Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier

N/A

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Industrial Engineering & Operations Research

Year Degree Awarded

2017

Month Degree Awarded

September

First Advisor

Ana Muriel

Subject Categories

Industrial Engineering | Management Sciences and Quantitative Methods | Operational Research | Operations and Supply Chain Management | Other Operations Research, Systems Engineering and Industrial Engineering | Systems Engineering

Abstract

In this dissertation, we develop strategies to synchronize component procurement in assemble-to-order (ATO) production and overhaul operations. We focus on the high-tech and mass customization industries which are not only considered to be very important to create or keep U.S. manufacturing jobs, but also suffer most from component inventory burden. In the second chapter, we address the deterministic joint replenishment inventory problem with batch size constraints (JRPB). We characterize system regeneration points, derive a closed-form expression of the average product inventory, and formulate the problem of finding the optimal joint reorder interval to minimize inventory and ordering costs per unit of time. Thereafter, we discuss exact solution approaches and the case of variable reorder intervals. Computational examples demonstrate the power of our methodology. In the third chapter, we incorporate stochastic demand to the JRPB. We propose a joint part replenishment policy that balances inventory and ordering costs while providing a desired service level. A case study and guided computational experiments show the magnitudes of savings that are possible using our methodology. In the fourth chapter, we show how lack of synchronization in assembly systems with long and highly variable component supply lead times can rapidly deteriorate system performance. We develop a full synchronization strategy through time buffering of component orders, which not only guarantees meeting planned production dates but also drastically reduces inventory holding costs. A case study has been carried out to prove the practical relevance, assess potential risks, and evaluate phased implementation policies. The fifth chapter explores the use of condition information from a large number of distributed working units in the field to improve the management of the inventory of spare parts required to maintain those units. Synchronization is again paramount here since spare part inventory needs to adapt to the condition of the engine fleet. All needed parts must be available to complete the overhaul of a unit. We develop a complex simulation environment to assess the performance of different inventory policies and the value of health monitoring. The sixth chapter concludes this dissertation and outlines future research plans as well as opportunities.

DOI

https://doi.org/10.7275/10694207.0

Share

COinS