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Abstract

We present an analysis of the vacuum Einstein equations for a recently proposed
extension of the Kerr-Schild ansatz that includes a spacelike vector field as well
as the usual Kerr-Schild null vector. We show that many, although not all,
of the simplifications that occur in the Kerr-Schild case continue to hold for
the extended ansatz. In particular, we find a simple set of sufficient conditions
on the vectors such that the vacuum field equations truncate beyond quadratic
order in an expansion around a general vacuum background solution. We extend
our analysis to the electrovac case with a related ansatz for the gauge field.
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1 Introduction

The Kerr-Schild (KS) ansatz [1][2] yields remarkable simplifications of the Einstein equa-
tions and has long proved to be a powerful tool in the search for new black hole solutions.
One takes the spacetime metric to have the form

gab = ḡab + λhab, hab = Hkakb (1)

where ḡab is a background metric, ka is null with respect to the background metric (with
ka ≡ ḡabk

b), H is a function and the constant λ is inserted for convenience. To solve the
vacuum Einstein equations, the background metric is taken to be Ricci flat. One can then
analyze the Einstein equations order by order in λ in an expansion around the background.
A drastic reduction in complexity comes about because the inverse metric truncates beyond
first order in λ, i.e. it is given exactly by

gab = ḡab − λhab (2)

with hab = ḡacḡbdhcd. Further computation shows that, if the null vector is tangent to a
geodesic congruence of the background metric, then the Ricci tensor Ra

b of the KS metric
also truncates beyond linear order in λ [3]. These results can also be generalized to non-
vacuum cases [4].

The KS ansatz has, in particular, served as the key for finding many higher dimensional
black hole solutions. Myers and Perry [5] made use of it to find neutral, rotating black
holes solutions in D > 4, a task that would very likely have proved intractable otherwise.
The general higher dimensional (A)dS neutral rotating black holes were similarly found by
Gibbons et. al. [6] starting from (A)dS background metrics.

Nevertheless, one could make a long list of potentially interesting black hole solutions that
have not so far been found via the KS ansatz (or by any other method). Candidates for this
list would include the rotating, charged black holes of Einstein-Maxwell theory for D > 4,
vacuum black holes with non-spherical event horizon topology beyond D = 5 (e.g. such as
those discussed in [7]), as well as black branes and rotating black holes in Lovelock gravity
theories (beyond the special cases found in [8, 9] and [10] respectively).

Moreover, there are known higher dimensional black hole solutions that cannot be written
in KS form, in particular the 5-dimensional black ring [11]. This may be seen in the
following way. The KS ansatz was originally put forth in the context of algebraically
special spacetimes. In four dimensions, with a flat background metric, the null vector ka in
a vacuum KS spacetime is necessarily a repeated principal null vector of the Weyl tensor
[3]. In higher dimensions, it was shown in reference [12] that the Weyl tensor of vacuum
KS spacetimes is always of Type II, or more, algebraically special, within the classification
scheme of reference [13]. On the other hand, it was shown in [14] that the black ring is
only Type Ii, and therefore cannot be of KS form.
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It seems reasonable to ask whether it might be possible to extend the KS ansatz in a way
that might e.g. encompass the D = 5 black ring, or allow one to find further new black
hole solutions such as those listed above. One possible extension was suggested recently
in reference [15]. The authors showed that the charged, rotating black holes of minimal,
gauged D = 5 supergravity, originally found in reference [16] and known as the CCLP
spacetimes, may be rewritten in a form similar to (1), with gab = ḡab + λhab and ḡab a flat
background metric, but now with

hab = Hkakb +K(kalb + lakb). (3)

Here ka is again a null vector, H and K are functions, the vector la is spacelike and
orthogonal to ka with respect to ḡab, and we define ka ≡ ḡabk

b and la ≡ ḡabl
b. We will call

metrics of this general form extended Kerr-Schild or xKS metrics.

Another indication of the usefulness of the xKS ansatz comes from considering higher
dimensional pp-waves, which are defined by having a covariantly constant null vector (and
hence a null Killing field). These spacetimes have long been of interest as exact string
backgrounds [17]. It is known that in D = 4, all pp-wave spacetimes can be cast into Kerr-
Schild form (see [18]). However, as discussed in [12], examples of pp-wave spacetimes are
known in higher dimensions that have Weyl types [13] that are not compatible with those
of Kerr-Schild spacetimes. Therefore, not all higher dimensional pp-waves can be cast in
Kerr-Schild form. On the other hand, the particular example of a non-Kerr-Schild pp-wave
given in [12] is of xKS form, and one may speculate that perhaps all higher dimensional
pp-waves can be cast in xKS form.

The main focus of this paper will be an analysis of the vacuum Einstein equations for xKS
metrics. As an indication of the simplifications we will find, consider the inverse of an xKS
metric. An elementary calculation shows that this truncates beyond second order in λ,
being given exactly by

gab = ḡab − λhab + λ2hachc
b. (4)

Recall that the truncation of the inverse metric beyond linear order in the Kerr-Schild case
led to a similar truncation of the Ricci tensor Ra

b beyond linear order. Our main task
below is to discover the degree of simplification of the Ricci tensor that occurs in the xKS
case. We will see that for ka geodesic and la also satisfying a certain condition with respect
to the background metric, that the Ricci tensor Ra

b will truncate beyond second order in
λ. The vacuum Einstein equations then reduce to a set of differential equations that are
quadratic in hab.

The paper proceeds as follows. In section (2) to further set the context for our work, we
present the xKS form [15] of the CCLP spacetimes [16] (in the limit of vanishing cosmo-
logical constant) in Cartesian coordinates that highlight the sense in which they generalize
the D = 5 Myers-Perry metrics [5]. In section (3) we introduce the basic geometrical tools
we will use in computing the Ricci tensor for xKS spacetimes. In section (4) we reproduce
the analysis in the KS case as a warm-up and as a basis of comparison for the xKS case.
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Section (5) contains our main results on the simplification of the vacuum Einstein equations
for xKS metrics. In section (6) we study the implications of adding an electromagnetic field
with a specific form for the gauge potential. Section (7) contains some concluding remarks
and suggestions for further research.

After our work was largely complete, reference [19] was brought to our attention, which
analyzes a closely related extension of the Kerr-Schild ansatz. The contents of [19] are
largely complementary to those of the present paper, being in certain respects both more
general and more limited. The metric ansatz in [19] is more general in that it allows a variety
of possible signs for the norms of the two orthogonal vectors ka and la. On the other hand,
the material presented in [19] is more limited in part because it treats only D = 4 and flat
background metrics. More importantly, however, our specific case of interest, ka null and
la spacelike, is explored in less depth and in particular our main result, a simple, sufficient
condition for the truncation of Ra

b beyond second order in λ, is not obtained.

2 The xKS form of CCLP spacetimes

Our work was motivated by the observation [15] that the charged rotating black holes of
minimal D = 5 supergravity [16], known as the CCLP solutions, may be written in the
extended Kerr-Schild form (3). In [15] the metrics are presented in a type of spheroidal
coordinates. Following a sequence of steps given in the Appendix, we have transformed
them into Cartesian coordinates. The background is then simply 5-dimensional Minkowski
spacetime ds̄2 = −dτ 2 + dx2 + dy2 + dw2 + dz2, while the vector fields ka and la are then
given by

kadx
a = dτ − r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
− r(wdw + zdz) + b(wdz − zdw)

r2 + b2
(5)

ladx
a =

b (a(xdx+ ydy)− r(xdy − ydx))

r(r2 + a2)
+
a (b(wdw + zdx)− r(wdz − zdw))

r(r2 + b2)
. (6)

The functions H and K in (3) are given by

H =
2m

Σ
− Q2

Σ2
, K =

Q

Σ
. (7)

Here Σ = r2 + a2 cos2 θ + b2 sin2 θ, r is the spheroidal radial coordinate satisfying

x2 + y2

r2 + a2
+
w2 + z2

r2 + b2
= 1 (8)

and the angle θ is defined in equation (37) in the Appendix. The 1-form gauge potential is
given by A = (

√
3Q/2Σ)k.
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The Cartesian form of the metric facilitates a comparison of the metric with the general
odd-dimensional form of the Myers-Perry uncharged rotating black holes [5]. The vector
ka is identical to that which appears in the D = 5 Myers-Perry uncharged rotating black
holes [5]. Like the null vector ka, the spacelike vector la is independent of the mass m and
charge Q of the spacetime. The vector la can also be seen to be separately orthogonal to
ka in both the xy and wz-planes. This Cartesian form of the metric should be useful in
searching for higher dimensional generalizations of the CCLP spacetimes [20].

We also note some further properties of the vectors ka and la in the CCLP spacetimes. The
null vector ka satisfies ka∇̄ak

b = 0, where ∇̄a is the covariant derivative operator for the
background metric. The vector ka is thus tangent to a congruence of affinely parameterized
null geodesics. This property is indeed central to the Kerr-Schild construction of the Myers-
Perry spacetimes [5]. In combination, the vectors ka and la can also be shown to satisfy

kb(∂bla − ∂alb) = 0, lb(∂bka − ∂akb) = 0. (9)

These same statements would, of course, hold with respect to the background covariant
derivative operator ∇̄a as well. These equations also imply the relation

ka∇̄al
b = −la∇̄ak

b. (10)

between the covariant derivative of each vector field along the other.

3 Computational Basics

The curvatures of KS and xKS metrics as well as other useful quantities may be computed
in terms of the curvature of the background metric ḡab and the background covariant
derivatives of the vectors ka and la (in the xKS case). In this section we present the basic
formalism that goes into these calculations. Let ∇̄a denote the covariant derivative operator
compatible with the background metric ḡab. The action covariant of the full covariant
derivative of the (x)KS metric on a vector can then be written as ∇av

b = ∇̄av
b + Cb

acv
c

with the tensor Cc
ab given by

Cc
ab =

λ

2
gcd

(

∇̄ahbd + ∇̄bhad − ∇̄dhab
)

. (11)

It is easily checked that the determinant of the (x)KS metric is unchanged from its back-
ground value and hence the quantity Cb

ab vanishes. The Ricci tensor of the (x)KS metric is
then given by Rab = ∇̄cC

c
ab − Cd

acC
c
bd.

We can write the connection coefficients and the Ricci tensor as a sum over contributions
at different orders in λ. Given that the inverse KS and xKS metrics truncate beyond orders

4



λ and λ2 respectively, the connection coefficients can be written as

Cc
ab =

kmax
∑

k=1

λkC
(k)c
ab (12)

where kmax = 2 in the KS case and kmax = 3 in the xKS case. The Ricci tensor contains
terms quadratic in the connection coefficients and hence has an expansion

Rab =
lmax
∑

l=1

λlR
(l)
ab . (13)

going out to order lmax = 2kmax in λ. We will also find it useful to consider the expansion
for the Ricci tensor with indices in mixed position Ra

b = gacRcb. Because of the extra
factor of the inverse metric, this has an expansion in powers λn that goes out to order
nmax = 5 for the KS case and to order nmax = 8 in the xKS case. The coefficients R(n)a

b

in the expansion of Ra
b are simply related to the coefficients in the expansion of Rab, with

for example
R(2)a

b = ḡacR
(2)
cb − hacR

(1)
cb + hadhd

cR̄cb. (14)

However, they organize the expansion in a different way that turns out to simplify the
analysis of the extended Kerr-Schild case below.

Before turning to explicit computations of the Ricci tensor for (x)KS metrics, we consider
the important case when the vector ka is geodesic with respect to the background metric.
Assuming an affine parameterization we then have ka∇̄ak

b = 0. It is well known that for
KS metrics, the vector ka is then also geodesic with respect to the full metric. This turns
out to be true in the xKS case as well. One has ka∇ak

b = ka∇̄ak
b + Cb

ack
akc and one can

check that the quantity Cb
ack

akc vanishes for xKS metrics. Moreover one can show that the
expansion, shear and twist of ka are the same in the xKS metric as in the background.

4 Vacuum Einstein equations for Kerr-Schild space-

times

The analysis of the vacuum Einstein equations, Rab = 0, for Kerr-Schild metrics will serve
as a model for the analysis in the extended Kerr-Schild case below (see e.g. references
[21, 22] for a similar treatment of the KS case). We start by rescaling the null vector in
(1) to absorb the function H and work with the KS ansatz in the form gab = ḡab + λhab
with hab = kakb. We assume that the background metric also satisfies the vacuum Einstein
equations, so that R̄ab = 0. The coefficients in C

(n)c
ab the expansion of the connection

coefficients (12) can be written as

C
(1)c
ab =

1

2

(

∇̄ahb
c + ∇̄bha

c − ∇̄chab
)

, C
(2)c
ab =

1

2
kcD̄kakb (15)
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where D̄ = ka∇̄a is the background covariant derivative taken along the null vector ka.

We initially consider the expansion of the Ricci tensor Rab with both of its indices down
which goes out to order λ4. Computation shows that the fourth order contribution R

(4)
ab

vanishes identically. Further progress it is facilitated by considering the contracted equation
Rabk

akb = 0. One finds that R
(3)
ab k

akb and R
(2)
ab k

akb vanish identically, while

R
(1)
ab k

akb = −(D̄ka)D̄k
a. (16)

The vacuum Einstein equation then implies that D̄ka is a null vector. Since it is also
orthogonal to ka, it follows that the vector D̄ka must be parallel to the null vector ka,
i.e. that D̄ka = φka for some function φ. This is equivalent to the statement that ka is
tangent to a null geodesic congruence of the background metric. Assuming this to be the
case, it then follows that the contribution to the Ricci tensor at order λ3, which is given by
R

(3)
ab = −1

2
kakb(D̄kd)D̄k

d, vanishes as well. The contribution at order λ2 does not vanish
automatically for ka geodesic. However, one can show the for geodesic ka, it is related to
the order λ1 according to

R
(2)
ab = kak

cR
(1)
cb . (17)

Therefore the vacuum field equations will be satisfied if R
(1)
ab = 0. This establishes that

for Kerr-Schild metrics with a geodesic null vector ka, solving the vacuum field equations
reduces to solving the linearized equations in hab around the background metric. This is
the result that we will seek an analogue of in the extended Kerr-Schild case.

The corresponding analysis in the extended Kerr-Schild case is more lengthy and intricate.
As noted above, one useful calculational strategy is to work with the expansion of the Ricci
tensor Ra

b with its indices in mixed position. The potential benefits of this strategy are
already evident in the KS case. After assuming that ka is geodesic, we found the relation
(17) between the first and second order terms in the expansion of Rab. The equivalent

statement in terms of the expansion of Ra
b is simply R

(2)a
b = 0. Overall, one finds that

the quantities R
(n)b
a vanish identically for n = 3, 4, 5 for the Kerr-Schild ansatz, while R

(2)b
a

vanishes after making use of the geodesic condition. One is then left in a slightly more
straightforward manner with the single equation R

(1)b
a = 0.

5 Vacuum Einstein equations for extended Kerr-Schild

spacetimes

We will now present a similar analysis of the vacuum Einstein equations for extended
Kerr-Schild metrics. We are interested in seeing what simplifications will occur and, in
particular, whether the expansion of the Ricci tensor will truncate beyond some relatively
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low order in λ. We are also interested to see whether the vector la should be taken to
satisfy some condition that complements the geodesic condition for ka.

We begin by rescaling the vectors ka and la in the xKS ansatz to absorb the functions H
and K in (3). Using the same symbols for the rescaled vectors, the xKS ansatz then takes
the form

gab = ḡab + λhab, hab = kakb + kalb + lakb (18)

with the vectors still assumed to satisfy kak
a = kal

a = 0. For the xKS ansatz one has
Cc

ab =
∑3

k=1 λ
kC

(k)c
ab and Rab =

∑6
l=1 λ

lR
(l)
ab . Many computations simplify by using the

relations between terms of successive order in the expansion for the connection coefficients

C
(2)c
ab = −hcdC(1)d

ab , C
(3)c
ab = hcdh

d
eC

(1)e
ab , (19)

where the first order term is simply C
(1)c
ab = 1

2

(

∇̄ahb
c + ∇̄bha

c − ∇̄chab
)

.

Proceeding initially with the expansion for the Ricci tensor with both indices down, it
follows that R

(6)
ab vanishes identically. Considering next the contracted equation Rabk

akb =

0, one finds that R
(n)
ab k

akb with n = 5, 4, 3 vanish identically, while at order λ2 one finds

R
(2)
ab k

akb = −1

4
αabα

ab (20)

where αab = laD̄kb − lbD̄ka. The vacuum equation implies that the anti-symmetric tensor
αab must be null. Together with the identity kaD̄ka = 0, this implies that D̄ka must have
the form

D̄ka = φka + ηla (21)

for some functions φ and η. At order λ1 one finds

R
(1)
ab k

akb = −D̄(laD̄k
a)− (∇̄ck

c)laD̄k
a − (D̄ka)(D̄k

a + D̄la + lb∇̄bk
a) (22)

Substituting the form (21) into this result gives

R
(1)
ab k

akb = −∇̄c(ηk
clbl

b)− η2lbl
b − ηlblc∇̄bkc. (23)

It is clear that taking ka to be tangent to a geodesic of the background (i.e. taking η = 0)

solves R
(1)
ab k

akb = 0. However, it is unclear whether null vectors ka satisfying (21) with
η 6= 0 are possible. We will proceed by assuming that ka is geodesic. As noted in section
(2) the null vector field in the CCLP spacetimes satisfies D̄ka = 0.

Given the geodesic condition, one can then show that R
(5)
ab = 0. Continuing on with the

calculation of R
(4)
ab , however, proves to be quite cumbersome. In order to proceed we will

alter our approach in two ways. The first change in strategy is to work instead with the
expansion of Ra

b as discussed above. The second is to adopt a simpler, but still equivalent,
form for hab. Given that the null vector ka is assumed to satisfy the geodesic condition we
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can rescale it by a function such that the rescaled vector satisfies D̄ka = 0 (i.e. so that
the geodesic congruence to which it is the tangent vector is now affinely parameterized).
Similarly we can rescale the spacelike vector la by a function such that the rescaled vector
has unit norm with respect to the background metric. The quantity hab will now have the
form given in (3) for some functions H and K, where ka and la now represent the rescaled
vectors. Finally, we can define a new vector ma through ma = la + (H/2K)ka. Because
the vectors ka and la are orthogonal, the vector ma will also have unit norm. In terms of
ma, the tensor hab then reads

hab = K(kamb +makb), (24)

where now kak
a = 0, mam

a = 1, kam
a = 0 and D̄ka = 0. This new form for hab simplifies

the calculations considerably. However, note that it is now harder to take a Kerr-Schild
limit of the extended Kerr-Schild calculations.

Given this new form of hab, the quantity R(4)a
b can now be shown to vanish3, while for

R(3)a
b we obtain the following expression

R(3)a
b =

1

2
∇̄d

(

K3kb[k
avd − vakd]

)

− 1

2
K3kavd∇̄bkd (25)

where4

va = kb
{

(∇̄bla − ∇̄alb)− lc(∇̄blc − ∇̄clb)la
}

(26)

A sufficient condition for R(3)a
b to vanish is that the vector va should satisfy

va = αka (27)

for some function α. This condition on la may be viewed as a counterpart to the geodesic
condition for ka. It is independent of the metric functions H and K, depending only on
properties of the vectors la and ka with respect to the background metric.

Given that the condition (27) on la has only been shown to be sufficient, rather than
necessary, for the vanishing of R(3)a

b, it is interesting to ask whether (27) is satisfied by
the CCLP spacetimes of section (2)? The spacelike vector in the CCLP spacetimes does
not have unit norm. Therefore, let us rescale once again letting l̂a = fla denote the CCLP
spacelike vector having norm f 2. The vector va is given in terms of l̂a and f by

va = kb
{

1

f
(∇̄b l̂a − ∇̄a l̂b)−

1

f 3
l̂c(∇̄bl̂c − ∇̄c l̂b)la

}

(28)

the derivatives of f having cancelled out. As noted in section (2), the quantity ka(∇̄a l̂b −
∇̄bl̂a) vanishes for the CCLP spacetimes and hence condition (27) is satisfied in this case
with α = 0.

3We should also check the higher order terms in the expansion of Ra
b which goes out to order λ8.

Making use of the results stated above can show that R(n)a
b = 0 for n = 5, . . . , 8.

4In the expression for va, the vector la may be replaced by the vector ma without changing the result
for R(3)a

b.
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We have now established a set of sufficient conditions, the geodesic condition on ka and the
condition (27) relating ka and la, such that the Ricci tensor with indices in mixed position
vanishes beyond quadratic order in λ for xKS spacetimes. One is now left to consider
only the quantities R(2)a

b and R(1)a
b. In the KS case, one finds that R(2)a

b vanishes as
a consequence of the geodesic condition for the null vector ka, and consequently that
the vacuum Einstein equations reduce to the equation R(1)a

b = 0, which is linear in hab.
However, this does not appear to happen for the xKS ansatz. Although we have not shown
it definitively, we believe that no manipulations of the expression for R(2)a

b in the xKS
case, using the geodesic condition for ka in combination with (27), will make R(2)a

b vanish.
A more conclusive argument to this same end will be given in the next section when we
consider electrovac xKS spacetimes.

The remaining vacuum equations of motion are then R(1)a
b = 0 and R(2)a

b = 0, with the
linear and quadratic contributions to the Ricci tensor given respectively by

R(1)a
b =

1

2
∇̄c

(

∇̄ahb
c + ∇̄bh

ac − ∇̄chab
)

(29)

R(2)a
b = −1

2
∇̄d

{

∇̄b(h
achc

d) + hde(∇̄ahb
e − ∇̄ehab) + hac(∇̄chb

d − ∇̄dhb
c)
}

(30)

−1
4
(∇̄ehac + ∇̄chae − ∇̄ahce)(∇̄ehbc − ∇̄bhce − ∇̄chbe)

In summary, we have shown that for ka and la satisfying D̄ka = 0 and equation (27) that
the terms R(n)a

b in the expansion of the Ricci tensor vanish for n = 3, . . . , 8. The vacuum
Einstein equations then reduce to the two equations noted above. Condition (27) depends
only on properties of the vectors ka and la with respect to the background metric and
can be regarded as a counterpart to the geodesic condition on ka. The vacuum Einstein
equations continue to simplify considerably in the xKS case, although not to the full extent
that they do in the original KS case.

6 Adding stress-energy

The CCLP spacetimes [16] shown to be of xKS form in [15] and presented above in section
(2) are non-vacuum spacetimes. Therefore, we should consider how the xKS ansatz works
in the presence of matter fields. As in the KS case, a key step in our analysis has been
considering the equation Rabk

akb = 0, which led to the geodesic condition on the null vector
ka. Although one could consider more general cases where the null vector ka is not geodesic,
we will continue to focus on the geodesic case, which implies that the stress-energy tensor
should satisfy Tabk

akb = 0. We will further restrict our attention to the electromagnetic
case, with the stress-energy tensor given by

Ta
b = FacF

bc − 1

4
ga

bF 2 (31)
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and assume that the gauge potential is related to the xKS null vector ka according to

Aa =
√
λβka (32)

where β is a function. This form of the gauge field holds inD = 4 Kerr-Newman spacetimes,
in the KS form of the Reissner-Nordstrom spacetime in any dimension, and also in the
CCLP spacetimes [16] in xKS form [15]. It is easily checked that the condition Tabk

akb = 0
is satisfied by this ansatz for the gauge potential.

Let us consider the Kerr-Schild case first. Given that it is necessary to raise two indices on
the field strength tensor using the KS inverse metric (2) in order to compute the components
of Ta

b, there could in principle be contributions out to order λ3. However, calculation
shows that this is not the case. With the ansatz (32) for the gauge potential, the only
non-vanishing contributions to T a

b are linear in λ. This is consistent with the reduction in
order of the Ricci tensor in mixed form Ra

b. Had there been a contribution to T a
b at e.g.

order λ2, this would have been inconsistent with the vanishing of R(2)a
b.

Now consider the xKS case. Given the form of the xKS inverse metric (4), there could in
principle be contributions to Ta

b out to order λ5. Computation shows that while the order
λn terms in Ta

b vanish for n = 3, 4, 5, they will generally be non-zero for both n = 1 and
n = 2. This is consistent with our findings above in section (5), where we found that, in
contrast to the KS case, the term R(2)a

b does not generally vanish for xKS spacetimes5.

For completeness, we should also consider the gauge field equations of motion. For the
standard Maxwell Lagrangian, the equations of motion are simply ∇aF

ab = 0 and it is
straightforward to substitute in the xKS ansatz. One finds that F ab = λ1/2F (1/2)ab +
λ3/2F (3/2)ab with higher order terms vanishing. It is natural, however, to also include the
contribution to the equations of motion coming from the Chern-Simons term in the action
of minimal D = 5 supergravity that is relevant for the CCLP spacetimes6. The gauge field
equation of motion is then given by

∇aF
ab − 1

2
√
3
ǫbcedfFcdFef = 0. (33)

At this point, however, a conflict arises in the order by order expansion in powers of λ.
Because

√−g =
√−ḡ for xKS spacetimes, one can replace the derivative operator in (33)

with the background derivative operator. The first term in (33) thus has contributions at
orders λ1/2 and λ3/2, while the second term is manifestly of order λ1.

We expect that a more subtle analysis would be required in order to properly incorporate
the gauge field of minimal D = 5 supergravity into our analysis. In hindsight, this is evident

5It is potentially interesting to note that this same truncation of the stress energy tensor holds if a term√
λγ la is added to the gauge potential (32) for γ an arbitrary function, if la is assumed to satisfy condition

(27) that implies the vanishing of R(3)a
b.

6Note that the Chern-Simons term does not contribute to the stress energy tensor.
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from the form of the CCLP spacetimes given in section (2). The gauge field is proportional
to the charge, and we may therefore think of λ1/2 as being proportional to the charge Q. In
Reissner-Nordstrom spacetimes or in the four dimensional Kerr-Newman spacetimes, the
metric depends only on the square of the charge. However, the metric function K in (7) is
linear in Q. The CCLP metric then appears to include terms proportional to λ1/2 as well
as λ1. The first term in (33) is linear in Q, while the second term is quadratic. It can only
be solved by virtue of terms in the metric that are linear in Q.

We will not attempt to carry out such a more subtle analysis here. We note that this issue
does not affect our main result in section (5), the truncation of the Ricci tensor Ra

b beyond
quadratic order in λ for xKS metrics with ka geodesic and ka and la jointly satisfying the
condition (27).

7 Conclusions

In section (5) we found that the Ricci tensor for xKS ansatz metrics simplified to the
extent that the vacuum Einstein equations reduce to equations that are quadratic in hab.
Although this falls short of the simplification that happens in the KS case, we suggest that
the substantial reduction in order that does occur, taken together with the existence of
PP-wave and black hole solutions of xKS form, provides strong evidence that xKS metrics
are worthy of further attention.

In the KS case, most interesting new solutions have been found not by a broadly based
attack on the equations, but rather by generalizing known solutions. That will even more
likely be the case for xKS metrics, where the equations to solve are more complex. As a
start in this direction, we are presently searching [20] for xKS solutions of higher dimen-
sional Einstein-Maxwell-Chern-Simons theories based on the Cartesian form of the CCLP
spacetimes [16, 15] presented in section (2). Additional directions would be asking whether
all vacuum PP-waves in D > 4 can be put in xKS form and studying the Weyl type [13] of
xKS metrics along the lines of the analysis for KS metrics performed in [12].
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A Transforming CCLP spacetimes to Cartesian coor-

dinates

In this appendix we show how to transform the xKS form of the the Λ = 0 limit of the
CCLP metrics given in [15] into the Cartesian coordinates in section (2). The xKS form
(3) of the Λ = 0 CCLP spacetimes presented in [15] is

ds̄2 = −dt2 − 2dr(dt− a sin2 θdφ− b cos2 θdψ) + Σdθ2

+(r2 + a2) sin2 θdφ2 + (r2 + b2) cos2 θdψ2

ka dx
a = dt− a sin2 θdφ− b cos2 θdψ, (34)

la dx
a = −b sin2 θdφ− a cos2 θdψ

with the functions H and K and the 1-form gauge potential Aadx
a as given in section

(2). The flat background metric ḡab can be transformed into more standard spheroidal
coordinates via a transformation such that

dt = dτ − dr, dφ = dϕ− a

r2 + a2
dr, dψ = dχ− b

r2 + b2
dr. (35)

giving

ds̄2 = −dτ 2 + r2Σ

(r2 + a2)(r2 + b2)
dr2 + Σdθ2 + (r2 + a2) sin2 θdϕ2 + (r2 + b2) cos2 θdχ2

ka dx
a = dτ − r2Σ

(r2 + a2)(r2 + b2)
dr − a sin2 θdϕ− b cos2 θdχ (36)

la dx
a =

abΣ

(r2 + a2)(r2 + b2)
dr − b sin2 θdϕ− a cos2 θdχ

A further transformation may now be made to Cartesian spatial coordinates via

x =
√
r2 + a2 sin θ cosϕ, y =

√
r2 + a2 sin θ sinϕ (37)

w =
√
r2 + b2 cos θ cosχ, z =

√
r2 + b2 cos θ sinχ.

The spheroidal radial coordinate r satisfies the relation (8). so that surfaces of large r are
approximately spherically symmetric, while as r approaches to zero they degenerate into
the product of a disk of radius a in the xy-plane with a disk of radius b in the wz-plane.
The background metric and the vectors ka and la are then those given in (5).
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