Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Use of a W -band polarimeter to measure microphysical characteristics of clouds

John Charles Galloway, University of Massachusetts - Amherst


This dissertation presents W-Band measurements of the copolar correlation co-efficient and Doppler spectrum taken from the University of Wyoming King Air research airplane. These measurements demonstrate the utility of making W-Band polarimetric and Doppler spectrum measurements from an airborne platform in investigations of cloud microphysical properties.^ Comparison of copolar correlation coefficient measurements with aircraft in situ probe measurements verifies that polarimetric measurements indicate phase transitions, and hydrometeor alignment in ice clouds. Melting layers in clouds were measured by the W-Band system on board the King Air during 1992 and 1994. Both measurements established the use of the linear depolarization ratio, LDR, to locate the melting layer using an airborne W-Band system. The measurement during 1994 allowed direct comparison of the magnitude of the copolar correlation coefficient with the values of LDR. The relation between the measurements corresponds with a predicted relationship between the two parameters for observation of particles exhibiting isotropy in the plane of polarization. Measurements of needle crystals at horizontal and vertical incidence provided further evidence that the copolar correlation coefficient values agreed with the expected response from hydrometeors possessing a preferred alignment for the side looking case, and hydrometeors without a preferred alignment for the vertical incidence case. Observation of significant specific differential phase at vertical incidence, the first reported at W-Band, corresponded to a significant increase in differential reflectivity overhead, which was most likely produced by hydrometeor alignment driven by cloud electrification.^ Comparison of the drop size distributions estimated using the Doppler spectra with those measured by the wingtip probes on the King Air reveals that the radar system is better suited under some liquid cloud conditions to provide microphysical measurements of the cloud or precipitation than the probes. The radiometric calibration of the radar system determines the accuracy of the drop size distribution estimate. The results presented here indicate that the procedure used to absolutely calibrate the W-Band radar system successfully characterized the reflectivity measurements to the extent required to obtain close correspondence between the radar and probe measurements of the drop size distribution. ^

Subject Area

Geotechnology|Engineering, Electronics and Electrical|Physics, Atmospheric Science

Recommended Citation

Galloway, John Charles, "Use of a W -band polarimeter to measure microphysical characteristics of clouds" (1997). Doctoral Dissertations Available from Proquest. AAI9721450.