Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Self-assembled polymer nanostructures: Design, syntheses and applications

Elamprakash N Savariar, University of Massachusetts Amherst

Abstract

Recent progress in nanotechnology research has witnessed its impact in wide variety of emerging fields starting from electronics to medicine. Our interest in nanotechnology is to ‘create new nanomaterials’, or ‘new methods to make nanomaterials’, to understand and to utilize them for various applications. We discuss our findings on the formation and application of nanostructures made through self-assembly in solution, followed by self-assembly at the interior of nanopores. Self-assembly can be induced in molecules by manipulating the noncovalent interaction, solvophilic and solvophobic forces. We are interested in creating various selfassembled nanostructures that could be tuned by modifying the amphiphilic building blocks during their synthesis. When these building blocks are grown in a perfectly branched fashion the obtained macromolecules are called amphiphilic dendrimers, whereas the linearly grown building blocks are called amphiphlic homopolymers. Here we show that the biaryl dendrimer can be made into temperature sensitive micelles, and can be used in molecular encapsulation. We further extend our developed concept to acrylamide-based homopolymers that can, not only form micelles and inverted micelles, but also can be tuned to make vesicles. By making the amphiphilic homopolymer in a noncovalent fashion, we show that the formed nanoassembly can be disassembled using proteins and the differential nature of disassembly was used for protein sensing. The self-assembled structures in apolar solvent, known as inverted micelles, were utilized for pI-dependent isolation of peptides. We show that polymers can be self-assembled inside membrane nanopores to make functionalized nanotubes, which can be utilized for separating molecules based on charge, size and hydrophobicity. We also show that by using dendrimers the pore size of the nanotubes can be precisely controlled and can be exploited for molecular separations.

Subject Area

Organic chemistry|Polymer chemistry

Recommended Citation

Savariar, Elamprakash N, "Self-assembled polymer nanostructures: Design, syntheses and applications" (2009). Doctoral Dissertations Available from Proquest. AAI3349740.
https://scholarworks.umass.edu/dissertations/AAI3349740

Share

COinS