Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Analyses of Arabidopsis Yellow Stripe-like (YSL) family of metal transporters

Heng-Hsuan Chu, University of Massachusetts Amherst


Iron is one of the most important micronutrients used by living organisms. Iron is frequently a limiting nutrient for plant growth, and plants are a major source of iron for human nutrition. The most prominent symptom of iron deficiency in plants is interveinal chlorosis, or yellowing between the veins, which appears first in the youngest leaves. Iron deficiency anemia (IDA) is the number one human nutritional deficiency worldwide. In order to solve the problem of iron deficiency, it is desirable to breed plants that have increased iron in those parts that are consumed by humans. To do this, we must first understand the molecular basis of Fe uptake, transport, and storage in plants. In soil, iron is quickly oxidized to Fe(III), and Fe(III) is relatively insoluble, thus difficult for plants to obtain. Our lab has been working on metal ion homeostasis mechanisms in plants and the ultimate goal of our research is to understand the mechanisms by which plants maintain the correct levels of iron, zinc and copper in each cell and tissue.^ The Yellow Stripe-like (YSL) family of proteins has been identified based on sequence similarity to maize Yellow stripe 1 (YS1). YS1 transports Fe(III) that is complexed by phytosiderophores (PS), strong Fe(III) chelators of the mugineic acid family of compounds. Non-grass species of plants neither make nor use PS, yet YSL family members are found in non-grass species including Arabidopsis thaliana. YSLs in non-grasses have been hypothesized to transport metals that are complexed by nicotianamine (NA), an iron chelator that is structurally similar to PS and which is found in all higher plants.^ In this dissertation, Arabidopsis YSL1 and YSL3 are demonstrated to be important in iron transport and also responsible for loading Fe, Cu, and Zn from leaves into seeds. Arabidopsis YSL4 and YSL6 are demonstrated to be involved in iron transport and metal mobilization into seeds. The transport function of Arabidopsis YSL1 and YSL2 are shown be partially overlapping to the function of Arabidopsis YSL3 in vegetative structures, but distinct in reproductive organs. Arabidopsis YSL3 and YSL6 are shown to have distinct functions in planta.^

Subject Area

Botany|Genetics|Plant biology

Recommended Citation

Chu, Heng-Hsuan, "Analyses of Arabidopsis Yellow Stripe-like (YSL) family of metal transporters" (2010). Doctoral Dissertations Available from Proquest. AAI3397686.