Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

https://orcid.org/0000-0001-7303-5931

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Environmental Conservation

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2021

Month Degree Awarded

February

Abstract

As the earth’s climate changes due to anthropogenic emissions, it has increasingly become an imperative within the ecological community to understand existing species adaptations to climate change. Much focus has been paid to how a species might react to climate change, but the role of locally adapted traits and responsible environmental mechanisms have received less attention. Quantifying how sublethal (e.g. growth rates) and lethal (e.g. thermal tolerance) trait performance vary between populations can thus improve our understanding of how populations, and the entire species, will react to climate change. Here, I quantified the spatial patterns of performance of several traits in populations of the predatory marine snail Urosalpinx cinerea from across two thermal gradients on the Pacific and Atlantic coasts of North America. In chapter 2, I quantified local adaptation and plasticity of thermal tolerance, warming tolerance, and developmental traits of Urosalpinx. I found that while low latitude populations have evolved higher thermal tolerance than their low latitude counterparts, they also demonstrate negative plasticity in response to higher acclimation temperatures. This is likely a result of low latitude population adaptation to cooler developmental conditions. Further, low latitude populations live in environments much closer to their thermal maxima than high latitude counterparts, resulting in higher climate sensitivity in low latitudes. In chapter 3, I quantified growth and consumption rates of Urosalpinx via a common garden experiment. I found evidence for a novel pattern of trait adaptation, wherein high latitude populations tended to have higher trait performance at higher thermal optima than low latitude counterparts. This can be attributed to the maximizing of growth rate during short growing seasons at high latitudes. Together, these results demonstrate that local adaptation in endemic across two traits in Urosalpinx. I demonstrate that these traits tend to be adapted to aspects of the environment directly related to aspects of Urosalpinx phenology, and not to environmental means as is commonly assumed. These insights suggest that models of organismal performance under climate change must consider not only the potential for local adaptation in populations, but also the aspects of the environment to which these populations are evolved.

DOI

https://doi.org/10.7275/20663208

First Advisor

Brian Cheng

Second Advisor

Lisa Komoroske

Third Advisor

Michelle Staudinger

Share

COinS