Document Type

Open Access Thesis

Embargo Period

9-1-2018

Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded

2017

Month Degree Awarded

September

Advisor Name

Robert W. Hyers

Co-advisor Name

David P. Schmidt

Third Advisor Name

Jonghyun Lee

Abstract

Engineered components can gain desirable properties when coated with surface materials. Wear-resistant coatings can improve the performance of contacting surfaces and allow for an extended life of the parts. Hard chromium has been the plating material of choice for certain wear and corrosion- resistant coatings because of its desirable combination of chemical resistance, adhesion, and mechanical properties. However, hexavalent chromium, a component of the process for applying hard chromium coatings, has been recognized by the EPA as having hazardous health and environmental impacts. Existing and planned environmental regulations restricts the use of process chemicals containing hexavalent chromium ions. This substantiates a need to develop an environmental friendly process for alternative coatings.

Praxair has reported that Cr-Ni-C particles have a better corrosion resistance than current chromium carbide and nickel chromium powders. Today, Cr-Ni-C provides great qualities for flame spray and does not contain the toxic compounds used to deposit hard chromium, but is not compatible with application by cold spray.

The purpose of this thesis project is to compare two processes for plating metal powder, chromium nickel carbide (Cr-Ni-C, CRC-410-1 from Praxair), with nickel. The particles were encapsulated using three different methods: one electroplating method previously used on particles, and two electroless plating processes using different solutions.

The Cr-Ni-C particles were successfully encapsulated with Ni by one of the electroless deposition methods. The electrolytic deposition experiments did not yield the uniformity of coating without agglomeration that is being attained in industrial practice today. Further research on this method is recommended, due to the material operational cost in an industrial setting that is projected to be over 200 times cheaper than electroless deposition method. In the meantime, it should be possible to produce enough coated powder by electroless deposition to validate the utility of this coated powder in depositing wear- and corrosion-resistant coatings of Cr-Ni-C by cold spray.

First Advisor

Robert W. Hyers

Available for download on Saturday, September 01, 2018

Share

COinS