Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded

2016

Month Degree Awarded

September

Abstract

The goal of this thesis is to develop a soft multiple-degree-of-freedom (multi-DOF) load cell that is robust and light weight for use in robotics applications to sense three axes of force and a single axis of torque. The displacement of the magnet within the elastomer changes the magnetic flux density which is sensed by two 3-axis Hall effect sensors. Experimental measurements of magnetic flux density within the area of interest were used to formulate analytic expressions that relate magnet field strength to the position of the magnet. The displacement and orientation measurement and the material properties of the elastomer are used to calibrate and calculate the applied load. The ability to measure 3-DOF force and axial torque was evaluated with combined loading applied by a robotic arm (KUKA, LBR r820 iiwa). The decoupled results show the 4-DOF load cell was able to distinguish 3-axis force and 1-axis torque with 6.9% averaged error for normal force, 4.3% and 2.6% for shear force in the X and Y axis and 8.6% for the torque. The results show good accuracy for a soft multi-axis sensor that would be applicable in many robotic applications where high accuracy is not required.

DOI

https://doi.org/10.7275/8939563

First Advisor

Frank C Sup IV

Second Advisor

Ian R Grosse

Third Advisor

Yahya Modarres-Sadeghi

Share

COinS