Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Plant & Soil Sciences

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2015

Month Degree Awarded

February

Abstract

As water demand increases it will become more imperative for golf course superintendents, landscape managers, and other industry professionals to improve water use efficiency in the management of recreational turfgrass. Scheduling irrigation according to actual turfgrass evapotranspiration rates (ETT) is an integral component of efficient irrigation practices. Impracticality of field derived ETT for industry use, however, directs the need of weather station derived reference (predicted) evapotranspiration (ET0). To accurately predict (estimate) ETT of turf and other crops, scientifically derived landscape (crop) coefficients (Kc values) are used in conjunction with mathematical models that incorporate local meteorological data. Research is limited, however, in identifying Kc values and subsequent ET0 for turfgrass species selected and maintained under high intensity recreational practices congruent of golf courses and sports fields in the cool-humid northeast climate. Therefore, objectives of this study were to (i) observe and record ETT of three commonly selected recreational turfgrass species; 'Exacta' Perennial ryegrass (Lollium perenne L.), 'Touchdown' Kentucky bluegrass (Poa pratensis L.), and 'Memorial' Creeping bentgrass (Agrostis stolinifera L.) maintained as golf and sports turf, (ii) analyze the impact various management practices (nitrogen fertility and height of cut) have on ETT, (iii) develop accurate Kc values appropriate for use with the recommended FAO 56 Penman-Monteith mathematical model for accurate ET0 of recreational turf maintained in the cool-humid northeast.

Four heights of cut (HOC) and two nitrogen fertility rates (N) were evaluated to determine their impact on turfgrass growth and subsequent water use and ETT of three recreational turfgrass species. Golf turf (creeping bentgrass) maintained at a lower height of cut than sports turf exhibited a smaller leaf area component and a significantly lower (20%) ETT. N applied as slow release (82%) throughout the growing season increased ETT by 5%, particularly with perennial ryegrass sports turf. Taller HOC also increased ETT by 10% due to increased leaf area indices and subsequent decreased resistance to ET. Predicted ET0 according to FAO 56 for all three years of the study (79 observations) captured 71% of ETT. Yearly and monthly calculations suggest less variable (cloudy) weather yielded more accurate ET0. Crop coefficient (Kc) values established in conjunction with FAO 56 ET0 ranged from 0.90 to 1.00 for shorter golf course turf (creeping bentgrass), and 1.15 to 1.25 for taller sports turf (Kentucky bluegrass and perennial ryegrass). Results indicate shorter grass exhibits a lower ETT than taller grass due to various factors, and in the case of industry application, FAO 56 ET0 can accurately estimate ETT of recreational turf in the cool-humid northeast when fitted with appropriate Kc values.

DOI

https://doi.org/10.7275/6457733

First Advisor

Scott Ebdon

Second Advisor

Michelle DaCosta

Third Advisor

Paul Brown

Share

COinS