Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award

2-2010

Access Type

Campus Access

Document type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Chemistry

First Advisor

Vincent M. Rotello

Second Advisor

Robert M. Weis

Third Advisor

Dhandapani Venkataraman

Subject Categories

Inorganic Chemistry | Nanoscience and Nanotechnology | Organic Chemistry

Abstract

Self-assembly of nanoparticles presents an excellent tool in the development of novel nanoscale structures and materials for creating high sensitive sensors, electronic and diagnostic devices, ultrahigh-density magnetic storage devices and many more. In these systems, the nanoparticle core imparts exceptional physical properties while their organic coatings regulate the assembly process. Moreover, organic coatings improve particle stability and solubility, as well as regulate charge and hydrophobicity. This thesis has focused on the engineering of nanoparticles' surfaces using organic molecules and assembly of these particles through supramolecular interactions for various applications. Morphology of the nanoparticle assembly was tuned simply by varying the degree of fluorinated coating on particles' surfaces and thus controlling their hydrophobicity. Surface engineered particles were also assembled at oil-water interfaces alone and with enzymes creating colloidal microcapsules for controlled release and catalysis respectively. The combination of the unique attributes of the nanoparticle cores and the function of the organic coating provides ample opportunities in the creation of multi-functional nano-materials that are useful in biological and materials applications.

DOI

https://doi.org/10.7275/5663510

Share

COinS