Loading...
Thumbnail Image
Publication

PROTEIN-NANOPARTICLE CO-ENGINEERING: SELF-ASSEMBLY, INTRACELLULAR PROTEIN DELIVERY, AND CRISPR/CAS9-BASED GENE EDITING

Abstract
Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these materials were mixed together, they formed highly sophisticated, multi-layered, and hierarchical self-assembled nanostructures of few hundred-nanometer size. These structures carried a large number of engineered proteins, got fused to cell membrane upon incubation, and delivered the encapsulated protein content directly into cell cytoplasm. Using this technology, we delivered a wide range of proteins, and CRISPR/Cas9-ribonucleoprotein that resulted high efficient gene editing.
Type
openaccess
article
dissertation
Date
Publisher
Rights
License
Research Projects
Organizational Units
Journal Issue
Embargo
Publisher Version
Embedded videos
Collections