Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Low -energy dynamics of gravitation

Tibor Torma, University of Massachusetts Amherst


The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein-like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations.^ A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories. ^

Subject Area

High energy physics

Recommended Citation

Torma, Tibor, "Low -energy dynamics of gravitation" (1997). Doctoral Dissertations Available from Proquest. AAI9823783.