Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Estimation of sea surface topography with interferometric radar

James Vernon Eshbaugh, University of Massachusetts Amherst

Abstract

This dissertation presents the design and initial experimental results of a second generation FOcused Phased Array Imaging Radar (FOPAIR-II) demonstrating its capability to measure areas on the order of 20 meters x 20 meters with 0.375 meter range resolution and 1° beamwidth. An analysis of the error budget for the given geometry is presented, yielding a worst case height bias of 4.5 cm and an expression for determination of the uncertainty given signal-to-noise ratio and the temporal lag between interferometer measurements. The processing algorithm is shown and a method for distortion removal is described based on basic assumptions of the properties of the ocean surface over a time average. Comparison of significant wave height measurements with the in-situ sensors shows a correlation of 0.92, with a slope of 0.97 and an intercept of −0.001 meters. Absolute height measurement comparison reveals a correlation between the radar estimated absolute height and a nearby tide gauge of 0.94, with a slope of 1.60 and an intercept of 0.75 meters.

Subject Area

Electrical engineering|Remote sensing

Recommended Citation

Eshbaugh, James Vernon, "Estimation of sea surface topography with interferometric radar" (2000). Doctoral Dissertations Available from Proquest. AAI9978494.
https://scholarworks.umass.edu/dissertations/AAI9978494

Share

COinS