certain condition (cf. Reamrk
4.3), one can perform knot surgery equivariantly to produce G-actions on exotic K3
surfaces. For example, every cyclic K3 group of prime order can act holomorphically
on an elliptic K3 surface (cf. [25, 17]), and by a knot surgery one can easily show that
such a group can act on an exotic K3 surface via symplectic symmetries. Concerning
noncyclic K3 groups, the following theorem perhaps gives the most dramatic example
of such a construction.

Theorem 1.2. Let G ≡ (Z2)
3. There exists an infinite family of distinct maximally

exotic (i.e. rX = 3) symplectic homotopy K3 surfaces, such that each member of the
exotic K3’s admits an effective G-action via symplectic symmetries. Moreover, the G-
action is pseudofree and induces a trivial action on the lattice LX of the Seiberg-Witten
basic classes.

The limitation of equivariant knot surgery is that the group G has to be a K3
group, and that it is difficult to construct group actions on homotopy K3 surfaces
with a large exoticness (e.g., rX > 1). In particular, the following questions seem to
require techniques which go beyond the equivariant knot surgery:

Questions

(1) Are there any finite groups other than a K3 group which can act symplectically
on a homotopy K3 surface?

(2) Are there any finite groups other than (Z2)
3 (or a subgroup of it) which can act

symplectically on a homotopy K3 surface X with rX = 3?
(3) Can (Z2)

4 act symplectically on an exotic K3 surface (i.e., with rX > 0)?

We would like to point out that an earlier version of this paper was circulated under
the title: Symmetric Homotopy K3 Surfaces.
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The organization of the rest of the paper is as follows. The proofs of Theorem 1.0
and Theorem 1.1 are given in Sections 2 and 3 respectively. In Section 4 we show that
the lattice LX of Seiberg-Witten basic classes is isotropic and rX ≤ 3. The proof of
Theorem 1.2 is also given in Section 4.

2. Proof of Theorem 1.0

Let (X,ω) be a symplectic homotopy K3 surface, and let G be a finite group which
acts on X smoothly and effectively, preserving the symplectic structure ω. We pick
an arbitrary ω-compatible, G-equivariant almost complex structure J on X, and we
denote by gJ the associated Riemannian metric, i.e., gJ(·, ·) ≡ ω(·, J ·), which is also
G-equivariant.

We derive some preliminary information about the G-action first.

Lemma 2.1. Let G0 be the maximal subgroup of G such that b+2 (X/G0) = 3. Then
G/G0 is cyclic. Moreover, the commutator [G,G] is contained in G0.

Proof. Let H+ be the space of gJ -self-dual harmonic 2-forms on X. Since the Rie-
mannian metric gJ is G-equivariant, we see that H+ is invariant under the action of
G. Moreover, since ω ∈ H+ and G fixes ω, there is an induced action of G on the or-
thogonal complement 〈ω〉⊥ of ω in H+. Note that dimH+ = 3, so that dim 〈ω〉⊥ = 2.
We claim that the action of G on 〈ω〉⊥ is orientation-preserving (i.e. there are no
reflections).

To see this, suppose there is a g ∈ G such that the action of g on 〈ω〉⊥ is not
orientation-preserving. This happens exactly when g fixes a 1-dimensional subspace,
and it follows easily that in this case b+2 (X/〈g〉) = 2. On the other hand, b+2 (X/〈g〉)
must be odd. This is because for the symplectic 4-orbifold X/〈g〉, the dimension of
the Seiberg-Witten moduli space associated to the canonical SpinC structure equals
0 (cf. [4], Appendix A). This gives rise to the equation

2 · index of Dirac operator + (b1(X/〈g〉) − 1− b+2 (X/〈g〉)) = 0.

It follows easily that b+2 (X/〈g〉) is odd because b1(X/〈g〉) = 0.
With the preceding understood, we obtain an exact sequence of groups

1 → G0 → G→ S
1,

where the last homomorphism G→ S
1 is induced from the action of G on 〈ω〉⊥. The

lemma follows immediately from this.
�

For a symplectic K3 group G, the commutator [G,G] and the quotient group (i.e.
the abelianization) G/[G,G] is determined in [27]. For the purpose of later discussions,
the list of G where G is maximal is reproduced below.

• G = L2(7): [G,G] = G and G/[G,G] = 0.
• G = A6: [G,G] = G and G/[G,G] = 0.
• G = S5: [G,G] = A5 and G/[G,G] = Z2.
• G =M20 = 24A5: [G,G] = G and G/[G,G] = 0.
• G = F384 = 42S4: [G,G] = 42A4 and G/[G,G] = Z2.
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• G = A4,4 = 24A3,3: [G,G] = A2
4 and G/[G,G] = Z2.

• G = T192 = (Q8 ∗Q8)×φ S3: [G,G] = (Q8 ∗Q8)×φ Z3 and G/[G,G] = Z2.
• G = H192 = 24D12: [G,G] = 24Z3 and G/[G,G] = (Z2)

2.
• G = N72 = 32D8: [G,G] = A3,3 and G/[G,G] = (Z2)

2.
• G =M9 = 32Q8: [G,G] = A3,3 and G/[G,G] = (Z2)

2.
• G = T48 = Q8 ×φ S3: [G,G] = T24 = Q8 ×φ Z3 and G/[G,G] = Z2.

The crucial step in the proof of Theorem 1.0 is to determine the possible fixed
point set of an arbitrary element of G. This is done by combining the analysis in our
previous work [6] with various G-index theorems, and by exploiting various specific
features of the group G.

Here is the main technical input from [6] (cf. Lemma 3.1 in [6]). Since b+2 (X/G0) =
3 ≥ 2, the canonical class c1(KX) is represented by

∑
i niCi, where ni ≥ 1 and {Ci} is

a finite set of J-holomorphic curves such that (i) ∪iCi is invariant under the action of
G0, (ii) if p ∈ X \(∪iCi) is fixed by an element g ∈ G0, then the local representation of
g at p must be contained in SL2(C). (In particular, p must be an isolated fixed point
of g, and all the 2-dimensional components of the fixed point set Fix(g) are contained
in ∪iCi.)

The fixed point set of an element of order 2 or 4 is determined in the following

Lemma 2.2. (1) Let g ∈ G be an involution. If g ∈ G0, then Fix(g) consists of 8
isolated fixed points. If g ∈ G \G0, then Fix(g) is either empty or a disjoint union of
embedded J-holomorphic curves {Σj} such that c1(KX) · Σj = 0 for each j.

(2) Let g ∈ G0 be an element of order 4. Then Fix(g) consists of 4 isolated fixed
points, all with a local representation contained in SL2(C).

Proof. (1) Since X is simply-connected, the action of g can be lifted to the spin
structure, where there are two cases: g is of even type, meaning that the order of the
lifting is 2, and g is of odd type, meaning that the order of the lifting is 4. Moreover,
g has only isolated fixed points in the case of an even type, and g is free or has only
2-dimensional fixed components in the case of an odd type (cf. [1]).

Suppose g ∈ G0. Then b+2 (X/〈g〉) = 3, and by [3] g is of even type with 8 isolated
fixed points. Now consider the case where g ∈ G \ G0. In this case Fix(g) is either
empty or is a disjoint union of embedded surfaces Σj (cf. [3]). Note that each Σj is
J-holomorphic because we choose J to be G-equivariant.

We first show that
∑

j c1(KX) · Σj = 0. To see this, suppose t is the dimension of

the 1-eigenspace of g in H2(X;R). Then by the Lefschetz fixed point theorem and the
G-signature theorem (cf. [12]), we obtain

{
2 + t− (22− t) =

∑
j χ(Σj)

2(2 − t) = −16 +
∑

j
22−1
3 · Σ2

j ,

which gives
∑

j(χ(Σj) + Σ2
j) = 0. By the adjunction formula, we obtain

∑

j

c1(KX) · Σj =
∑

j

−(χ(Σj) + Σ2
j) = 0.
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On the other hand, recall from [6] that c1(KX) =
∑

i niCi where {Ci} is a finite set
of J-holomorphic curves and ni ≥ 1. For any j, if Σj 6= Ci for all i, then because of
positivity of intersection of J-holomorphic curves, c1(KX) ·Σj ≥ 0 with equality iff Σj

is disjoint from ∪iCi. If Σj = Ci for some i, then c1(KX) · Σj = c1(KX) · Ci = 0 (cf.
[6], Lemma 3.3). In any event we have c1(KX) ·Σj ≥ 0, which implies c1(KX) ·Σj = 0
because

∑
j c1(KX) · Σj = 0.

(2) Since Fix(g) ⊂ Fix(g2) and g2 is an involution in G0, we see immediately that
g has only isolated fixed points, with local representations of either type (1, 1), (3, 3),
or type (1, 3). We shall denote by s+, s− the number of fixed points of g of type (1, 3)
and type (1, 1) or (3, 3) respectively. In order to determine s+, s−, we first compute
with the Lefschetz fixed point theorem and the G-signature theorem. To this end, it
is useful to observe that for the induced action of the involution g2 on H2(X;R), the
1-eigenspace has dimension 14 and the (−1)-eigenspace has dimension 8. With this
understood, if we denote by t± the dimension of the (±1)-eigenspace of g in H2(X;R),
then t++t− = 14. Now the Lefschetz fixed point theorem and the G-signature theorem
(cf. [12]) give rise to the following system of equations

{
2 + t+ − (14− t+) = s+ + s−

4(6 − t+) = −16 + 2s+ + (−2)s−,

where we use the assumption g ∈ G0 so that b+2 (X/〈g〉) = 3, and we use the fact that
the signature defect at a fixed point of type (1, 3) and type (1, 1) or (3, 3) is 2,−2
respectively, and the signature defect at a fixed point of g2 is 0. (This follows by
a direct calculation using the formulas in [12].) The solutions for s+, s− (note that
s+ + s− ≤ 8) are s+ = 4 and s− = 0, 2 or 4.

We proceed further by exploiting the fact that the action of g can also be lifted to
the spin structure, and because g2 is of even type, g is also of even type (i.e. a lifting
of g to the spin structure is of order 4). Moreover, the induced lifting of g2 to the
spin structure is uniquely determined, i.e., it is independent of the different choices
of liftings of g to the spin structure. With this understood, the computation of the
“Spin-number” Spin(g2,X) plays a crucial role in the consideration which follows.

But first of all, a digression is needed in which we will recall a formula for the local
contribution of a fixed point to the “Spin-number” (cf. Lemma 3.8 of [7]). Suppose
h is an order p self-diffeomorphism (p ≥ 2 and not necessarily prime) which is spin
and almost complex. Then because of the h-equivariant almost complex structure,
the h-equivariant spin structure corresponds to an h-equivariant complex line bundle
L, such that at an isolated fixed point m of local representation type (am, bm), the
weight rm of the representation of h on the fiber of L at m obeys 2rm + am + bm = 0
(mod p). Define k(h,m) ≡ (2rm + am + bm)/p. Then the local contribution of m to
Spin(h,X) is

Im = (−1)k(h,m)+1 · 1
4
csc(

amπ

p
) csc(

bmπ

p
).

End of digression.
We apply the above formula to the involution h ≡ g2. For each fixed point m of g2,

(am, bm) = (1, 1), so that the local contribution Im = 1
4 or −1

4 , depending on whether



8 WEIMIN CHEN AND SLAWOMIR KWASIK

rm = 0 or 1. Now suppose the g2-index of the Dirac operator as a character is

indexg2 D = d0 + d1C1

where Ck is the 1-dimensional weight-k representation. Then both d0 and d1 are even
integers because of the quaternion structure. Since there are only 8 fixed points and
each contributes Im = 1

4 or −1
4 to Spin(g2,X), it follows easily that Spin(g2,X) =

d0 − d1 only takes values of −2, 0, or 2. One can further eliminate the possibility of
Spin(g2,X) = 0 by observing that d0 + d1 = −sign(X)/8 = 2 and that both d0, d1
are even. The crucial consequence of the fact that Spin(g2,X) equals either −2 or
2 is that the weight rm of the representation of g2 on the fiber of the complex line
bundle L is independent of the fixed point m. This implies that for the element g,
either s+ = 0 or s− = 0. Since s+ = 4, s− must be 0, and the lemma follows.

�

Next we discuss the fixed point set of an element of G0 of an odd prime order.
Unlike the cases we dealt with in Lemma 2.2, this requires analyzing the induced
action on ∪iCi in the way as we demonstrated in [6]. In particular, we shall rely on
several specific results from Section 3 of [6]. We would like to point out that even
though there is an additional assumption in [6] that the action is trivial on H2(X;R),
this assumption is merely to ensure that each (−2)-sphere in ∪iCi is invariant under
the action.

We recall that the connected components of ∪iCi may be divided into the following
three types (cf. Section 3 in [6]):

(A) A single J-holomorphic curve of self-intersection 0 which is either an embedded
torus, or a cusp sphere, or a nodal sphere.

(B) A union of two embedded (−2)-spheres intersecting at a single point with
tangency of order 2.

(C) A union of embedded (−2)-spheres intersecting transversely.

Furthermore, a type (C) component may be conveniently represented by one of the

graphs of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 listed in Figure 1, where a vertex in a graph
represents a (−2)-sphere and an edge connecting two vertices represents a transverse,
positive intersection point of the two (−2)-spheres represented by the vertices.

With the preceding understood, let g ∈ G0 be an element of order 3. Then Fix(g)
may be divided into subsets (or groups) of the following four types.

(I) One fixed point with local representation in SL2(C).
(II) Three fixed points, all with local representation of type (k, k) for some k 6= 0

mod 3.
(III) One fixed point of local representation type (k, k), k 6= 0 mod 3, and one fixed

spherical component of self-intersection −2.
(IV) One fixed toroidal component of self-intersection 0.

Moreover, a group of fixed points of type (III) comes only from a type (C) component
of ∪iCi. For the sake of later arguments in this section, we shall give below a brief
analysis of the action of g on a type (C) component of ∪iCi.

Let Λ be a type (C) component which is invariant under g. Then there is an
induced action of g on the graph representing Λ. We consider first the case where Λ
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Ãn (n+ 1 vertices, n ≥ 1)

D̃n (n+ 1 vertices, n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

Figure 1.

is represented by a Ãn graph. Then the induced action of g on the graph is either a
trivial action or a rotation. If the induced action is trivial, then the fixed points of
g contained in Λ are either entirely of type (I) or consist of (n + 1)/3 groups of type
(III) fixed points (cf. Proposition 3.7 in [6]). (We note that by Lemma 3.6 in [6], Λ
can not be a union of three (−2)-spheres intersecting transversely at a single point in
this case.) If the induced action is a rotation, then either Λ contains no fixed points
of g, or Λ is a union of three (−2)-spheres intersecting transversely at a single point,
in which case the intersection point is the only fixed point of g contained in Λ and it
is a type (I) fixed point.
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Next we assume that Λ is represented by a Ẽ6 graph. We claim that the induced
action on the graph must be non-trivial. To see this, suppose the induced action of g
on the graph is trivial. If we denote by C0 the (−2)-sphere in Λ which is represented
by the vertex of the graph that are adjacent to three other vertices (i.e., the central
vertex), then C0 must be fixed under the action of g (because a nontrivial cyclic group
action on S

2 has exactly 2 fixed points). Let C1 be a (−2)-sphere in Λ intersecting
with C0 and C2 be the (−2)-sphere intersecting with C1. Then by Lemma 3.6 of [6],
the rotation numbers at the two fixed points associated to C1 must be (0, 1) and (1, 1),
with (0, 1) being the rotation numbers at the intersection point of C0 and C1. (See
Section 3 in [6] for a discussion on rotation numbers.) This implies, by Lemma 3.6
of [6] again, that the rotation numbers at the two fixed points of g associated to C2

are (1, 1) and (0, 1), with (1, 1) being the rotation numbers at the intersection point
of C1 and C2. It follows, since the rotation numbers at the other fixed point on C2 are
(0, 1), that C2 must intersect with a 2-dimensional component of the fixed point set of
g. But this is clearly a contradiction, hence our claim that the induced action of g on
the graph must be non-trivial. With this understood, it is easily seen that Λ contains
exactly two fixed points of g, and these two fixed points are on the (−2)-sphere C0.
Furthermore, it follows from Lemma 3.6 in [6] that these two fixed points are of type

(I). By a similar argument, we show that Λ can not be represented by a Ẽ8 graph,

because a Ẽ8 graph admits no non-trivial actions of g.
Suppose Λ is represented by a D̃n graph. Then the induced action on the graph

must be trivial, and the fixed points of g contained in Λ consist of 1 group of type (II)
fixed points and (n− 1)/3 groups of type (III) fixed points. Suppose Λ is represented

by a Ẽ7 graph, then the induced action on the graph must be trivial and Λ gives rise
to 3 groups of type (III) fixed points of g. (See Proposition 3.7 in [6].)

Finally, it is helpful to note that only a type Ãn, D̃n, or Ẽ7 component of ∪iCi can
possibly contain a group of type (III) fixed points of g, and only a type D̃n component
of ∪iCi can contain a group of type (II) fixed points of g.

The fixed point set of an element of order 3 in G0 is described in the following

Lemma 2.3. Suppose g ∈ G0 is an element of order 3. Let u, v and w be the number
of groups of type (I), (II) and (III) fixed points of g respectively, and let t = b2(X/〈g〉).
Then

(1) 2u+ 3v = 12, w ≤ 6 and t ≥ 10. Moreover, t = 10 iff (u, v, w) = (6, 0, 0).
(2) Suppose w = 0. If there exist 3 distinct involutions h1, h2, h3 ∈ G0 each of

which commutes with g, then (u, v) = (6, 0).
(3) Suppose w = 0. If g is contained in a subgroup of G0 which is isomorphic to

T24, then (u, v) = (6, 0).

Proof. (1) Note that a toroidal fixed component Y of g does not make any contribution
in the Lefschetz fixed point theorem because χ(Y ) = 0, nor does it contribute in the
G-signature theorem because Y · Y = 0. Hence we shall ignore it in our calculations
below.

Observe that t = b2(X/〈g〉) is the dimension of the 1-eigenspace of g in H2(X;R),
and that t− (22− t)/2 is the trace of g on H2(X;R). Hence the Lefschetz fixed point
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theorem and the G-signature theorem give rise to the following equations
{

2 + t− (22− t)/2 = u+ 3v + 3w
3(6− t) = −16 + 2

3u− 2v − 6w

where we make use of b+2 (X/〈g〉) = 3 and the fact that the total signature defect for a
group of type (I), (II) and (III) fixed points is 2

3 , −2 and −6 respectively. (The claim
concerning the total signature defect follows by a direct calculation using the formulas
in [12].) The equation 2u + 3v = 12 follows immediately, which has 3 solutions:
(u, v) = (6, 0), (3, 2), and (0, 4). The inequality w ≤ 6 follows from u + 3v ≥ 6 and
the fact that t ≤ b2(X) = 22. It is also easy to check that t ≥ 10, with t = 10 iff
(u, v, w) = (6, 0, 0).

(2) Suppose (u, v) = (0, 4), in which case g has 12 isolated fixed points. From the
analysis of a possible action of g on a type (C) component preceding Lemma 2.3, we

see that only a component represented by a type D̃n graph can possibly contain a
group of type (II) fixed points, and at the same time, there must be groups of type
(III) fixed points. Since we assume that w = 0, these 12 points can not be contained
in type (C) components of ∪iCi. It follows by Proposition 3.7 of [6] that the 12 fixed
points of g must be contained in 4 toroidal components of ∪iCi, where each toroidal
component contains exactly 3 isolated fixed points.

By Lemma 2.2 each hi has 8 isolated fixed points. Since g and hi commute, there
is an induced action of g on Fix(hi), and it follows that g and hi must have at least
2 common fixed points. This implies that one of the toroidal components containing
the fixed points of g is invariant under hi, and consequently, g and hi generate an
effective cyclic action of order 6 on that torus. Since an order-6 cyclic action on a
torus is either free or has only 1 fixed point, we see that distinct common fixed points
of g and hi are contained in distinct toroidal components of ∪iCi. It follows easily
that there are i, j with i 6= j such that hi and hj leave one of the toroidal components
invariant, because for each i, g and hi have at least 2 common fixed points and there
are exactly 4 toroidal components of ∪iCi containing the fixed points of g. But this
is easily seen a contradiction, as hi acts freely on the set of common fixed points of g
and hj because Fix(hi) ∩ Fix(hj) = ∅. The case where (u, v) = (3, 2) can be similarly
eliminated. This proves that (u, v) = (6, 0).

(3) Note that T24 = Q8×φZ3, where we may assume without loss of generality that
the action of Z3 = 〈g〉 on

Q8 = {i, j, k|i2 = j2 = k2 = −1, ij = k, jk = i, ki = j}
is given by φ(g)(i) = j, φ(g)(j) = k and φ(g)(k) = i.

By Lemma 2.2, it follows easily that Q8 has either 2 or 4 isolated fixed points (see
e.g. [27]). Since there is an induced action of g on the fixed point set of Q8, we see
immediately that T24 has at least 1 fixed point.

Suppose (u, v) = (0, 4). As we argued in (2) above, at least one of the 4 toroidal
components must be invariant under T24 because it contains a fixed point of T24. But
this is impossible as there are no such T24-actions on the torus (cf. [24]).

If (u, v) = (3, 2), then g and −1 ∈ Q8 must have 5 common fixed points. It follows as
we argued in (2) above that each of the 2 toroidal components of ∪iCi which contains
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the type (II) fixed points of g must be invariant under −1, with each containing exactly
1 common fixed point of g and −1. But on the other hand, by Proposition 3.7 in [6],
each of the 2 toroidal components contains exactly 4 fixed points of −1, so that all of
the fixed points of −1 are contained in there. This is a contradiction to the fact that
the 3 type (I) fixed points of g, which are not contained in the 2 toroidal components,
are also fixed under −1. Hence the case where (u, v) = (3, 2) is also ruled out.

�

Proof of Theorem 1.0:

The general strategy goes as follows. For each of the 6 maximal symplectic K3
groups listed in Theorem 1.0, there is a subgroup H ⊂ G0 such that for any symplectic
holomorphic action of H on a K3 surface, one has µ(H) = 5 where

µ(H) ≡ 1

|H|
∑

g∈H

tr(g).

(See [22, 27] for the calculation of µ(H) for a symplectic automorphism group H of a
K3 surface.) The main task in the proof of Theorem 1.0 is to show that any effective
action of H on X via symplectic symmetries must have the same fixed point set as does
a symplectic holomorphic action of H (except for possible toroidal fixed components).
As a consequence this implies that

dim(H2(X;R))H = dim(H∗(X;R))H − 2 = µ(H)− 2 = 5− 2 = 3.

On the other hand, b+2 (X/H) = 3 because H ⊂ G0, so that H2(X;R)H must be
positive-definite. It follows that c1(KX) = 0 because c1(KX) ∈ H2(X;R)H and
c1(KX) · c1(KX) = 0, which is equivalent to X being minimally exotic, i.e., rX = 0.

Case (1). G = L2(7). First note that G0 = G, i.e., b+2 (X/G) = 3. An element of
G is of order 2, 3, 4, or 7. The following lemma describes the fixed point set of an
order-7 element of G.

Lemma 2.4. Let g ∈ G = L2(7) be any element of order 7. Then g has exactly 3
isolated fixed points, and is either pseudofree or has only toroidal fixed components.

Proof. We first show that if a type (C) component of ∪iCi contains a fixed point of
g, then its local representation at the fixed point must lie in SL2(C). To this end, we
recall that the normalizer of 〈g〉 in G is a maximal subgroup D of order 21 which is
a semi-direct product of Z7 by Z3 (cf. [8]). Let Λ be a type (C) component which
contains a fixed point of g. (Note that Λ is invariant under g.) If it is represented by

a type D̃n, Ẽ6, Ẽ7 or Ẽ8 graph, then since the (−2)-spheres in Λ generate a lattice
in H2(X;Z) which contains a negative-definite sublattice of rank at least 4, the orbit
of Λ under the action of G can have at most 4 components because of the constraint
b−2 (X) = 19. On the other hand, one can easily check that Λ is not invariant under
G = L2(7), and since the index of the maximal subgroup D is 8, there are at least 8
components in the orbit of Λ, which is a contradiction. Suppose Λ is represented by a
type Ãn graph. Then each (−2)-sphere in Λ is invariant under g (since Λ contains a
fixed point of g). By Proposition 3.7 in [6], there are 3 possibilities: (i) n = −1 mod 7,
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so that Λ contains at least seven (−2)-spheres, (ii) Λ only contains fixed points of g
whose local representations lie in SL2(C), (iii) Λ is a union of three (−2)-spheres
intersecting transversely at one single point. Note that case (i) can be eliminated by

a similar argument as in the cases of type D̃n, Ẽ6, Ẽ7 or Ẽ8 graphs. Case (iii) is ruled
out as follows. Note that the maximal subgroup D can not act linearly and freely on
S
3, so that such a Λ can not be invariant under the action of D. Hence if such a Λ

exists, there must be at least 3×8 = 24 components in the orbit of Λ under the action
of G. But this is impossible because of the constraint b−2 (X) = 19. This finishes the
proof of our claim.

Secondly, we will show that there are no type (B) components which contain a fixed
point of g. Suppose Λ is such a type (B) component. One can check easily that Λ
can not be invariant under the action of D, so that there are at least 24 type (B)
components in ∪iCi. But this contradicts the fact that b−2 (X) = 19. Hence there are
no type (B) components containing a fixed point of g.

Finally, suppose a type (A) component Λ of ∪iCi contains a fixed point of g. Then
by Proposition 3.7 in [6], Λ is either a fixed toroidal component, or Λ is a cusp sphere
containing 2 fixed points of g of local representations of type (2k, 3k), (−k, 6k) for
some k 6= 0 mod 7 respectively.

With the preceding understood, we conclude that g has only fixed toroidal com-
ponents, and that the isolated fixed points of g can be divided into groups of the
following two types:

(1) One fixed point with local representation in SL2(C).
(2) Two fixed points with local representation of type (2k, 3k), (−k, 6k) for some

k 6= 0 mod 7 respectively.

Next we compute with the Lefschetz fixed point theorem and the G-signature the-
orem. Denote by t the dimension of the 1-eigenspace of g in H2(X;R) (note that
22 − t must be divisible by 6), and denote by u, v the number of groups of type (1),
(2) isolated fixed points of g respectively. Then by the Lefschetz fixed point theorem
and the G-signature theorem,

{
2 + t− (22 − t)/6 = u+ 2v

7(6− t) = −16 + 10u− 8v,

where we make use of b+2 (X/〈g〉) = 3 and the fact that the total signature defect for a
group of type (1), (2) fixed points of g is 10 and −8 respectively (cf. [6], Lemma 3.8).
The solutions to the above system of equations are

(t, u, v) = (4, 3, 0), (10, 2, 4), (16, 1, 8), (22, 0, 12).

The cases where (t, u, v) = (10, 2, 4) or (16, 1, 8) can be ruled out as follows. The
maximal subgroup D induces a Z3-action on the set of isolated fixed points of g, which
must be free because D can not act freely and linearly on S

3. This implies that the
number of fixed points, which is u+ 2v, must be divisible by 3.

In the case of (t, u, v) = (22, 0, 12), g is homologically trivial. Since G = L2(7) is a
simple group, it follows that the action of G is also homologically trivial. But, because
G is nonabelian, this is impossible by McCooey’s theorem in [19].
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The only case left is (t, u, v) = (4, 3, 0), which shows that g has exactly 3 isolated
fixed points.

�

Next we consider the action of an element g ∈ G of order 3. We claim that g has
exactly 6 isolated fixed points, with possibly some fixed toroidal components. To see
this, we note that there is an element h ∈ G of order 7 such that D = 〈g, h〉 is a
nonabelian subgroup of order 21, which is the normalizer of 〈h〉 (cf. [8]). From the
proof of Lemma 2.4, we see that the dimension of the exp(2πik7 )-eigenspace of h in

H2(X;R) is 22−4
6 = 3 for each 1 ≤ k ≤ 6. By examining the action of D on the

exp(2πik7 )-eigenspaces of h, 1 ≤ k ≤ 6, one can check easily that the dimension of the

1-eigenspace of g in H2(X;R) is at most 10. By Lemma 2.3 (1), our claim follows.
Now with Lemma 2.2, which describes the number of fixed points of an element of

order 2 or 4, we see that for any g ∈ G, the Lefschetz fixed point theorem implies that
the trace tr(g) is the same as that of a symplectic automorphism of order |g| on a K3
surface. By Mukai [22], µ(G) = 5 for a symplectic holomorphic G = L2(7) action.
This implies that

dim(H∗(X;R))G = µ(G) ≡ 1

|G|
∑

g∈G

tr(g) = 5.

As we pointed out in the beginning of the proof of Theorem 1.0, this implies that
c1(KX) = 0, and hence X is minimally exotic.

End of Case (1).

Case (2). G = M20 or A6. In this case we shall exploit the fact that there is a
subgroup of G0 which is isomorphic to either A5 or A6.

Lemma 2.5. Suppose H ⊂ G0 is a subgroup isomorphic to either A5 or A6. Let
g ∈ H be an element of odd order. Then g is either pseudofree or has only toroidal
fixed components. Moreover, g has 4 isolated fixed points if |g| = 5, and g has either
6 or 12 isolated fixed points when |g| = 3.

Proof. Suppose g ∈ H is an element of order 5. Without loss of generality we may
assume that H ∼= A5, because in the case of H ∼= A6, g is contained in an A5-subgroup
of H. With this understood, the maximal subgroup of H containing g is a dihedral
group D10 ⊂ H of index 6 (cf. [8]). One can similarly argue, as in the proof of Lemma
2.4, that if a type (C) component of ∪iCi contains a fixed point of g, then it must be

represented by a type Ãn graph and the fixed point is of local representation lying in
SL2(C).

By Proposition 3.7 in [6], if a type (A) component Λ of ∪iCi contains a fixed point
of g, then Λ is either a fixed toroidal component, or Λ is a cusp or nodal sphere
containing only fixed points of g of local representation lying in SL2(C). If a type (B)
component Λ contains a fixed point of g, then Λ contains three fixed points of g, one
with local representation of type (k, 2k) and the other two of type (−k, 4k) for some
k 6= 0 mod 5.
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In conclusion, g has only toroidal fixed components and the isolated fixed points of
g can be divided into groups of the following two types:

(1) One fixed point with local representation in SL2(C).
(2) Three fixed points, one with local representation of type (k, 2k) and the other

two of type (−k, 4k) for some k 6= 0 mod 5.

Denote by t the dimension of the 1-eigenspace of g in H2(X;R) (note that 22 − t
must be divisible by 4), and denote by u, v the number of groups of type (1), (2)
isolated fixed points of g respectively. Then by the Lefschetz fixed point theorem and
the G-signature theorem,{

2 + t− (22 − t)/4 = u+ 3v
5(6 − t) = −16 + 4u− 8v,

where we make use of b+2 (X/〈g〉) = 3 and the fact that the total signature defect for a
group of type (1), (2) fixed points is 4 and −8 respectively (cf. [6], Lemma 3.8). The
solutions to the above system of equations are

(t, u, v) = (6, 4, 0), (10, 3, 2), (14, 2, 4), (18, 1, 6), (22, 0, 8).

The cases where u = 1 or 3 can be eliminated as follows. There is an involution on
the set of isolated fixed points of g induced by the action of D10, which is free because
D10 can not act freely and linearly on S

3. Consequently, the number of isolated fixed
points of g must be divisible by 2. To eliminate the case where (t, u, v) = (14, 2, 4),
note that in this case ∪iCi has 4 type (B) components each of which contains a fixed
point of g. Moreover, it is easy to see that each component is not invariant under the
action of D10. Since the index of D10 ⊂ H is 6, there are at least 4 × 2 × 6 = 48
type (B) components of ∪iCi, which contradicts b−2 (X) = 19. Finally, the case where
(t, u, v) = (22, 0, 8) is ruled out by McCooey’s theorem [19] because H is simple and
nonabelian. Hence g has 4 isolated fixed points when |g| = 5.

Next suppose g ∈ H is an element of order 3, where H is either A5 or A6. We
claim that Fix(g) does not contain any group of type (III) fixed points (i.e., w = 0
in Lemma 2.3). To see this, note first that there are no type (C) components of ∪iCi

which are represented by a graph of type D̃n, Ẽ6, Ẽ7 or Ẽ8. The point is that such
a component can not contain any fixed points of an order-5 element of H, hence can
not be invariant under the action of an order-5 element. If such a component exists,
then there are at least 5 such components in ∪iCi, and this contradicts b−2 (X) = 19.
Hence if Fix(g) contains a group of type (III) fixed points, it must come from a type

(C) component Λ which is represented by a type Ãn graph, where n = −1 mod 3 (cf.
Proposition 3.7 in [6]). Let h ∈ H be an order-5 element. Since g 6= hgh−1, it follows
easily that h and g can not have a common isolated fixed point in Λ, which implies
that either Λ is not invariant under h or h acts freely on Λ. In any event, the case
where n > 2 can be ruled out by using the fact b−2 (X) = 19. To eliminate the case
where n = 2, we note that there is a subgroup K ⊂ H which is isomorphic to the
symmetric group S3 and contains 〈g〉 as a normal subgroup. Clearly K can not leave

Λ invariant if it is represented by a Ã2 graph, so that Λ must come in pairs. Again
this is impossible by the fact that b−2 (X) = 19. Hence Fix(g) does not contain any
group of type (III) fixed points. The action of K on Fix(g) also implies that u is even
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in Lemma 2.3 (because S3 can not act freely and linearly on S
3). Hence g has either

6 or 12 isolated fixed points when |g| = 3.
Finally, note that g is either pseudofree or has only toroidal fixed components.

�

Let G = M20. Since [G,G] = G, we see that G0 = G. We claim that for each
g ∈ G the trace tr(g) on H∗(X;R) is the same as that of a symplectic automorphism
of order |g| on a K3 surface. With this the proof of Theorem 1.0 proceeds identically
as in the case of L2(7), as for G =M20, µ(G) ≡ |G|−1

∑
g∈G tr(g) = 5 is also true for a

symplectic holomorphic action (cf. [22]). When |g| 6= 3 or 6, our claim follows readily
from Lemma 2.2 and Lemma 2.5. For the case where |g| = 3 or 6, we need to argue
with some extra information about the structure of G =M20.

According to Mukai [22], page 189, M20 = 24A5, where the action of A5 on 24 is

obtained by realizing 24 as the hypersurface V = {(ai)|
∑5

i=1 ai = 0} ⊂ (Z2)
5 with A5

acting as permutations of the 5 coordinates. Clearly, for each element g of order 3 in
A5, there are 3 nonzero elements of V which are fixed under g. This gives 3 distinct
involutions in G, each of which commutes with g. By Lemma 2.3 (2), g has 6 isolated
fixed points. It also follows easily from the proof of Lemma 2.3 (2) that an order 6
element of G has 2 isolated fixed points, with possibly some fixed toroidal components.
In conclusion, for an order 3 or 6 element g ∈ G, the trace tr(g) on H∗(X;R) is also
the same as that of a symplectic automorphism on a K3 surface of the same order.
This completes the proof for the case where G =M20.

Let G = A6. In this case, we also have G0 = G. As in the case of M20, it suffices
to show that for each g ∈ G with |g| = 3, there are 6 isolated fixed points. (Note
that µ(G) = 5 is also true for a symplectic holomorphic A6-action (cf. [22])). To this
end, we recall the following fact about A6: There are 2 conjugacy classes of elements
of order 3 in A6; the centralizer of each order 3 element in A6 is isomorphic to (Z3)

2,
hence has order 9. Now suppose an element g of order 3 in G = A6 has, instead, 12
isolated fixed points. Then the conjugacy class of g will make an increase of 6

9 = 2
3 to

µ(G) ≡ 1

|G|
∑

g∈G

tr(g)

when compared with a holomorphic A6-action. Since there are only two conjugacy
classes of elements of order 3 in A6, a nonzero increase to µ(G) is either 2

3 or 4
3 ,

neither of which is integral. This shows that an element of order 3 in G must have 6
isolated fixed points, and the proof of Theorem 1.0 for the case of G = A6 follows.

End of Case (2) where G =M20 or A6.

Case (3). G = A4,4. Let H ≡ [G,G] = A4 × A4. Then since [G,G] ⊂ G0, we have
b+2 (X/H) = 3. Note that µ(H) = 5 for a symplectic automorphism group H of a K3
surface (cf. [27]). Hence by Lemma 2.2, it suffices to show that for each g ∈ H of order
3, the trace tr(g) on H∗(X;R) is the same as that of a symplectic automorphism of
order 3 on a K3 surface.

There are 4 conjugacy classes of order 3 elements in G, which are represented by
(g, 1), (1, g), (g, g), (g, g2 ) ∈ A4 × A4 = H for some fixed element g ∈ A4 of order 3.
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Since the trace on H∗(X;R) only depends on the conjugacy class in G, it suffices to
examine these 4 elements of H.

We first show that there are no type (III) fixed points (i.e., w = 0 in Lemma 2.3).
Consider the case (g, 1) first. The normalizer of 〈(g, 1)〉 in H is 〈g〉 × A4 which has
index 4. If Λ is a type (C) component of ∪iCi which contains a group of type (III)
fixed points of (g, 1), then the fact b−2 (X) = 19 immediately rules out the possibility

that Λ is represented by a Ẽ7 graph or a Ãn graph where n 6= 2. If Λ is represented
by a D̃n graph or a Ã2 graph, then one can check easily that the orbit of Λ under the
normalizer 〈g〉×A4 has at least 3 components. This also contradicts b−2 (X) = 19, and
hence there are no type (III) fixed points of (g, 1). The case of (1, g) is completely
parallel. For the case of (g, g) or (g, g2), the normalizer of 〈(g, g)〉 or 〈(g, g2)〉 in H is
〈g〉 × 〈g〉 which has index 16. It follows immediately from b−2 (X) = 19 that there are
no type (III) fixed points.

Now by Lemma 2.3 (2), each of (g, 1) and (1, g) has exactly 6 isolated fixed points.
The case of (g, g) or (g, g2) is more involved, which is addressed in the following

Lemma 2.6. Suppose c1(KX) 6= 0. Then the number of isolated fixed points of (g, g)
or (g, g2) is even.

Proof. We consider the case of (g, g) only. The case of (g, g2) is completely parallel.
By Lemma 2.3, the number of isolated fixed points of (g, g) is either 6, 9 or 12.

Suppose to the contrary that it is 9. A contradiction is derived as follows. Observe
that there is an involution h ∈ G \H such that h and (g, g) generate a subgroup K of
G, where K is isomorphic to S3 and 〈(g, g)〉 is a normal subgroup of K. There is an
induced action of K on Fix((g, g)), which preserves the type of the fixed points. Since
(g, g) has 3 type (I) fixed points, one of them, denoted by p, must be fixed by K. Note
that K ∼= S3 can not have an isolated fixed point, hence h ∈ G\G0 and Fix(h) consists
of a disjoint union of embedded J-holomorphic curves {Σj} where c1(KX) · Σj = 0
for each j (cf. Lemma 2.2 (1)). It follows easily that there are fixed components
Γ0,Γ1,Γ2 of the three involutions h, (g, g)h(g−1 , g−1), (g2, g2)h(g−2, g−2) of K respec-
tively, which intersect transversely at p and have the same genus and self-intersection.
We claim that Γ0,Γ1,Γ2 are (−2)-spheres, and consequently (

∑2
k=0 Γk)

2 = 0. To see
that each Γk is a (−2)-sphere, it suffices to show that Γ2

k < 0 because c1(KX) ·Γk = 0.

Suppose to the contrary that Γ2
k ≥ 0. Then (

∑2
k=0 Γk)

2 > 0, which we will show is

impossible when c1(KX) 6= 0. To see this, note that all three classes
∑2

k=0 Γk, c1(KX),

and the symplectic structure ω are fixed under K. Since b+2 (X/K) = 1, we may write

2∑

k=0

Γk = a1ω + α1, c1(KX) = a2ω + α2

for some a1, a2 ∈ R
+ and α1, α2 ∈ H2(X;R) such that αi · ω = 0 and α2

i ≤ 0 for

i = 1, 2. Without loss of generality we assume that ω2 = 1. Then (
∑2

k=0 Γk)
2 > 0,

c1(KX)2 = 0, and c1(KX) ·∑2
k=0Σk = 0 give rise to

a21 + α2
1 > 0, a22 + α2

2 = 0, and a1a2 + α1 · α2 = 0.
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We arrive at a contradiction to the triangle inequality

|α1 · α2| = a1a2 > (α2
1 · α2

2)
1/2.

Hence Γ0,Γ1,Γ2 are (−2)-spheres and (
∑2

k=0 Γk)
2 = 0.

We claim that
∑2

k=0 Γk = λc1(KX) for some λ > 0. To see this, let H+ be the

space of self-dual harmonic 2-forms. Then since b+2 (X/K) = 1, the projections of the

classes of
∑2

k=0 Γk and c1(KX) into H+ are linearly dependent. On the other hand,∑2
k=0 Γk and c1(KX) span an isotropic subspace because

(
2∑

k=0

Γk)
2 = c1(KX)2 = c1(KX) ·

2∑

k=0

Γk = 0,

so that their projections into H+ are injective. This proves the claim.
Now for each involution h′ ∈ H, the set h′(∪2

k=0Γk) is disjoint from ∪2
k=0Γk because

of positivity of intersection of J-holomorphic curves and because

(h′)∗(

2∑

k=0

Γk) · (
2∑

k=0

Γk) = λ2(h′)∗c1(KX) · c1(KX) = λ2c1(KX)2 = 0.

Since there are 15 distinct involutions in H, there must be 16 such configurations as
∪2
k=0Γk which are mutually disjoint. This certainly contradicts b−2 (X) = 19, and the

lemma follows. �

If c1(KX) = 0, then X is already minimally exotic and we are done in this case.
Suppose c1(KX) 6= 0, then with Lemma 2.6, we shall further argue that each of (g, g)
or (g, g2) must have 6 isolated fixed points. The reason is that if not, there will be an
increase to µ(H) ≡ |H|−1

∑
g∈H tr(g), in comparison with a symplectic automorphism

group H of a K3 surface, of either 2× 6
9 or 4× 6

9 , both of which are not integral. (The

centralizer of (g, g) or (g, g2) is 〈g〉 × 〈g〉 which has order 9, and (g, g), (g2, g2), and
(g, g2), (g2, g) are not conjugate in H even though each pair of them are conjugate in
G.) The proof for the case of G = A4,4 is then completed.

End of Case (3) where G = A4,4.

Case (4). G = T192 or T48. Set H ≡ [G,G] ⊂ G0. Then in both cases, µ(H) = 5
for a symplectic automorphism group H of a K3 surface (cf. [27]).

Let G = T192. In this case H = (Q8 ∗Q8)×φ Z3, where

Q8 ∗Q8 = Q8 ×Q8/〈(−1,−1)〉
is the central product of Q8 with itself, and the action of Z3 on Q8 ∗ Q8 is given by
φ : x ∗ y 7→ α−1(x) ∗ α(y) for some fixed order-3 automorphism α of Q8 (cf. [22]).
The normalizer of Z3 in H is 〈−1〉 ×Z3, where 〈−1〉 denotes the center of Q8 ∗Q8. It
follows easily that for each g ∈ Z3, there are no type (III) fixed points of g because
b−2 (X) = 19 and the index of 〈−1〉 × Z3 in H is 16. By Lemma 2.3 (3), each order-3
element of H has 6 isolated fixed points, with possibly some fixed toroidal components.
Hence the case where G = T192 follows.
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Let G = T48. Then H is isomorphic to T24 = Q8 ×φ Z3. By Lemma 2.3 (3), one
only needs to verify that for any nontrivial element g ∈ Z3, there are no groups of
type (III) fixed points of g.

Suppose to the contrary that there is a group of type (III) fixed points, which is
contained in a type (C) component Λ. We observe that the normalizer of Z3 in H is
〈−1〉 × Z3 which has index 4. It follows immediately from b−2 (X) = 19 that Λ is not

represented by a Ẽ7 graph, or a D̃n graph with n > 4, or a Ãn graph with n > 2.
In fact Λ is not represented by a D̃4 graph either. To see this, suppose Λ is of type
D̃4. If Λ is invariant under −1 ∈ Q8, then the (−2)-sphere represented by the central
vertex of Λ must contain 2 fixed points of −1. On the other hand, by Lemma 2.2,
Q8 has at least 1 fixed point (cf. e.g. [27]). Since −1 ∈ Q8 has only 8 isolated fixed
points, it follows that there must be an order-4 element of Q8 which also fixes the
central vertex of the D̃4 graph. However, this would imply that the whole group Q8

fixes the central vertex, and there is an induced effective action of Q8 on S
2, which is

a contradiction. If Λ is not invariant under −1 ∈ Q8, then the orbit of Λ under H has
at least 8 components, contradicting b−2 (X) = 19. Hence Λ is not represented by a D̃4

graph.
It remains to eliminate the possibility that Λ is represented by a Ã2 graph. Suppose

this is the case. Then by the same argument as above, Λ can not be invariant under
−1 ∈ Q8, which means that Λ comes in pairs. Furthermore, the constraint b−2 (X) = 19

allows for exactly two Ã2 components, which give 2 groups of type (III) fixed points
of g. To eliminate this possibility, we make use of the fact that there is an involution
h ∈ G \ H, such that hgh−1 = g−1. There is an induced action of h on the set of
type (III) fixed points of g, where by replacing h with (−1)h, we may assume that h
fixes the isolated fixed point in each of the 2 groups of type (III) fixed points. Since
the local representation of g at the fixed point is of type (1, 1) or (2, 2), it follows that
at the fixed point one has the commutativity relation hg = gh, which contradicts the
fact that hgh−1 = g−1. This finishes the proof that there are no groups of type (III)
fixed points, and the case where G = T48 follows.

3. Proof of Theorem 1.1

In the proof of Theorem 1.1, the determination of the structure and the action of the
subgroup G0 follows the strategy of Xiao [27]. However, it relies on the fundamental
work of Taubes [26] to establish the necessary properties of the action of G in order
to implement Xiao’s strategy.

The first half of Theorem 1.1 is contained in the following

Proposition 3.1. Let X be a minimally exotic symplectic homotopy K3 surface, and
let G be a finite group acting on X effectively and symplectically. Then there exists a
short exact sequence of finite groups

1 → G0 → G→ G0 → 1,

where G0 is cyclic and G0 is characterized as the maximal subgroup of G with property
b+2 (X/G0) = 3. Moreover, for each g ∈ G0 the action of g is pseudofree with local
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representation at a fixed point contained in SL2(C), and the quotient orbifold X/G0

can be smoothly resolved into a minimally exotic symplectic homotopy K3 surface.

Proof. Let ω be a symplectic structure on X which is preserved under G, and we
fix an ω-compatible, G-equivariant almost complex structure J on X. Let KX be the
canonical bundle with the choice of J , and let gJ be the associated Riemannian metric,
both of which are G-equivariant.

Following Taubes [26], we consider the following family (parametrized by r > 0) of
perturbed Seiberg-Witten equations

DAψ = 0 and P+FA =
1

4
τ(ψ ⊗ ψ∗) + µ,

where ψ =
√
r(α, β) ∈ Γ(KX ⊕ I), A is a U(1)-connection on KX , and

µ = − ir
4
ω + P+FA0

for a canonical (up to gauge equivalence) connection A0 on K−1
X . According to [26],

c1(KX) is a Seiberg-Witten basic class, hence for any r > 0, there is a solution (ψ,A)
with ψ =

√
r(α, β) ∈ Γ(KX ⊕ I). Moreover, as r → ∞, the zero set α−1(0) ⊂ X

converges pointwise to a set of finitely many J-holomorphic curves with multiplicity,
which represents the Poincaré dual of c1(KX). Since X is minimally exotic by our
assumption, c1(KX) = 0, and as a consequence α−1(0) must be empty for sufficiently
large r > 0. It follows that, when r > 0 is sufficiently large, there is a unique solution
(
√
r(α0, 0), A) (up to gauge equivalence) to the perturbed Seiberg-Witten equations,

where a0 ≡ 1
2 (A−A0) is a flat connection on KX , |α0| = 1 and ∇a0α0 = 0 (cf. Lemma

4.5 and the proof of Proposition 4.4 in Taubes [26]).
With the preceding understood, we note that since the family of perturbed Seiberg-

Witten equations under consideration is G-equivariant (A0 may be chosen such that
g∗A0 = A0, ∀g ∈ G), the uniqueness of (α0, a0) up to gauge equivalence implies that
for any g ∈ G, g∗α0 = φ(g)α0 for some smooth circle-valued function φ(g) : X → S

1.
Since g is of a finite order, φ(g) must be a constant function because φ(g)|g| = 1. This
gives rise to a homomorphism ρ : G → S

1 which is defined by ρ : g 7→ φ(g) ∈ S
1. We

define G0 ⊂ G to be the kernel of ρ and set G0 ≡ G/G0. Then clearly G0 is cyclic.
Moreover, if g ∈ G has the property that b+2 (X/g) = 3 then, as we argued in [6],
the corresponding g-equivariant Seiberg-Witten invariant is nonzero, which implies
φ(g) = 1 and hence g ∈ G0. Finally, we observe that for any g ∈ G0, since α0 is a
nowhere vanishing section of KX and g∗α0 = α0, g has at most isolated fixed points
with a local representation contained in SL2(C).

It remains to show that the quotient orbifold X/G0 can be smoothly resolved into
a minimally exotic symplectic homotopy K3 surface. Note that this automatically
implies b+2 (X/G0) = 3 as it equals the b+2 of the smooth resolution. In fact, in the
next lemma we will prove an equivariant version of it. To finish the proof of the
proposition, one simply uses the lemma with H = K = G0.

�

Consider a subgroup K of G which is contained in G0 = ker ρ where ρ : g 7→ φ(g),
i.e., for any g ∈ K, g∗α0 = α0. Let H be a normal subgroup of K.
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Lemma 3.2. There exists a minimally exotic symplectic homotopy K3 surface XH

which is a smooth resolution of the orbifold X/H, such that K/H acts on XH symplec-
tically, extending the natural K/H-action on X/H under the resolution XH → X/H.
Moreover, note that b+2 (XH/(K/H)) = b+2 (X/K) = b+2 (XK) = 3.

Proof. The construction of the smooth resolution of the symplectic orbifold X/H
was given by McCarthy and Wolfson in [18]. We shall briefly review the procedure,
indicating that it can be done equivariantly. In fact the construction is local, so we shall
be focusing on a neighborhood of an isolated singular point of the orbifold, which by
the equivariant Darboux’ theorem is modeled on C

2/Γ, where Γ is the isotropy group
at the singular point which acts complex linearly on C

2, and where the symplectic
structure ω0 on C

2/Γ is given by the standard one on C
2, ωstd = i(dz1∧dz̄1+dz2∧dz̄2).

Let U, V be the part of C2/Γ which lies outside and inside of the unit ball over
Γ respectively, and let W = ∂U = ∂V which is the 3-manifold S

3/Γ. Since V is an
algebraic surface with an isolated singularity, there is a nonsingular, minimal projective
resolution π : Y → V . Note that Y is Kähler. We let τ be a Kähler form on Y . Then
for any ǫ > 0, ωǫ ≡ π∗ω0 + ǫτ is a Kähler form on Y . We shall show that for
a sufficiently small ǫ > 0, the two pieces (U,ω0) and (Y, ωǫ) can be symplectically
“glued” together, which gives a smooth resolution of C2/Γ by a symplectic manifold.

To this end, we consider the contact structure ξ on W which is the distribution
of complex lines in TW . Note that ω0|W = dα for some contact form α such that
ξ = kerα. On the other hand, since W is a rational homology 3-sphere, τ |W = dβ
for a 1-form β, and hence ωǫ|W = dαǫ where αǫ ≡ α+ ǫβ is also a contact form when
ǫ > 0 is sufficiently small. By Moser’s argument, there exists a self-diffeomorphism
ψ : W → W such that ψ∗αǫ = efα for some smooth function f : W → R. Pick a
constant C > 0 such that f < C on W . Let Z ⊂ (R ×W,d(etα)) be the symplectic
“cylinder” defined by

Z ≡ {(t, x)|x ∈W,f(x)− C ≤ t ≤ 0}.
Then the smooth resolution of C2/Γ by a symplectic manifold is given by

(Xǫ,C , ω) ≡ (U,ω0) ∪ (Z, d(etα)) ∪ (Y, e−Cωǫ),

where the gluing between ∂U = W and the component of ∂Z defined by t = 0 is
by the identity map on W , and the gluing between the component of ∂Z defined
by t = f(x) − C and ∂Y = W is by (t, x) 7→ ψ(x), where ψ : W → W is the
self-diffeomorphism obtained above through Moser’s argument. We leave it to the
reader to follow through that if a finite group Γ′ acts complex linearly on C

2/Γ,
then there is a corresponding symplectic Γ′-action on the smooth resolution (Xǫ,C , ω).
(We remark that Moser’s argument can be done equivariantly in the presence of a
compact Lie group action; in particular, the self-diffeomorphism ψ of W can be made
equivariant with respect to the Γ′-action on W , so that the gluing by (t, x) 7→ ψ(x) in
the construction of Xǫ,C is also equivariant.)

It remains to show that XH is a minimally exotic symplectic homotopy K3 surface,
and that b+2 (XH/(K/H)) = 3. The key step is the observation that XH has a trivial
canonical bundle. To see this, note that for any g ∈ H, since g∗α0 = α0, the nonzero
section α0 descends to a nonzero section α̂0 of the canonical bundle of the symplectic
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orbifold X/H. With this understood it suffices to show that the canonical bundle of
(Xǫ,C , ω) is trivial, which is done by matching up the trivialization of the canonical

bundle on the three pieces (U,ω0), (Z, d(e
tα)) and (Y, e−Cωǫ).

On (U,ω0), the canonical bundleKU is trivialized by α̂0. On (Z, d(etα)), the canon-
ical bundle is the pull back of ξ−1, the inverse line bundle of the contact structure ξ,
via the projection Z → W . Since KU |W = ξ−1 and KU is trivial, we see that KZ is
also trivial. Finally, KY is also trivial, because the symplectic form e−Cωǫ on Y is
Kähler so that KY is simply given by the holomorphic canonical bundle. Since for
each g ∈ H the local representation at each fixed point of g is contained in SL2(C),
the singularity of C2/Γ is a Du Val singularity, and it is known that in this case Y
has a trivial canonical bundle if it is taken minimal. Now since H1(W ;Z) = 0 which
parametrizes the homotopy classes of the non-zero sections of the trivial line bun-
dle over W , one can matches up the trivialization of KU , KZ and KY to obtain a
trivialization for the canonical bundle of (Xǫ,C , ω).

As an immediate consequence, XH is spin as w2(TXH) = c1(KXH
) (mod 2) must

vanish. By Rohlin’s theorem, sign(XH) is divisible by 16. Hence the intersection

form on H2(XH ;Z)/Tor is given by m

(
0 1
1 0

)
⊕ 2k(±E8), with m = b+2 (XH) and

k = |sign(XH)|/16. Now observe that the fundamental group of XH is finite, which
implies that b1(XH) = 0. Hence

0 = c21(KXH
) = (2χ+ 3sign)(XH ) = 2(2 + 2m+ 16k)± 3 · 16k = 0.

Since m = b+2 (XH) = b+2 (X/H) = 1 or 3 (cf. Lemma 2.1), the only solution for (m,k)
from the above equation is m = 3 and k = 1, and moreover, sign(XH) = −16. This
shows that XH is a rational homology K3 surface. (Note that this conclusion also
follows directly from Furuta’s work on the 11

8 -conjecture, cf. [10].)

Next we show that π1(XH) is trivial. Let X̂H be the universal cover of XH , which is

compact because π1(XH) is finite. Then X̂H is a closed, simply-connected symplectic
4-manifold with trivial canonical bundle. It was shown by Morgan and Szabó [21]

(compare also [16]) that the Betti numbers of X̂H satisfy

b+2 (X̂H) = 3 and b−2 (X̂H) = 19.

With b+2 (XH) = 3 and b−2 (XH) = 19 it follows easily that π1(XH) is trivial. This
completes the proof that XH is a minimally exotic symplectic homotopy K3 surface.

Finally, we observe that

b+2 (XH/(K/H)) = b+2 ((X/H)/(K/H)) = b+2 (X/K) = b+2 (XK) = 3.

�

Remark 3.3. The holomorphic version of Lemma 3.2 has been used in a fundamental
way, first by Nikulin in [23] and then by Xiao in [27], to study finite symplectic
automorphism groups of K3 surfaces. In particular, following the argument in Nikulin
[23], one can show, with Lemma 3.2, that for any g ∈ G0, the order |g| ≤ 8 and the
number of fixed points of g is the same as that of an order |g| symplectic automorphism
of a K3 surface. However, we would like to point out that this statement can also
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be proved directly, by a lengthy argument involving essentially the various G-index
theorems. Even though we have no need to pursue it here, we would like to observe
that Fix(g) 6= ∅ directly implies that the smooth resolution XH in Lemma 3.2 is
simply-connected, without appealing to the result of Morgan and Szabó in [21] as we
did in the proof of Lemma 3.2.

Now with Lemma 3.2 in place, we shall follow through the arguments of Xiao in
[27] to complete the proof of Theorem 1.1 by showing that G0 is a symplectic K3
group and that the action of G0 on X has the same fixed point set structure as does
a corresponding symplectic automorphism group of a K3 surface.

In Section 1 of Xiao [27], the only argument involving complex geometry is in the
proof of Lemma 2 there. We shall give a pure algebraic topology proof of this result
below. In order to state the lemma, we first need to introduce the necessary notations.

Let X be a minimally exotic symplectic homotopy K3 surface and let G be a finite
group acting effectively on X via symplectic symmetries such that b+2 (X/G) = 3.
Then as we have shown, X/G is a symplectic orbifold of only Du Val singularities,
which has a smooth resolution XG as defined in Lemma 3.2. Let L′ be the sublattice
of H2(XG;Z) generated by the (−2)-spheres in XG which are sent to the singular
points under XG → X/G, and let L be the smallest primitive sublattice of H2(XG;Z)
containing L′. Then the analog of Lemma 2 in Xiao [27] is contained in the following
lemma.

Lemma 3.4. L/L′ ∼= G/[G,G].

Proof. Let A be a regular neighborhood of the (−2)-spheres in XG which are mapped
to the singular points under XG → X/G, and let B = XG \ A be the complement of
A. Then the long exact sequence associated to the pair (XG, A) gives rise to

H2(A;Z)
i∗→ H2(XG;Z)

j∗→ H2(B;Z) → 0,

where we have used the excision and Poincaré duality to make the identification
H2(XG, A;Z) ∼= H2(B, ∂B;Z) ∼= H2(B;Z), and we have used the fact that A is
simply-connected so thatH1(A;Z) = 0. On the other hand, by the universal-coefficient
theorem for cohomology, we have the short exact sequence

0 → Ext(H1(B;Z),Z) → H2(B;Z)
h→ Hom(H2(B;Z),Z) → 0.

Now observe that for any element x ∈ H2(XG;Z), h ◦ j∗(x) = 0 if and only if the
intersection product of x with any element y ∈ H2(B;Z) is zero, which is precisely if
and only if x ∈ L. This gives a surjective homomorphism j∗ : L → Ext(H1(B;Z),Z)
whose kernel is easily seen to be L′ = Im(i∗). Hence L/L

′ ∼= Ext(H1(B;Z),Z).
Finally, π1(B) = G so that H1(B;Z) = G/[G,G] is a torsion group. This gives

L/L′ ∼= Ext(H1(B;Z),Z) ∼= H1(B;Z) = G/[G,G].

�

In Section 2 of [27], Xiao formulated a set of criteria obtained from Section 1,
and by a computer search a list of possibilities for a symplectic K3 group as well
as the combinatorial types of the actions were generated. A few of the cases were
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further eliminated to reach the final list, where the arguments are those in [27] which
precedes Lemma 5. We observe that this procedure can be used in the present situation
verbatim. This finishes the proof of Theorem 1.1.

Remark 3.5. The holomorphic version of Theorem 1.1 is contained in Nikulin [23].
There it was also shown that the order of the cyclic group G0 is bounded by 66 (which
is a sharp bound). The proof of this result involves arguments in complex geometry
which are not available in the present, symplectic category. However, we should point
out that there are further informations contained in the proof of Proposition 3.1 which
can be used to analyze G0; in particular, it is very likely that |G0| has a universal
upper bound. We shall not pursue this issue here, but wish to point out that because
of the homological rigidity of symplectic symmetries of a minimally exotic symplectic
homotopy K3 surface established in [6], the prime factors in |G0| are bounded by
b2 = 22.

4. The Lattice LX and Proof of Theorem 1.2

Recall that the Seiberg-Witten invariant of a simply-connected, closed, oriented,
smooth 4-manifold M with b+2 ≥ 2 is a map

SWM : {β ∈ H2(M ;Z)|β ≡ w2(TM) (mod 2)} → Z.

A class β is called a (Seiberg-Witten) basic class if SWM (β) 6= 0. It is a fundamental
fact that the set of basic classes is finite. Moreover, if β is a basic class, then so is −β
with

SWM (−β) = (−1)(χ+sign)(M)/4SWM (β).

When M is symplectic, a fundamental result of Taubes says that the canonical class
c1(KX) associated to a symplectic structure is always a basic class. The Seiberg-
Witten invariant SWM is an invariant of the diffeomorphism class of M , whose sign
depends on a choice of an orientation of

H0(M ;R)⊗ detH2,+(M ;R).

In particular, the set of basic classes depends only on the diffeomorphism type of M .
When M is a homotopy K3 surface, a theorem of Morgan and Szabó [21] says that
β = 0 is always a basic class. Furthermore, whenM is symplectic, work of Taubes [26]
gives additional information about the Seiberg-Witten invariant, in particular, about
the set of basic classes.

Let X be a symplectic homotopy K3 surface. We set

LX ≡ Span(β ∈ H2(X;Z)|SWX (β) 6= 0) ⊂ H2(X;Z),

and set rX ≡ rank(LX). Let ω be any symplectic structure on X, and let KX be
the associated canonical bundle. Then Taubes [26] showed that c1(KX) ∈ LX and
0 ≤ β · [ω] ≤ c1(KX) · [ω] for any basic class β. In particular, c1(KX) = 0 iff rX = 0.

Proposition 4.1. Let X be a symplectic homotopy K3 surface. Then the lattice of
basic classes LX is isotropic, i.e., for any x, y ∈ LX , the cup product of x and y is
zero. As a consequence, the rank of LX is bounded from above by min(b+2 , b

−
2 ) = 3,

i.e., rX ≤ 3.
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Proof. Let ω be a symplectic structure of X, and let KX be the canonical bundle.
Since X is minimal, and c21(KX) = 2χ(X) + 3sign(X) = 0, a theorem of Taubes
(cf. [26], Theorem 0.2 (5)) says that for any basic class β, eβ ≡ 1

2(c1(KX) + β) ∈
H2(X;Z) is Poincaré dual to

∑
imiTi, where mi > 0 and {Ti} is a finite set of

disjoint, symplectically embedded tori with self-intersection 0.
To see LX is isotropic, it suffices to show that for any basic classes β, β′, the cup

product β · β′ = 0, which follows from the generalized adjunction formula as follows.
Suppose eβ =

∑
imiTi where {Ti} is a finite set of disjoint, symplectically embedded

tori with self-intersection 0. Then for any basic class β′, we apply the generalized
adjunction formula to Ti,

genus(Ti) ≥ 1 +
1

2
(|β′ · Ti|+ T 2

i ).

This implies, for each i, β′ ·Ti = 0 because genus(Ti) = 1 and T 2
i = 0, and consequently,

eβ ·β′ = 0. In particular, since c1(KX) is a basic class, we have eβ · c1(KX) = 0, which

implies that β · c1(KX) = 0 for any basic class β. (This is because eβ ≡ 1
2 (c1(KX)+β)

and c21(KX) = 0.) Now we go back to eβ · β′ = 0, and conclude that

β · β′ = 2eβ · β′ − c1(KX) · β′ = 0.

Finally, we point out that rX ≤ 3 follows directly from the fact that the projection
of LX into H2,+(X;Z) is injective (because LX is isotropic). �

Remark 4.2. Suppose G is a finite group which acts on a symplectic homotopy K3
surface X via symplectic symmetries. Then there is an induced action of G on the set
of basic classes, which can be extended to a linear action on the lattice LX . Moreover,
let ω be the symplectic structure which is preserved under the action of G, and let
KX be the associated canonical bundle. Then c1(KX) ∈ LX is fixed under the action
of G, and since ω is also fixed, the function ω : LX → R defined by x 7→ [ω] · x is
G-invariant. On the other hand, since the action of G on H0(X;R)⊗ detH2,+(X;R)
is orientation-preserving (cf. Lemma 2.1), one has, for any basic class β,

SWX(g · β) = SWX(β), ∀g ∈ G.

It is clear that the induced action of G on LX may be exploited to relate the action
of G on X and the underlying smooth structure of X.

Proof of Theorem 1.2

Construction of this type of exotic K3 surfaces is due to Fintushel and Stern,
which is done by performing the knot surgery on three disjoint, homologically distinct,
symplectically embedded tori in a Kummer surface (cf. [9], compare also [11]). Our
observation here is that it can be done equivariantly. However, we would like to point
out that the three tori (actually 12 tori divided into 3 groups) have to be chosen
differently than in [9] and [11] (cf. Remark 4.3).

Consider the 4-torus T 4 = (S1)4 with the involution ρ, which is defined in the
angular coordinates by

ρ : (θ0, θ1, θ2, θ3) 7→ (−θ0,−θ1,−θ2,−θ3), where θj ∈ R/2πZ.



26 WEIMIN CHEN AND SLAWOMIR KWASIK

There are 16 isolated fixed points (θ0, θ1, θ2, θ3) where each θj takes values in {0, π}.
A Kummer surface is a smooth 4-manifold which is obtained by replacing each of the
singular points in the quotient T 4/〈ρ〉 with an embedded (−2)-sphere. We denote the
4-manifold by X0.

We shall give a more concrete description of X0 below, where X0 is also naturally
endowed with a symplectic structure. Consider the symplectic form Ω on T 4, which
is equivariant with respect to the involution ρ:

Ω ≡
∑

(i,j,k)

(dθ0 ∧ dθi + dθj ∧ dθk)

where the sum is taken over (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2). This gives rise to
a symplectic structure on the orbifold T 4/〈ρ〉. One can further symplectically resolve
the orbifold singularities to obtain a symplectic structure on X0 as follows. By the
equivariant Darboux’ theorem, the symplectic structure is standard near each orbifold
singularity. In particular, it is modeled on a neighborhood of the origin in C

2/{±1}
and admits a Hamiltonian S

1-action with moment map µ : (w1, w2) 7→ 1
4(|w1|2+|w2|2),

where w1, w2 are the standard coordinates on C
2. Fix a sufficiently small r > 0 and

remove µ−1([0, r)) from T 4/〈ρ〉 at each of its singular point. Then X0 is diffeomorphic
to the 4-manifold obtained by collapsing each orbit of the Hamiltonian S

1-action on the
boundaries µ−1(r), which is naturally a symplectic 4-manifold (cf. [15]). We denote
the symplectic structure on X0 by ω0.

Let G = (Z2)
3. We shall next describe a G-action on X0 which preserves the

symplectic structure ω0. Consider first the following G-action on T 4:

a · (θ0, θ1, θ2, θ3) = (θ0, θ1 + πa1, θ2 + πa2, θ3 + πa3)

where a = (a1, a2, a3) ∈ G with each aj ∈ Z2 ≡ Z/2Z. One can check easily that the
above G-action commutes with the involution ρ, so that there is an induced G-action
on the orbifold T 4/〈ρ〉. Moreover, the G-action clearly preserves the symplectic form

Ω ≡
∑

(i,j,k)

(dθ0 ∧ dθi + dθj ∧ dθk)

on T 4, hence it descends to a symplectic G-action on T 4/〈ρ〉. From the description
of (X0, ω0) given in the previous paragraph, it follows easily that there is an induced,
symplectic G-action on (X0, ω0). (The key point here is that Lerman’s symplectic
cutting can be done equivariantly, cf. [15].) The G-action on X0 is pseudofree; in fact,
for any 0 6= a = (a1, a2, a3) ∈ G, a fixed point of a in X0 is the image of a point in T 4

with angular coordinates (θ0, θ1, θ2, θ3), where θ0 = 0 or π, and for j = 1, 2, 3, θj = 0
or π if aj = 0 and θj = π/2 or 3π/2 if aj = 1. (Note that each a 6= 0 in G has 8
isolated fixed points.)

We shall next describe a set of 12 disjoint, symplectically embedded tori in (X0, ω0),
which is invariant under the G-action. The 12 tori are divided into 3 groups, labeled
naturally by j = 1, 2, 3, where each group consists of 4 tori. The group G acts freely
and transitively among the 4 tori in each group. For simplicity we shall only describe
the group of tori indexed by j = 1 in detail; the others are completely parallel.
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Consider the projection π1 from T 4 to T 2 where

π1 : (θ0, θ1, θ2, θ3) 7→ (θ2, θ3).

For any fixed δ12, δ13 ∈ R/2πZ other than 0, π/2, 3π/2 and π, the 4 tori in T 4

T1,0 ≡ π−1
1 (δ12, δ13) T1,1 ≡ π−1

1 (δ12 + π, δ13)

T1,2 ≡ π−1
1 (δ12, δ13 + π) T1,3 ≡ π−1

1 (δ12 + π, δ13 + π)

are symplectically embedded with respect to the symplectic form

Ω ≡
∑

(i,j,k)

(dθ0 ∧ dθi + dθj ∧ dθk).

Moreover, they descend to 4 disjoint tori in T 4/〈ρ〉, and if the distance between δ12,
δ13 to 0, π/2, 3π/2 and π is sufficiently large, T1,k, 0 ≤ k ≤ 3, can be regarded as tori
in X0, which are disjoint and symplectically embedded. The union ∪kT1,k is easily
seen to be invariant under the action of G on X0. Moreover, the action of G on ∪kT1,k
is transitive, and each T1,k is invariant under an involution of G, which acts on the
torus freely via translations.

In the same vein, one can consider projections

π2 : (θ0, θ1, θ2, θ3) 7→ (θ1, θ3) and π3 : (θ0, θ1, θ2, θ3) 7→ (θ1, θ2)

and choose δ21, δ23, δ31, δ32 ∈ R/2πZ \ {0, π/2, π, 3π/2} to obtain 8 other tori Tj,k,
where j = 2, 3 and 0 ≤ k ≤ 3. One can check easily that under further conditions:

δ13 6= ±δ23,±(δ23 + π), δ12 6= ±δ32,±(δ32 + π), δ21 6= ±δ31,±(δ31 + π)

the 12 tori Tj,k in X0 are disjoint.
The exotic K3 surfaces are constructed by performing the Fintushel-Stern knot

surgery on each of the 12 tori Tj,k in X0 with a fibered knot. The key issue here is
that the knot surgery needs to be performed equivariantly with respect to the G-action
on X0. To this end, we shall first give a brief review of the knot surgery from [9].

Let M be a simply-connected smooth 4-manifold with b+2 > 1, and let T be a c-
embedded torus in M (cf. [9]) such that π1(M \ T ) = 1. Consider a knot K in S

3,
and let m denote a meridional circle to K. Let YK be the 3-manifold obtained by
performing 0-framed surgery on K. Then m can also be viewed as a circle in YK . In
YK × S

1 we have the smoothly embedded torus Tm ≡ m × S
1 of self-intersection 0.

Since a neighborhood of m has a canonical framing in YK , a neighborhood of the torus
Tm in YK ×S

1 has a canonical identification with Tm×D2. With this understood, the
knot surgery on T with knot K is the smooth 4-manifold MK , which is the fiber sum

MK ≡M#T=Tm
(YK × S

1) = [M \ (T ×D2)] ∪ [(YK × S
1) \ (Tm ×D2)].

Here T ×D2 is a tubular neighborhood of the torus T in M . The two pieces are glued
together so as to preserve the homology class [pt×∂D2]. Note that the diffeomorphism
type of the fiber sum is not uniquely determined in general, and the 4-manifold MK

is taken to be any manifold constructed in this fashion. A fundamental theorem of
Fintushel and Stern states thatMK is naturally homeomorphic to M and the Seiberg-
Witten invariants of the two manifolds are related by

swMK
= swM ·∆K(t),



28 WEIMIN CHEN AND SLAWOMIR KWASIK

where swMK
, swM are certain Laurent polynomials defined from the Seiberg-Witten

invariants of MK and M respectively, and ∆K(t) is the Alexander polynomial of K,
with t = exp(2[T ]). See [9] for more details. We remark that when M is symplectic
and T is symplectically embedded,MK can be naturally made symplectic by choosing
any fibered knot K. Note that whenM is the standard K3 surface, one has swM = 1,
so that MK is an exotic K3 surface as long as the knot K has a nontrivial Alexander
polynomial.

With the preceding understood, note that in our present situation, each of the 12
tori Tj,k is invariant under an involution of G. Moreover, the action on the tubular
neighborhood Tj,k ×D2 projects to a trivial action on the D2-factor. In order to do
the knot surgery equivariantly, we shall consider the involution on YK × S

1 which is
trivial on the YK-factor and is by translation on the S

1-factor. Recall that the only
requirement in the knot surgery is to preserve the homology class [pt×∂D2] under the
gluing. Since on the YK × S

1 side pt× ∂D2 is given by a 0-framed copy of the knot K
in YK and the involution on YK ×S

1 is chosen to be trivial on the YK -factor, it follows
easily that for any fixed fibered knot K, one can do the knot surgery simultaneously on
each of the 12 tori Tj,k with the knot K, such that the G-action on X0 can be extended
to a symplectic G-action on the resulting 4-manifold XK . Moreover, XK continues
to be simply connected as repeated knot surgeries on parallel copies is equivalent to
a single knot surgery using the connected sum of the knots (cf. Example 1.3 in [5]).
Hence XK is a symplectic homotopy K3 surface with

swXK
= ∆K(t1)

4∆K(t2)
4∆K(t3)

4

where tj = exp(2[Tj,0]). Note that the three tori T1,0, T2,0 and T3,0 are homologically
linearly independent, so that XK is maximally exotic, i.e., rX = 3. By nature of
construction, the G-action on XK is clearly pseudofree and induces a trivial action on
the lattice LX of the Seiberg-Witten basic classes.

Finally, one obtains infinitely many distinct XK by choosing K with distinct genus.
2

Remark 4.3. We would like to explain why the tori in our construction have to
be chosen differently than in [9] or [11], and point out that for the same reason our
construction can not be extended to the symplectic K3 group (Z2)

4. The key point
here is that one has to make sure that each Tj,k can only be invariant under a cyclic
subgroup of G. Otherwise, we will be forced to introduce a nontrivial cyclic action
on the factor YK in YK × S

1. Of course, one way to obtain such a cyclic action on
YK is to pick a cyclic action on S

3 under which K is invariant, and then do the 0-
framed surgery on K equivariantly. The problem is that the action on the tubular
neighborhood Tj,k ×D2 projects to a trivial action on the D2-factor, and since under
the knot surgery pt × ∂D2 is glued to a 0-framed copy of K in YK , the action on
S
3 which we picked at the beginning has to fix the knot K. However, by the Smith

conjecture [20] this is not possible unless K is the unknot. With this understood, we
remark that with the choice of tori as in [9] or [11], one can only construct a (Z2)

2-
action on a homotopy K3 surface with maximal exoticness. On the other hand, for
the group G = (Z2)

4, our construction would not even yield an effective G-action on
a homotopy K3 surface with nontrivial exoticness (i.e. rX > 0).
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Topics (Mémoires dédiés à Georges de Rham), pp. 18-28, Springer, New York, 1970.

[3] J. Bryan, Seiberg-Witten theory and Z/2p actions on spin 4-manifolds, Math. Res. Lett. 5 (1998),
no. 1-2, 165-183.

[4] W. Chen, Smooth s-cobordisms of elliptic 3-manifolds, Journal of Differential Geometry 73 no.3
(2006), 413-490.

[5] ———-, On the orders of periodic diffeomorphisms of 4-manifolds, Duke Math. J. (in press).
[6] W. Chen and S. Kwasik, Symplectic symmetries of 4-manifolds, Topology 46 no.2 (2007), 103-128.
[7] ———–, Symmetries and exotic smooth structures on a K3 surface, J. Topology 1 (2008), 923-962.
[8] J.H. Conway, et al., Atlas of Finite Groups, Oxford Univ. Press, 1985.
[9] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), 363-400.
[10] M. Furuta, Monopole equation and the 11

8
-conjecture, Math. Res. Lett. 8(2001), 279-291

[11] R. Gompf and T. Mrowka, Irreducible 4-manifolds need not be complex, Ann. Math. 138 (1993),
61-111

[12] F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, Math.
Lecture Series 3, Publish or Perish, Inc., 1974

[13] W.Y. Hsiang, On the bound of the dimensions of the isometry groups of all possible Riemannian

metrics on an exotic sphere, Ann of Math. 85 (1967), 351-358.
[14] S. Kondo, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of

K3 surfaces, with an appendix by S. Mukai, Duke Math. J. 92 (1998), 593-603
[15] E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258.
[16] T.-J. Li, Symplectic 4-manifolds with Kodaira dimension zero, J. Differential Geom. 74 (2006),
no. 2, 321-352.

[17] N. Machida and K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J.
Math. Sci. Univ. Tokyo 5(1998), 273-297.

[18] J.D. McCarthy and J.G. Wolfson, Symplectic resolution of isolated algebraic singularities, in
Geometry, topology, and dynamics (Montreal, PQ, 1995), 101-105, CRM Proc. Lecture Notes 15,
AMS, 1998

[19] M. McCooey, Symmetry groups of four-manifolds, Topology 41 (2002), no.4, 835-851.
[20] J.W. Morgan and H. Bass (Eds.), The Smith conjecture, Pure and Applied Mathematics 112,
Academic Press, Orlando, FL, 1984.
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